Research article 02 Dec 2010
Research article | 02 Dec 2010
Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light
I. Marinov et al.
Related subject area
Earth System Science/Response to Global Change: Climate Change
Timing of drought in the growing season and strong legacy effects determine the annual productivity of temperate grasses in a changing climate
Contrasting responses of woody and herbaceous vegetation to altered rainfall characteristics in the Sahel
Reduced growth with increased quotas of particulate organic and inorganic carbon in the coccolithophore Emiliania huxleyi under future ocean climate change conditions
Ocean-related global change alters lipid biomarker production in common marine phytoplankton
Multi-decadal changes in structural complexity following mass coral mortality on a Caribbean reef
Stable isotopes track the ecological and biogeochemical legacy of mass mangrove forest dieback in the Gulf of Carpentaria, Australia
Global climate response to idealized deforestation in CMIP6 models
Technical note: Interpreting pH changes
Physiological responses of Skeletonema costatum to the interactions of seawater acidification and combination of photoperiod and temperature
Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models
Ecosystem physio-phenology revealed using circular statistics
Understanding the uncertainty in global forest carbon turnover
Characterizing deepwater oxygen variability and seafloor community responses using a novel autonomous lander
Physical and biogeochemical impacts of RCP8.5 scenario in the Peru upwelling system
Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2
Foraminiferal holobiont thermal tolerance under future warming – roommate problems or successful collaboration?
Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology
Potential predictability of marine ecosystem drivers
Is deoxygenation detectable before warming in the thermocline?
Spatio-temporal variations and uncertainty in land surface modelling for high latitudes: univariate response analysis
Microstructure and composition of marine aggregates as co-determinants for vertical particulate organic carbon transfer in the global ocean
Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003
Reviews and syntheses: How do abiotic and biotic processes respond to climatic variations in the Nam Co catchment (Tibetan Plateau)?
Simulation of factors affecting Emiliania huxleyi blooms in Arctic and sub-Arctic seas by CMIP5 climate models: model validation and selection
Particulate trace metal dynamics in response to increased CO2 and iron availability in a coastal mesocosm experiment
Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile
A meta-analysis of microcosm experiments shows that dimethyl sulfide (DMS) production in polar waters is insensitive to ocean acidification
Forest aboveground biomass stock and resilience in a tropical landscape of Thailand
Enhanced Weathering and related element fluxes – a cropland mesocosm approach
Trees do not always act their age: size-deterministic tree ring standardization for long-term trend estimation in shade-tolerant trees
Rapid environmental responses to climate-induced hydrographic changes in the Baltic Sea entrance
Trend analysis of the airborne fraction and sink rate of anthropogenically released CO2
Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)
Ideas and perspectives: Synergies from co-deployment of negative emission technologies
Assessment of time of emergence of anthropogenic deoxygenation and warming: insights from a CESM simulation from 850 to 2100 CE
Dispersal distances and migration rates at the arctic treeline in Siberia – a genetic and simulation-based study
Simulating growth-based harvest adaptive to future climate change
Monitoring changes in forestry and seasonal snow using surface albedo during 1982–2016 as an indicator
Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis
Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape
Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions
Variable metabolic responses of Skagerrak invertebrates to low O2 and high CO2 scenarios
Ocean acidification increases the sensitivity of and variability in physiological responses of an intertidal limpet to thermal stress
Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands
Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean
The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model
Simultaneous shifts in elemental stoichiometry and fatty acids of Emiliania huxleyi in response to environmental changes
Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel
Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis
Climate engineering and the ocean: effects on biogeochemistry and primary production
Claudia Hahn, Andreas Lüscher, Sara Ernst-Hasler, Matthias Suter, and Ansgar Kahmen
Biogeosciences, 18, 585–604, https://doi.org/10.5194/bg-18-585-2021, https://doi.org/10.5194/bg-18-585-2021, 2021
Short summary
Short summary
While existing studies focus on the immediate effects of drought events on grassland productivity, long-term effects are mostly neglected. But, to conclude universal outcomes, studies must consider comprehensive ecosystem mechanisms. In our study, we found that the resistance of growth rates to drought in grasses varies across seasons, and positive legacy effects of drought indicate a high resilience. The high resilience compensates for immediate drought effects on grasses to a large extent.
