Articles | Volume 21, issue 10
https://doi.org/10.5194/bg-21-2509-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-2509-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coherency and time lag analyses between MODIS vegetation indices and climate across forests and grasslands in the European temperate zone
Centre of Applied Geomatics, Institute of Geodesy and Cartography, 27 Modzelewskiego Street, 02-679 Warsaw, Poland
Agata Hościło
Centre of Applied Geomatics, Institute of Geodesy and Cartography, 27 Modzelewskiego Street, 02-679 Warsaw, Poland
Related authors
Kinga Kulesza, Oliwier Zając, and Agata Hościło
EGUsphere, https://doi.org/10.5194/egusphere-2025-2770, https://doi.org/10.5194/egusphere-2025-2770, 2025
Preprint archived
Short summary
Short summary
Summer droughts result in significantly decreased productivity of Scots pine, while spring droughts, tend to have an initial positive impact on trees condition. In June 2019 and July 2006 severe droughts were detected and the prolonged decreased in productivity of pine forest was observed. Such long response of spectral indicator’s values was not clearly visible for droughts occurring either on the beginning (April 2009) or second half (August 2015) of the growing season.
Kinga Kulesza, Oliwier Zając, and Agata Hościło
EGUsphere, https://doi.org/10.5194/egusphere-2025-2770, https://doi.org/10.5194/egusphere-2025-2770, 2025
Preprint archived
Short summary
Short summary
Summer droughts result in significantly decreased productivity of Scots pine, while spring droughts, tend to have an initial positive impact on trees condition. In June 2019 and July 2006 severe droughts were detected and the prolonged decreased in productivity of pine forest was observed. Such long response of spectral indicator’s values was not clearly visible for droughts occurring either on the beginning (April 2009) or second half (August 2015) of the growing season.
Cited articles
Adole, T., Dash, J., and Atkinson, P. M.: A systematic review of vegetation phenology in Africa, Ecol. Inform., 34, 117–128, https://doi.org/10.1016/j.ecoinf.2016.05.004, 2016.
American Meteorological Society: Tetens's formula, Glossary of Meteorology, https://glossary.ametsoc.org/wiki/Teten's_formula (last access: 6 July 2023), 2023.
Araghi, A., Martinez, C. J., Adamowski, J., and Olesen, J. E.: Associations between large-scale climate oscillations and land surface phenology in Iran, Agr. Forest Meteorol., 278, 107682, https://doi.org/10.1016/j.agrformet.2019.107682, 2019.
Barbosa, H. A., Lakshmi Kumar, T. V., Paredes, F., Elliott, S., and Ayuga, J. G.: Assessment of Caatinga response to drought using Meteosat-SEVIRI Normalized Difference Vegetation Index (2008–2016), ISPRS J. Photogramm., 148, 235–252, https://doi.org/10.1016/j.isprsjprs.2018.12.014, 2019.
Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather Rev., 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987.
Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L., Wigneron, J. P., Weber, U., Reichstein, M., Fu, Z., Anthoni, P., Arneth, A., Haverd, V., Jain, A. K., Joetzjer, E., Knauer, J., Lienert, S., Loughran, T., McGuire, P. C., Tian, H., Viovy, N., and Zaehle, S.: Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity, Sci. Adv., 6, eaba2724, https://doi.org/10.1126/sciadv.aba2724, 2020.
Boergens, E., Güntner, A., Dobslaw, H., and Dahle, C.: Quantifying the Central European Droughts in 2018 and 2019 With GRACE Follow-On, Geophys. Res. Lett., 47, e2020GL087285, https://doi.org/10.1029/2020GL087285, 2020.
Brázdil, R., Zahradníček, P., Dobrovolný, P., Štěpánek, P., and Trnka, M.: Observed changes in precipitation during recent warming: The Czech Republic, 1961–2019, Int. J. Climatol., 41, 3881–3902, https://doi.org/10.1002/joc.7048, 2021.
Brown, M. E., de Beurs, K., and Vrieling, A.: The response of African land surface phenology to large scale climate oscillations, Remote Sens. Environ., 114, 2286–2296, https://doi.org/10.1016/j.rse.2010.05.005, 2010.
