the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon cycle feedbacks in an idealized simulation and a scenario simulation of negative emissions in CMIP6 Earth system models
Ali Asaadi
Hanna Lee
Jerry Tjiputra
Vivek Arora
Roland Séférian
Spencer Liddicoat
Tomohiro Hajima
Yeray Santana-Falcón
Chris D. Jones
Related authors
We studied the impact of climate change on nematodes in a palsa peatland in Norway. This ecosystem, crucial for carbon storage, is rapidly changing due to warming and permafrost thaw. We found that intact palsas host more nematode populations, but warming reduces their numbers, particularly bacterivores and omni-carnivores. Additionally, fungivores became more dominant over the summer. These changes may alter nutrient cycles, highlighting the need to study nematodes in fragile Arctic ecosystems.
optimisticmodel in projecting future climate change among ESMs in the Coupled Model Intercomparison Project Phase 6.
Related subject area
Our research explores how chickpea plants can absorb essential nutrients like phosphorus, iron, and nickel directly from dust deposited on their leaves, in addition to uptake through their roots. This process was particularly effective under higher levels of atmospheric CO2, leading to increased plant growth. By using Nd isotopic tools, we traced the nutrients from dust and found that certain leaf traits enhance this uptake. This discovery may become increasingly important as CO2 levels rise.