Wim Verbruggen, Guy Schurgers, Stéphanie Horion, Jonas Ardö, Paulo N. Bernardino, Bernard Cappelaere, Jérôme Demarty, Rasmus Fensholt, Laurent Kergoat, Thomas Sibret, Torbern Tagesson, and Hans Verbeeck
Biogeosciences, 18, 77–93, https://doi.org/10.5194/bg-18-77-2021, https://doi.org/10.5194/bg-18-77-2021, 2021
Short summary
Short summary
A large part of Earth's land surface is covered by dryland ecosystems, which are subject to climate extremes that are projected to increase under future climate scenarios. By using a mathematical vegetation model, we studied the impact of single years of extreme rainfall on the vegetation in the Sahel. We found a contrasting response of grasses and trees to these extremes, strongly dependent on the way precipitation is spread over the rainy season, as well as a long-term impact on CO2 uptake.
Yong Zhang, Sinéad Collins, and Kunshan Gao
Biogeosciences, 17, 6357–6375, https://doi.org/10.5194/bg-17-6357-2020, https://doi.org/10.5194/bg-17-6357-2020, 2020
Short summary
Short summary
Our results show that ocean acidification, warming, increased light exposure and reduced nutrient availability significantly reduce the growth rate but increase particulate organic and inorganic carbon in cells in the coccolithophore Emiliania huxleyi, indicating biogeochemical consequences of future ocean changes on the calcifying microalga. Concurrent changes in nutrient concentrations and pCO2 levels predominantly affected E. huxleyi growth, photosynthetic carbon fixation and calcification.
Rong Bi, Stefanie M. H. Ismar-Rebitz, Ulrich Sommer, Hailong Zhang, and Meixun Zhao
Biogeosciences, 17, 6287–6307, https://doi.org/10.5194/bg-17-6287-2020, https://doi.org/10.5194/bg-17-6287-2020, 2020
Short summary
Short summary
Lipids provide crucial insight into the trajectory of ecological functioning in changing environments. We experimentally explore responses of lipid biomarker production in phytoplankton to projected changes in temperature, nutrients and pCO2. Differential responses of lipid biomarkers indicate rearrangements of cellular carbon pools under future ocean scenarios. Such variations in lipid biomarker production would have important impacts on marine ecological functions and biogeochemical cycles.
George Roff, Jennifer Joseph, and Peter J. Mumby
Biogeosciences, 17, 5909–5918, https://doi.org/10.5194/bg-17-5909-2020, https://doi.org/10.5194/bg-17-5909-2020, 2020
Short summary
Short summary
In recent decades, extensive mortality of reef-building corals throughout the Caribbean region has led to the erosion of reef frameworks and declines in biodiversity. Using field observations, models, and high-precision U–Th dating, we quantified changes in the structural complexity of coral reef frameworks over the past 2 decades. Structural complexity was stable at reef scales, yet bioerosion led to declines in small-scale microhabitat complexity with cascading effects on cryptic fauna.
Yota Harada, Rod M. Connolly, Brian Fry, Damien T. Maher, James Z. Sippo, Luke C. Jeffrey, Adam J. Bourke, and Shing Yip Lee
Biogeosciences, 17, 5599–5613, https://doi.org/10.5194/bg-17-5599-2020, https://doi.org/10.5194/bg-17-5599-2020, 2020
Short summary
Short summary
In 2015–2016, an extensive area of mangroves along ~ 1000 km of coastline in the Gulf of Carpentaria, Australia, experienced dieback as a result of a climatic extreme event that included drought conditions and low sea levels. Multiannual field campaigns conducted from 2016 to 2018 show substantial recovery of the mangrove vegetation. However, stable isotopes suggest long-lasting changes in carbon, nitrogen and sulfur cycling following the dieback.