Bryn, A. and Potthoff, K.: Elevational treeline and forest line dynamics in Norwegian mountain areas – a review, Landscape Ecol., 33, 1225–1245, 2018.
Buras, A., Meyer, B., and Rammig, A.: Record reduction in European forest canopy greenness during the 2022 drought, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-8927, https://doi.org/10.5194/egusphere-egu23-8927, 2023.
Buras, A., Rammig, A., and Zang, C. S.: Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003, Biogeosciences, 17, 1655–1672, https://doi.org/10.5194/bg-17-1655-2020, 2020.
Büttner, G., Kosztra, B., Maucha, G., Pataki, R., Kleeschulte, S., Hazeu, G., Vittek, M., Schröder, C., and Littkopf, A.: CORINE Land Cover Products User Manual, European Union, Copernicus Land Monitoring Service 2021, European Environment Agency, https://land.copernicus.eu/user-corner/technical-library/clc-product-user-manual (last access: 4 November 2022), 2021.
Carl, G., Doktor, D., Koslowsky, D., and Kühn, I.: Phase difference analysis of temperature and vegetation phenology for beech forest: a wavelet approach, Stoch. Env. Res. Risk Ass., 27, 1221–1230, https://doi.org/10.1007/s00477-012-0658-x, 2013.
Chu, H., Venevsky, S., Wu, C., and Wang, M.: NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015, Sci. Total Environ., 650, 2051–2062, https://doi.org/10.1016/j.scitotenv.2018.09.115, 2019.
Didan, K.: MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m SIN Grid V061, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MYD13Q1.061, 2021a.
Didan, K.: MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD13Q1.061, 2021b.
Didan, K. and Munoz, A. B.: MODIS Vegetation Index User's Guide (MOD13 Series), Tucson, AZ, Vegetation Index and Phenology Lab, The University of Arizona, 2019.
Erasmi, S., Propastin, P., Kappas, M., and Panferov, O.: Spatial patterns of NDVI variation over Indonesia and their relationship to ENSO warm events during the period 1982–2006, J. Climate, 22, 6612–6623, https://doi.org/10.1175/2009jcli2460.1, 2009.
FAO and UNEP: The State of the World's Forests 2020. In brief. Forests, biodiversity and people, FAO and UNEP, Rome, https://doi.org/10.4060/ca8985en, 2020.
Fink, A. H., Brücher, T., Krüger, A., Leckebusch, G. C., Pinto, J. G., and Ulbrich, U.: The 2003 European summer heatwaves and drought–synoptic diagnosis and impacts, Weather, 59, 209–216, https://doi.org/10.1256/wea.73.04, 2004.
Furon, A. C., Wagner-Riddle, C., Smith, C. R., and Warland, J. S.: Wavelet analysis of wintertime and spring thaw CO2 and N2O fluxes from agricultural fields, Agr. Forest Meteorol., 148, 1305–1317, https://doi.org/10.1016/j.agrformet.2008.03.006, 2008.
García-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J., and Fischer, E. M.: A Review of the European Summer Heat Wave of 2003, Crit. Rev. Env. Sci. Tec., 40, 267–306, https://doi.org/10.1080/10643380802238137, 2010.
Gazol, A. and Camarero, J. J.: Compound climate events increase tree drought mortality across European forests, Sci. Total Environ., 816, 151604, https://doi.org/10.1016/j.scitotenv.2021.151604, 2022.
Ghaderpour, E., Mazzanti, P., Mugnozza, G. S., and Bozzano, F.: Coherency and phase delay analyses between land cover and climate across Italy via the least-squares wavelet software, Int. J. Appl. Earth Obs., 118, 103241, https://doi.org/10.1016/j.jag.2023.103241, 2023.
Gong, D. Y. and Shi, P. J.: Northern hemispheric NDVI variations associated with large-scale climate indices in spring, Int. J. Remote Sens., 24, 2559–2566, https://doi.org/10.1080/0143116031000075107, 2003.
Gouveia, C., Trigo, R. M., DaCamara, C. C., Libonati, R., and Pereira, J. M. C.: The North Atlantic Oscillation and European vegetation dynamics, Int. J. Climatol., 28, 1835–1847, https://doi.org/10.1002/joc.1682, 2008.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Hari, V., Rakovec, O., Markonis, Y., Hanel, M., and Kumar, R.: Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming, Sci. Rep., 10, 12207, https://doi.org/10.1038/s41598-020-68872-9, 2020.
