Articles | Volume 20, issue 23
https://doi.org/10.5194/bg-20-4737-2023
https://doi.org/10.5194/bg-20-4737-2023
Research article
 | 
29 Nov 2023
Research article |  | 29 Nov 2023

Dark septate endophytic fungi associated with pioneer grass inhabiting volcanic deposits and their functions in promoting plant growth

Han Sun, Tomoyasu Nishizawa, Hiroyuki Ohta, and Kazuhiko Narisawa

Related subject area

Biogeochemistry: Soils
Ecosystem-specific patterns and drivers of global reactive iron mineral-associated organic carbon
Bo Zhao, Amin Dou, Zhiwei Zhang, Zhenyu Chen, Wenbo Sun, Yanli Feng, Xiaojuan Wang, and Qiang Wang
Biogeosciences, 20, 4761–4774, https://doi.org/10.5194/bg-20-4761-2023,https://doi.org/10.5194/bg-20-4761-2023, 2023
Short summary
Global patterns and drivers of phosphorus fractions in natural soils
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023,https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?
Imane Slimani, Xia-Zhu Barker, Patricia Lazicki, and William Horwath
Biogeosciences, 20, 3873–3894, https://doi.org/10.5194/bg-20-3873-2023,https://doi.org/10.5194/bg-20-3873-2023, 2023
Short summary
Soil priming effects and involved microbial community along salt gradients
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-114,https://doi.org/10.5194/bg-2023-114, 2023
Revised manuscript accepted for BG
Short summary
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023,https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary

Cited articles

Addy, H. D., Hambleton, S., and Currah, R. S.: Distribution and molecular characterization of the root endophyte Phialocephala fortinii along an environmental gradient in the boreal forest of Alberta, Mycol. Res., 104, 1213–1221, https://doi.org/10.1017/S0953756200002896, 2000. 
An, G.-H., Miyakawa, S., Kawahara, A., Osaki, M., and Ezawa, T.: Community structure of arbuscular mycorrhizal fungi associated with pioneer grass species Miscanthus sinensis in acid sulfate soils: Habitat segregation along pH gradients, Soil Sci. Plant Nutr., 54, 517–528, https://doi.org/10.1111/j.1747-0765.2008.00267.x, 2008. 
Arnold, A. E., Henk, D. A., Eells, R. L., Lutzoni, F., and Vilgalys, R.: Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR, Mycologia, 99, 185–206, https://doi.org/10.1080/15572536.2007.11832578, 2007. 
Bruzone, M. C., Fontenla, S. B., and Vohník, M.: Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere's Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina, Mycorrhiza, 25, 25–40, https://doi.org/10.1007/s00572-014-0586-3, 2015. 
Download
Short summary
In this research, we assessed the diversity and function of the dark septate endophytic (DSE) fungi community associated with Miscanthus condensatus root in volcanic ecosystems. Both metabarcoding and isolation were adopted in this study. We further validated effects on plant growth by inoculation of some core DSE isolates. This study helps improve our understanding of the role of Miscanthus condensatus-associated DSE fungi during the restoration of post-volcanic ecosystems.
Altmetrics
Final-revised paper
Preprint