Lena R. Boysen, Victor Brovkin, Julia Pongratz, David M. Lawrence, Peter Lawrence, Nicolas Vuichard, Philippe Peylin, Spencer Liddicoat, Tomohiro Hajima, Yanwu Zhang, Matthias Rocher, Christine Delire, Roland Séférian, Vivek K. Arora, Lars Nieradzik, Peter Anthoni, Wim Thiery, Marysa M. Laguë, Deborah Lawrence, and Min-Hui Lo
Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, https://doi.org/10.5194/bg-17-5615-2020, 2020
Short summary
Short summary
We find a biogeophysically induced global cooling with strong carbon losses in a 20 million square kilometre idealized deforestation experiment performed by nine CMIP6 Earth system models. It takes many decades for the temperature signal to emerge, with non-local effects playing an important role. Despite a consistent experimental setup, models diverge substantially in their climate responses. This study offers unprecedented insights for understanding land use change effects in CMIP6 models.
Andrea J. Fassbender, James C. Orr, and Andrew G. Dickson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-348, https://doi.org/10.5194/bg-2020-348, 2020
Revised manuscript accepted for BG
Short summary
Short summary
A decline in upper ocean pH with time is typically ascribed to ocean acidification. A more quantitative interpretation is often confused by failing to recognize the implications of pH being a logarithmic transform of hydrogen ion concentration, rather than an absolute measure. This can lead to an unwitting misinterpretation of pH data. We provide three real-world examples illustrating this and recommend the reporting of both hydrogen ion concentration and pH in studies of ocean chemical change.
Hangxiao Li, Tianpeng Xu, Jing Ma, Futian Li, and Juntian Xu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-303, https://doi.org/10.5194/bg-2020-303, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Few studies investigated interactions of ocean acidification and seasonal changes in temperature and daylength on marine diatoms. We cultured a marine diatom under two CO2 levels and three combinations of temperature and daylength, simulating different seasons, to investigate combined effects of these factors. Results showed acidification had contrasting effects under different combinations, indicating that future ocean may show differential effects on diatoms in different cluster of factors.
Vivek K. Arora, Anna Katavouta, Richard G. Williams, Chris D. Jones, Victor Brovkin, Pierre Friedlingstein, Jörg Schwinger, Laurent Bopp, Olivier Boucher, Patricia Cadule, Matthew A. Chamberlain, James R. Christian, Christine Delire, Rosie A. Fisher, Tomohiro Hajima, Tatiana Ilyina, Emilie Joetzjer, Michio Kawamiya, Charles D. Koven, John P. Krasting, Rachel M. Law, David M. Lawrence, Andrew Lenton, Keith Lindsay, Julia Pongratz, Thomas Raddatz, Roland Séférian, Kaoru Tachiiri, Jerry F. Tjiputra, Andy Wiltshire, Tongwen Wu, and Tilo Ziehn
Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, https://doi.org/10.5194/bg-17-4173-2020, 2020
Short summary
Short summary
Since the preindustrial period, land and ocean have taken up about half of the carbon emitted into the atmosphere by humans. Comparison of different earth system models with the carbon cycle allows us to assess how carbon uptake by land and ocean differs among models. This yields an estimate of uncertainty in our understanding of how land and ocean respond to increasing atmospheric CO2. This paper summarizes results from two such model intercomparison projects that use an idealized scenario.
Daniel E. Pabon-Moreno, Talie Musavi, Mirco Migliavacca, Markus Reichstein, Christine Römermann, and Miguel D. Mahecha
Biogeosciences, 17, 3991–4006, https://doi.org/10.5194/bg-17-3991-2020, https://doi.org/10.5194/bg-17-3991-2020, 2020
Short summary
Short summary
Ecosystem CO2 uptake changes in time depending on climate conditions. In this study, we analyze how different climate variables affect the timing when CO2 uptake is at a maximum (DOYGPPmax). We found that the joint effects of radiation, temperature, and vapor pressure deficit are the most relevant controlling factors of DOYGPPmax and that if they increase, DOYGPPmax will happen earlier. These results help us to better understand how CO2 uptake could be affected by climate change.