He, Q., Xu, B., Dieppois, B., Yetemen, O., Sen, O. L., Klaus, J., Schoppach, R., Çağlar, F., Fan, P. Y., Chen, L., Danaila, L., Massei, N., and Chun, K. P.: Impact of the North Sea-Caspian pattern on meteorological drought and vegetation response over diverging environmental systems in western Eurasia, Ecohydrology, 15, e2446, https://doi.org/10.1002/eco.2446, 2022.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hofgaard, A., Tømmervik, H., Rees, G., and Hanssen, F.: Latitudinal forest advance in northernmost Norway since the early 20th century, J. Biogeogr., 40, 938–949, https://doi.org/10.1111/jbi.12053, 2012.
Holben, B. N.: Characteristics of maximum-value composite images from temporal AVHRR data, Int. J. Remote Sens., 7, 1417–1434, https://doi.org/10.1080/01431168608948945, 1986.
Huang, S., Tang, L., Hupy, J. P., Wang, Y., and Shao, G.: A commentary review on the use of Normalized Difference Vegetation Index (NDVI) in the era of popular remote sensing, J. Forestry Res., 32, 1–6, https://doi.org/10.1007/s11676-020-01155-1, 2021.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Hussain, A., Cao, J., Ali, S., Ullah, W., Muhammad, S., Hussain, I., Abbas, H., Hamal, K., Sharma, S., Akhtar, M., Wu, X., and Zhou, J.: Wavelet coherence of monsoon and large-scale climate variabilities with precipitation in Pakistan, Int. J. Climatol., 42, 9950–9966, https://doi.org/10.1002/joc.7874, 2022.
Ionita, M., Tallaksen, L. M., Kingston, D. G., Stagge, J. H., Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M., and Haslinger, K.: The European 2015 drought from a climatological perspective, Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, 2017.
IPCC: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H. O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., and Van Diemen, R., Intergovernmental Panel on Climate Change, 2019.
Karlsen, S. R., Tømmervik, H., Johansen, B., and Riseth, J. Å.: Future forest distribution on Finnmarksvidda, North Norway, Clim. Res., 73, 125–133, https://doi.org/10.3354/cr01459, 2017.
King, M. P., Keenlyside, N., and Li, C.: ENSO teleconnections in terms of non-NAO and NAO atmospheric variability, Clim. Dynam., 61, 2717–2733, https://doi.org/10.1007/s00382-023-06697-8, 2023.
Kosztra, B., Büttner, G., Hazeu, G., and Arnold, S.: Updated CLC illustrated nomenclature guidelines, European Environment Agency, Vienna, https://land.copernicus.eu/content/corine-land-cover-nomenclature-guidelines/docs/pdf/CLC2018_Nomenclature_illustrated_guide_20190510.pdf (last access: 4 March 2023), 2017.
Kulesza, K.: Influence of air pressure patterns over Europe on solar radiation variability over Poland (1986–2015), Int. J. Climatol., 41, E354–E367, https://doi.org/10.1002/joc.6689, 2021.
Kulesza, K. and Hościło, A.: Influence of climatic conditions on Normalized Difference Vegetation Index variability in forest in Poland (2002–2021), Meteorol. Appl., 30, e2156, https://doi.org/10.1002/met.2156, 2023.
Kutiel, H., Maheras, P., Türkeş, M., and Paz, S.: North Sea – Caspian Pattern (NCP) – an upper level atmospheric teleconnection affecting the eastern Mediterranean – implications on the regional climate, Theor. Appl. Climatol., 72, 173–192, https://doi.org/10.1007/s00704-002-0674-8, 2002.
Li, Z., Li, X., Wei, D., Xu, X., and Wang, H.: An assessment of correlation on MODIS-NDVI and EVI with natural vegetation coverage in Northern Hebei Province, China, Procedia Environ. Sci., 2, 964–969, https://doi.org/10.1016/j.proenv.2010.10.108, 2010.
Liu, Y., Li, Y., Li, S., and Motesharrei, S.: Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors, Remote Sens., 7, 13233–13250, https://doi.org/10.3390/rs71013233, 2015.
