Articles | Volume 21, issue 10
https://doi.org/10.5194/bg-21-2447-2024
https://doi.org/10.5194/bg-21-2447-2024
Research article
 | 
24 May 2024
Research article |  | 24 May 2024

Using automated machine learning for the upscaling of gross primary productivity

Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan

Related authors

CEDAR-GPP: spatiotemporally upscaled estimates of gross primary productivity incorporating CO2 fertilization
Yanghui Kang, Max Gaber, Maoya Bassiouni, Xinchen Lu, and Trevor Keenan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-337,https://doi.org/10.5194/essd-2023-337, 2023
Preprint under review for ESSD
Short summary

Related subject area

Biogeochemistry: Air - Land Exchange
An elucidatory model of oxygen's partial pressure inside substomatal cavities
Andrew S. Kowalski
Biogeosciences, 22, 785–789, https://doi.org/10.5194/bg-22-785-2025,https://doi.org/10.5194/bg-22-785-2025, 2025
Short summary
Aggregation of ice-nucleating macromolecules from Betula pendula pollen determines ice nucleation efficiency
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
Biogeosciences, 22, 103–115, https://doi.org/10.5194/bg-22-103-2025,https://doi.org/10.5194/bg-22-103-2025, 2025
Short summary
Evaluating adsorption isotherm models for determining the partitioning of ammonium between soil and soil pore water in environmental soil samples
Matthew G. Davis, Kevin Yan, and Jennifer G. Murphy
Biogeosciences, 21, 5381–5392, https://doi.org/10.5194/bg-21-5381-2024,https://doi.org/10.5194/bg-21-5381-2024, 2024
Short summary
Similar freezing spectra of particles in plant canopies and in the air at a high-altitude site
Annika Einbock and Franz Conen
Biogeosciences, 21, 5219–5231, https://doi.org/10.5194/bg-21-5219-2024,https://doi.org/10.5194/bg-21-5219-2024, 2024
Short summary
Anticorrelation of net uptake of atmospheric CO2 by the world ocean and terrestrial biosphere in current carbon cycle models
Stephen E. Schwartz
Biogeosciences, 21, 5045–5057, https://doi.org/10.5194/bg-21-5045-2024,https://doi.org/10.5194/bg-21-5045-2024, 2024
Short summary

Cited articles

AmeriFlux Management Project: AmeriFlux, AmeriFlux [data set], https://ameriflux.lbl.gov/data/flux-data-products, last access: 13 October 2022. 
Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., Murray-Tortarolo, G., Papale, D., Parazoo, N. C., Peylin, P., Piao, S., Sitch, S., Viovy, N., Wiltshire, A., and Zhao, M.: Spatiotemporal patterns of terrestrial gross primary production: A review: GPP Spatiotemporal Patterns, Rev. Geophys., 53, 785–818, https://doi.org/10.1002/2015RG000483, 2015. 
Babaeian, E., Paheding, S., Siddique, N., Devabhaktuni, V. K., and Tuller, M.: Estimation of root zone soil moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine learning, Remote Sens. Environ., 260, 112434, https://doi.org/10.1016/j.rse.2021.112434, 2021. 
Balaji, A. and Allen, A.: Benchmarking Automatic Machine Learning Frameworks, ArXiv [preprint], https://doi.org/10.48550/arXiv.1808.06492, 2018. 
Download
Short summary
Gross primary productivity (GPP) describes the photosynthetic carbon assimilation, which plays a vital role in the carbon cycle. We can measure GPP locally, but producing larger and continuous estimates is challenging. Here, we present an approach to extrapolate GPP to a global scale using satellite imagery and automated machine learning. We benchmark different models and predictor variables and achieve an estimate that can capture 75 % of the variation in GPP.
Share
Altmetrics
Final-revised paper
Preprint