Thomas A. M. Pugh, Tim Rademacher, Sarah L. Shafer, Jörg Steinkamp, Jonathan Barichivich, Brian Beckage, Vanessa Haverd, Anna Harper, Jens Heinke, Kazuya Nishina, Anja Rammig, Hisashi Sato, Almut Arneth, Stijn Hantson, Thomas Hickler, Markus Kautz, Benjamin Quesada, Benjamin Smith, and Kirsten Thonicke
Biogeosciences, 17, 3961–3989, https://doi.org/10.5194/bg-17-3961-2020, https://doi.org/10.5194/bg-17-3961-2020, 2020
Short summary
Short summary
The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle. Estimates from six contemporary models found this time to range from 12.2 to 23.5 years for the global mean for 1985–2014. Future projections do not give consistent results, but 13 model-based hypotheses are identified, along with recommendations for pragmatic steps to test them using existing and novel observations, which would help to reduce large current uncertainty.
Natalya D. Gallo, Kevin Hardy, Nicholas C. Wegner, Ashley Nicoll, Haleigh Yang, and Lisa A. Levin
Biogeosciences, 17, 3943–3960, https://doi.org/10.5194/bg-17-3943-2020, https://doi.org/10.5194/bg-17-3943-2020, 2020
Short summary
Short summary
Environmental exposure histories can affect organismal sensitivity to climate change and ocean deoxygenation. The natural variability of environmental conditions for nearshore deep-sea habitats is poorly known due to technological challenges. We develop and test a novel, autonomous, hand-deployable lander outfitted with environmental sensors and a camera system and use it to characterize high-frequency oxygen, temperature, and pH variability at 100–400 m as well as seafloor community responses.
Vincent Echevin, Manon Gévaudan, Dante Espinoza-Morriberón, Jorge Tam, Olivier Aumont, Dimitri Gutierrez, and François Colas
Biogeosciences, 17, 3317–3341, https://doi.org/10.5194/bg-17-3317-2020, https://doi.org/10.5194/bg-17-3317-2020, 2020
Short summary
Short summary
The coasts of Peru encompass the richest fisheries in the entire ocean. It is therefore very important for this country to understand how the nearshore marine ecosystem may evolve under climate change. Fine-scale numerical models are very useful because they can represent precisely the evolution of key parameters such as temperature, water oxygenation, and plankton biomass. Here we study the evolution of the Peruvian marine ecosystem in the 21st century under the worst-case climate scenario.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Doron Pinko, Sigal Abramovich, and Danna Titelboim
Biogeosciences, 17, 2341–2348, https://doi.org/10.5194/bg-17-2341-2020, https://doi.org/10.5194/bg-17-2341-2020, 2020
Short summary
Short summary
Future warming threatens many marine organisms; among these are large benthic foraminifera. These symbiont-bearing protists are major carbonate producers and ecosystem engineers. To assess the relative contribution of host and symbiont algae to the holobiont thermal tolerance, we evaluated the calcification rate and photosynthetic activity under future warming scenarios.
Wagner de Oliveira Garcia, Thorben Amann, Jens Hartmann, Kristine Karstens, Alexander Popp, Lena R. Boysen, Pete Smith, and Daniel Goll
Biogeosciences, 17, 2107–2133, https://doi.org/10.5194/bg-17-2107-2020, https://doi.org/10.5194/bg-17-2107-2020, 2020
Short summary
Short summary
Biomass-based terrestrial negative emission technologies (tNETS) have high potential to sequester CO2. Many CO2 uptake estimates do not include the effect of nutrient deficiencies in soils on biomass production. We show that nutrients can be partly resupplied by enhanced weathering (EW) rock powder application, increasing the effectiveness of tNETs. Depending on the deployed amounts of rock powder, EW could also improve soil hydrology, adding a new dimension to the coupling of tNETs with EW.