Lotsch, A., Friedl, M. A., Anderson, B. T., and Tucker, C. J.: Coupled vegetation-precipitation variability observed from satellite and climate records, Geophys. Res. Lett., 30, 1774, https://doi.org/10.1029/2003GL017506, 2003.
Mao, D., Wang, Z., Luo, L., and Ren, C.: Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China, Int. J. Appl. Earth Obs., 18, 528–536, https://doi.org/10.1016/j.jag.2011.10.007, 2012.
Martínez, B. and Gilabert, M. A.: Vegetation dynamics from NDVI time series analysis using the wavelet transform, Remote Sens. Environ., 113, 1823–1842, https://doi.org/10.1016/j.rse.2009.04.016, 2009.
Mbatha, N. and Xulu, S.: Time Series Analysis of MODIS-Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of Recent Intense Drought, Climate, 6, 95, https://doi.org/10.3390/cli6040095, 2018.
Moreira, A., Fontana, D. C., and Kuplich, T. M.: Wavelet approach applied to EVI/MODIS time series and meteorological data, ISPRS J. Photogramm., 147, 335–344, https://doi.org/10.1016/j.isprsjprs.2018.11.024, 2019.
Morin, X., Fahse, L., Jactel, H., Scherer-Lorenzen, M., García-Valdés, R., and Bugmann, H.: Long-term response of forest productivity to climate change is mostly driven by change in tree species composition, Sci. Rep., 8, 5627, https://doi.org/10.1038/s41598-018-23763-y, 2018.
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Naga Rajesh, A., Abinaya, S., Purna Durga, G., and Lakshmi Kumar, T. V.: Long-term relationships of MODIS NDVI with rainfall, land surface temperature, surface soil moisture and groundwater storage over monsoon core region of India, Arid Land Res. Manage., 37, 51–70, https://doi.org/10.1080/15324982.2022.2106323, 2023.
Olafsson, H. and Rousta, I.: Influence of atmospheric patterns and North Atlantic Oscillation (NAO) on vegetation dynamics in Iceland using Remote Sensing, Eur. J. Remote Sens., 54, 351–363, https://doi.org/10.1080/22797254.2021.1931462, 2021.
Pozo-Vázquez, D., Esteban-Parra, M. J., Rodrigo, F. S., and Castro-Díez, Y.: A study of NAO variability and its possible non-linear influences on European surface temperature, Clim. Dynam., 17, 701–715, https://doi.org/10.1007/s003820000137, 2001.
Prăvălie, R., Sîrodoev, I., Nita, I.-A., Patriche, C., Dumitraşcu, M., Roşca, B., Tişcovschi, A., Bandoc, G., Săvulescu, I., Mănoiu, V., and Birsan, M.-V.: NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987–2018, Ecol. Indic., 136, 108629, https://doi.org/10.1016/j.ecolind.2022.108629, 2022.
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T. E. E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D. B., Rammig, A., Rigling, A., Rose, L., Ruehr, N. K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C. S., and Kahmen, A.: A first assessment of the impact of the extreme 2018 summer drought on Central European forests, Basic Appl. Ecol., 45, 86–103, https://doi.org/10.1016/j.baae.2020.04.003, 2020.
Schulte, J. A., Duffy, C., and Najjar, R. G.: Geometric and topological approaches to significance testing in wavelet analysis, Nonlin. Processes Geophys., 22, 139–156, https://doi.org/10.5194/npg-22-139-2015, 2015.
Sen, A. K. and Kern, Z.: Wavelet analysis of low-frequency variability in oak tree-ring chronologies from east Central Europe, Open Geosci., 8, 478–483, https://doi.org/10.1515/geo-2016-0044, 2016.
Sen, A. K. and Ogrin, D.: Analysis of monthly, winter, and annual temperatures in Zagreb, Croatia, from 1864 to 2010: the 7.7-year cycle and the North Atlantic Oscillation, Theor. Appl. Climatol., 123, 733–739, https://doi.org/10.1007/s00704-015-1388-z, 2016.
Somorowska, U.: Amplified signals of soil moisture and evaporative stresses across Poland in the twenty-first century, Sci. Total Environ., 812, 151465, https://doi.org/10.1016/j.scitotenv.2021.151465, 2022.
