Articles | Volume 21, issue 10
https://doi.org/10.5194/bg-21-2447-2024
https://doi.org/10.5194/bg-21-2447-2024
Research article
 | 
24 May 2024
Research article |  | 24 May 2024

Using automated machine learning for the upscaling of gross primary productivity

Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan

Related authors

CEDAR-GPP: spatiotemporally upscaled estimates of gross primary productivity incorporating CO2 fertilization
Yanghui Kang, Maoya Bassiouni, Max Gaber, Xinchen Lu, and Trevor F. Keenan
Earth Syst. Sci. Data, 17, 3009–3046, https://doi.org/10.5194/essd-17-3009-2025,https://doi.org/10.5194/essd-17-3009-2025, 2025
Short summary

Related subject area

Biogeochemistry: Air - Land Exchange
Potential of carbon uptake and local aerosol production in boreal and hemi-boreal ecosystems across Finland and in Estonia
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
Biogeosciences, 22, 3235–3251, https://doi.org/10.5194/bg-22-3235-2025,https://doi.org/10.5194/bg-22-3235-2025, 2025
Short summary
Altered seasonal sensitivity of net ecosystem exchange to controls driven by nutrient balances in a semi-arid savanna
Laura Nadolski, Tarek S. El-Madany, Jacob Nelson, Arnaud Carrara, Gerardo Moreno, Richard Nair, Yunpeng Luo, Anke Hildebrandt, Victor Rolo, Markus Reichstein, and Sung-Ching Lee
Biogeosciences, 22, 2935–2958, https://doi.org/10.5194/bg-22-2935-2025,https://doi.org/10.5194/bg-22-2935-2025, 2025
Short summary
Peltigera lichen thalli produce highly potent ice-nucleating agents
Rosemary J. Eufemio, Galit Renzer, Mariah Rojas, Jolanta Miadlikowska, Todd L. Sformo, François Lutzoni, Boris A. Vinatzer, and Konrad Meister
Biogeosciences, 22, 2087–2096, https://doi.org/10.5194/bg-22-2087-2025,https://doi.org/10.5194/bg-22-2087-2025, 2025
Short summary
Mercury contamination in staple crops impacted by Artisanal Small-scale Gold Mining (ASGM): Stable Hg isotopes demonstrate dominance of atmospheric uptake pathway for Hg in crops
Excellent O. Eboigbe, Nimelan Veerasamy, Abiodun M. Odukoya, Nnamdi C. Anene, Jeroen E. Sonke, Sayuri Sakisaka Méndez, and David S. McLagan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1402,https://doi.org/10.5194/egusphere-2025-1402, 2025
Short summary
Constraining 2010–2020 Amazonian carbon flux estimates with satellite solar-induced fluorescence (SIF)
Archana Dayalu, Marikate Mountain, Bharat Rastogi, John B. Miller, and Luciana Gatti
Biogeosciences, 22, 1509–1528, https://doi.org/10.5194/bg-22-1509-2025,https://doi.org/10.5194/bg-22-1509-2025, 2025
Short summary

Cited articles

AmeriFlux Management Project: AmeriFlux, AmeriFlux [data set], https://ameriflux.lbl.gov/data/flux-data-products, last access: 13 October 2022. 
Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., Murray-Tortarolo, G., Papale, D., Parazoo, N. C., Peylin, P., Piao, S., Sitch, S., Viovy, N., Wiltshire, A., and Zhao, M.: Spatiotemporal patterns of terrestrial gross primary production: A review: GPP Spatiotemporal Patterns, Rev. Geophys., 53, 785–818, https://doi.org/10.1002/2015RG000483, 2015. 
Babaeian, E., Paheding, S., Siddique, N., Devabhaktuni, V. K., and Tuller, M.: Estimation of root zone soil moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine learning, Remote Sens. Environ., 260, 112434, https://doi.org/10.1016/j.rse.2021.112434, 2021. 
Balaji, A. and Allen, A.: Benchmarking Automatic Machine Learning Frameworks, ArXiv [preprint], https://doi.org/10.48550/arXiv.1808.06492, 2018. 
Download
Short summary
Gross primary productivity (GPP) describes the photosynthetic carbon assimilation, which plays a vital role in the carbon cycle. We can measure GPP locally, but producing larger and continuous estimates is challenging. Here, we present an approach to extrapolate GPP to a global scale using satellite imagery and automated machine learning. We benchmark different models and predictor variables and achieve an estimate that can capture 75 % of the variation in GPP.
Share
Altmetrics
Final-revised paper
Preprint