Thomas L. Frölicher, Luca Ramseyer, Christoph C. Raible, Keith B. Rodgers, and John Dunne
Biogeosciences, 17, 2061–2083, https://doi.org/10.5194/bg-17-2061-2020, https://doi.org/10.5194/bg-17-2061-2020, 2020
Short summary
Short summary
Climate variations can have profound impacts on marine ecosystems. Here we show that on global scales marine ecosystem drivers such as temperature, pH, O2 and NPP are potentially predictable 3 (at the surface) and more than 10 years (subsurface) in advance. However, there are distinct regional differences in the potential predictability of these drivers. Our study suggests that physical–biogeochemical forecast systems have considerable potential for use in marine resource management.
Angélique Hameau, Thomas L. Frölicher, Juliette Mignot, and Fortunat Joos
Biogeosciences, 17, 1877–1895, https://doi.org/10.5194/bg-17-1877-2020, https://doi.org/10.5194/bg-17-1877-2020, 2020
Short summary
Short summary
Ocean deoxygenation and warming are observed and projected to intensify under continued greenhouse gas emissions. Whereas temperature is considered the main climate change indicator, we show that in certain regions, thermocline doxygenation may be detectable before warming.
Didier G. Leibovici, Shaun Quegan, Edward Comyn-Platt, Garry Hayman, Maria Val Martin, Mathieu Guimberteau, Arsène Druel, Dan Zhu, and Philippe Ciais
Biogeosciences, 17, 1821–1844, https://doi.org/10.5194/bg-17-1821-2020, https://doi.org/10.5194/bg-17-1821-2020, 2020
Short summary
Short summary
Analysing the impact of environmental changes due to climate change, e.g. geographical spread of climate-sensitive infections (CSIs) and agriculture crop modelling, may require land surface modelling (LSM) to predict future land surface conditions. There are multiple LSMs to choose from. The paper proposes a multivariate spatio-temporal data science method to understand the inherent uncertainties in four LSMs and the variations between them in Nordic areas for the net primary production.
Joeran Maerz, Katharina D. Six, Irene Stemmler, Soeren Ahmerkamp, and Tatiana Ilyina
Biogeosciences, 17, 1765–1803, https://doi.org/10.5194/bg-17-1765-2020, https://doi.org/10.5194/bg-17-1765-2020, 2020
Short summary
Short summary
Marine micro-algae bind carbon dioxide, CO2. During their decay, snowflake-like aggregates form that sink, remineralize and transport organically bound CO2 to depth; this is referred to as the biological carbon pump. In our model study, we elucidate how variable aggregate composition impacts the global pattern of vertical carbon fluxes. Our mechanistic model approach advances the representation of the global biological carbon pump and promotes a more realistic projection under climate change.
Allan Buras, Anja Rammig, and Christian S. Zang
Biogeosciences, 17, 1655–1672, https://doi.org/10.5194/bg-17-1655-2020, https://doi.org/10.5194/bg-17-1655-2020, 2020
Short summary
Short summary
This study compares the climatic conditions and ecosystem response of the extreme European drought of 2018 with the previous extreme drought of 2003. Using gridded climate data and satellite-based remote sensing information, our analyses qualify 2018 as the new European record drought with wide-ranging negative impacts on European ecosystems. Given the observation of forest-legacy effects in 2019 we call for Europe-wide forest monitoring to assess forest vulnerability to climate change.
Sten Anslan, Mina Azizi Rad, Johannes Buckel, Paula Echeverria Galindo, Jinlei Kai, Wengang Kang, Laura Keys, Philipp Maurischat, Felix Nieberding, Eike Reinosch, Handuo Tang, Tuong Vi Tran, Yuyang Wang, and Antje Schwalb
Biogeosciences, 17, 1261–1279, https://doi.org/10.5194/bg-17-1261-2020, https://doi.org/10.5194/bg-17-1261-2020, 2020
Short summary
Short summary
Due to the high elevation, the Tibetan Plateau (TP) is affected more strongly than the global average by climate warming. As a result of increasing air temperature, several environmental processes have accelerated, such as melting glaciers, thawing permafrost and grassland degradation. We review several modern and paleoenvironmental changes forced by climate warming in the lake system of Nam Co to shape our understanding of global warming effects on current and future geobiodiversity.