Soubry, I., Doan, T., Chu, T., and Guo, X.: A Systematic Review on the Integration of Remote Sensing and GIS to Forest and Grassland Ecosystem Health Attributes, Indicators, and Measures, Remote Sens., 13, 3262, https://doi.org/10.3390/rs13163262, 2021.
Tomczyk, A. M. and Bednorz, E.: Atlas klimatu Polski (1991–2020), Poznan, Bogucki Wydawnictwo Naukowe, ISBN 978-83-7986-415-7, 2022.
Tomlinson, C. J., Chapman, L., Thornes, J. E., and Baker, C.: Remote sensing land surface temperature for meteorology and climatology: a review, Meteorol. Appl., 18, 296–306, https://doi.org/10.1002/met.287, 2011.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteor. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2, 1998.
Torrence, C. and Webster, P. J.: Interdecadal changes in the ENSO–monsoon system, J. Climate, 12, 2679–2690, https://doi.org/10.1175/1520-0442(1999)012<2679:icitem>2.0.co;2, 1999.
Vicente-Serrano, S. M. and Heredia-Laclaustra, A.: NAO influence on NDVI trends in the Iberian peninsula (1982-2000), Int. J. Remote Sens., 25, 2871–2879, https://doi.org/10.1080/01431160410001685009, 2004.
Wang, Y., Wang, Y., Zhu, X., Rammig, A., and Buras, A.: Quantifying Tree-species Specific Responses to the Extreme 2022 Drought in Germany, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-6144, https://doi.org/10.5194/egusphere-egu23-6144, 2023.
Yang, Y., Wang, S., Bai, X., Tan, Q., Li, Q., Wu, L., Tian, S., Hu, Z., Li, C., and Deng, Y.: Factors Affecting Long-Term Trends in Global NDVI, Forests, 10, 372, https://doi.org/10.3390/f10050372, 2019.
Zajączkowski, G., Jabłoński, M., Jabłoński, T., Sikora, K., Kowalska, A., Małachowska, J., and Piwnicki, J.: Raport o stanie lasów w Polsce 2021 (Report on the condition of forests in Poland 2021), Centrum Informacyjne Lasów Państwowych, Warsaw, ISSN 1641-3229 , 2022.
Zhang, Y., Song, C., Band, L. E., Sun, G., and Li, J.: Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening?, Remote Sens. Environ., 191, 145–155, https://doi.org/10.1016/j.rse.2016.12.018, 2017.
Zhou, Z., Liu, S., Ding, Y., Fu, Q., Wang, Y., Cai, H., and Shi, H.: Assessing the responses of vegetation to meteorological drought and its influencing factors with partial wavelet coherence analysis, J. Environ. Manage., 311, 114879, https://doi.org/10.1016/j.jenvman.2022.114879, 2022.
Zhu, L., Sun, S., Li, Y., Liu, X., and Hu, K.: Effects of climate change and anthropogenic activity on the vegetation greening in the Liaohe River Basin of northeastern China, Ecol. Indic., 148, 110105, https://doi.org/10.1016/j.ecolind.2023.110105, 2023.
Zhu, M., Ester, G. d. A., Wang, Y., Xu, Z., Ye, J., Yuan, Z., Lin, F., Fang, S., Mao, Z., Wang, X., and Hao, Z.: El Niño–Southern Oscillation affects the species-level temporal variation in seed and leaf fall in a mixed temperate forest, Sci. Total Environ., 850, 157751, https://doi.org/10.1016/j.scitotenv.2022.157751, 2022.
Ziernicka-Wojtaszek, A.: Summer Drought in 2019 on Polish Territory – A Case Study, Atmosphere, 12, 1475, https://doi.org/10.3390/atmos12111475 2021.
Short summary
We present coherence and time lags in spectral response of three vegetation types in the European temperate zone to the influencing meteorological factors and teleconnection indices for the period 2002–2022. Vegetation condition in broadleaved forest, coniferous forest and pastures was measured with MODIS NDVI and EVI, and the coherence between NDVI and EVI and meteorological elements was described using the methods of wavelet coherence and Pearson’s linear correlation with time lag.
We present coherence and time lags in spectral response of three vegetation types in the...
Altmetrics
Final-revised paper
Preprint