Natalia Gnatiuk, Iuliia Radchenko, Richard Davy, Evgeny Morozov, and Leonid Bobylev
Biogeosciences, 17, 1199–1212, https://doi.org/10.5194/bg-17-1199-2020, https://doi.org/10.5194/bg-17-1199-2020, 2020
Short summary
Short summary
We analysed the ability of 34 climate models to reproduce main factors affecting the coccolithophore Emiliania huxleyi blooms in six Arctic and sub-Arctic seas. Furthermore, we proposed a procedure of ranking and selecting these models based on the model’s skill in reproducing 10 important oceanographic, meteorological, and biochemical variables in comparison with observation data and demonstrated that the proposed methodology shows a better result than commonly used all-model averaging.
M. Rosario Lorenzo, María Segovia, Jay T. Cullen, and María T. Maldonado
Biogeosciences, 17, 757–770, https://doi.org/10.5194/bg-17-757-2020, https://doi.org/10.5194/bg-17-757-2020, 2020
Short summary
Pritha Tutasi and Ruben Escribano
Biogeosciences, 17, 455–473, https://doi.org/10.5194/bg-17-455-2020, https://doi.org/10.5194/bg-17-455-2020, 2020
Short summary
Short summary
Vertical migration of zooplankton has rarely been studied under the effect of a variable community structure, which depending on the behavior and size of its groups can strongly alter the magnitude of C being actively taken to depth by migrants. Here, we address this issue in a highly productive upwelling system, where a high amount of zooplankton can daily move below the mixed layer despite presence of an extremely low–oxygen water and so contribute to a significant export of C to depth.
Frances E. Hopkins, Philip D. Nightingale, John A. Stephens, C. Mark Moore, Sophie Richier, Gemma L. Cripps, and Stephen D. Archer
Biogeosciences, 17, 163–186, https://doi.org/10.5194/bg-17-163-2020, https://doi.org/10.5194/bg-17-163-2020, 2020
Short summary
Short summary
We investigated the effects of ocean acidification (OA) on the production of climate active gas dimethylsulfide (DMS) in polar waters. We found that polar DMS production was unaffected by OA – in contrast to temperate waters, where large increases in DMS occurred. The regional differences in DMS response may reflect natural variability in community adaptation to ambient carbonate chemistry and should be taken into account in predicting the influence of future DMS emissions on Earth's climate.
Nidhi Jha, Nitin Kumar Tripathi, Wirong Chanthorn, Warren Brockelman, Anuttara Nathalang, Raphaël Pélissier, Siriruk Pimmasarn, Pierre Ploton, Nophea Sasaki, Salvatore G. P. Virdis, and Maxime Réjou-Méchain
Biogeosciences, 17, 121–134, https://doi.org/10.5194/bg-17-121-2020, https://doi.org/10.5194/bg-17-121-2020, 2020
Short summary
Short summary
Carbon stocks and dynamics are both uncertain in tropical forests, especially in Asia. We here quantify the carbon stock and recovery rate of a Thai landscape using airborne lidar and four decades of Landsat data. We show that the landscape has a high carbon stock despite its disturbance history and that secondary forests are accumulating carbon at high rate. Our study shows the potential synergy of remote sensing and field data to characterize the carbon dynamics of tropical forests.
Thorben Amann, Jens Hartmann, Eric Struyf, Wagner de Oliveira Garcia, Elke K. Fischer, Ivan Janssens, Patrick Meire, and Jonas Schoelynck
Biogeosciences, 17, 103–119, https://doi.org/10.5194/bg-17-103-2020, https://doi.org/10.5194/bg-17-103-2020, 2020
Short summary
Short summary
Weathering is a major control on atmospheric CO2 at geologic timescales. Enhancement of this process can be used to actively remove CO2 from the atmosphere. Field results are still scarce and with this experiment we try to add some near-natural insights into dissolution processes. Results show CO2 sequestration potentials but also highlight the strong variability of outcomes that can be expected in natural environments. Such experiments are of the utmost importance to identify key processes.
Rachel Dietrich and Madhur Anand
Biogeosciences, 16, 4815–4827, https://doi.org/10.5194/bg-16-4815-2019, https://doi.org/10.5194/bg-16-4815-2019, 2019
Short summary
Short summary
In shade-tolerant tree species, growth is not strictly related to tree age. In this study we show that novel tree ring standardization models that incorporate tree size in the year of ring formation produce more accurate chronologies than those produced by contemporary, age-based standardization models. These findings are important for accurate and reliable long-term trend reconstruction in tree ring studies in all species but are especially so for shade-tolerant species.
Laurie M. Charrieau, Karl Ljung, Frederik Schenk, Ute Daewel, Emma Kritzberg, and Helena L. Filipsson
Biogeosciences, 16, 3835–3852, https://doi.org/10.5194/bg-16-3835-2019, https://doi.org/10.5194/bg-16-3835-2019, 2019
Short summary
Short summary
We reconstructed environmental changes in the Öresund during the last 200 years, using foraminifera (microfossils), sediment, and climate data. Five zones were identified, reflecting oxygen, salinity, food content, and pollution levels for each period. The largest changes occurred ~ 1950, towards stronger currents. The foraminifera responded quickly (< 10 years) to the changes. Moreover, they did not rebound when the system returned to the previous pattern, but displayed a new equilibrium state.
Mikkel Bennedsen, Eric Hillebrand, and Siem Jan Koopman
Biogeosciences, 16, 3651–3663, https://doi.org/10.5194/bg-16-3651-2019, https://doi.org/10.5194/bg-16-3651-2019, 2019
Short summary
Short summary
Is the fraction of anthropogenically released CO2 that remains in the atmosphere increasing? Is the rate at which the ocean and land sinks take up CO2 from the atmosphere decreasing? We analyse these questions by means of a statistical dynamic multivariate model from which we estimate the unobserved trend processes together with the parameters that govern them. We find no statistical evidence of an increasing airborne fraction, but we do find statistical evidence of a decreasing sink rate.
Alexandra T. Holland, Christopher J. Williamson, Fotis Sgouridis, Andrew J. Tedstone, Jenine McCutcheon, Joseph M. Cook, Ewa Poniecka, Marian L. Yallop, Martyn Tranter, Alexandre M. Anesio, and The Black & Bloom Group
Biogeosciences, 16, 3283–3296, https://doi.org/10.5194/bg-16-3283-2019, https://doi.org/10.5194/bg-16-3283-2019, 2019
Short summary
Short summary
This paper provides a preliminary data set for dissolved nutrient abundance in the Dark Zone of the Greenland Ice Sheet. This 15-year marked darkening has since been attributed to glacier algae blooms, yet has not been accounted for in current melt rate models. We conclude that the dissolved organic phase dominates surface ice environments and that factors other than macronutrient limitation control the extent and magnitude of the glacier algae blooms.
Thorben Amann and Jens Hartmann
Biogeosciences, 16, 2949–2960, https://doi.org/10.5194/bg-16-2949-2019, https://doi.org/10.5194/bg-16-2949-2019, 2019
Short summary
Short summary
With the recent publication of the IPCC special report on the 1.5 °C target and increased attention on carbon dioxide removal (CDR) technologies, we think it is time to advance from the current way of looking at specific strategies to a more holistic CDR perspective, since multiple "side effects" may lead to additional CO2 uptake into different carbon pools. This paper explores potential co-benefits between terrestrial CDR strategies to facilitate a maximum CO2 sequestration effect.
Angélique Hameau, Juliette Mignot, and Fortunat Joos
Biogeosciences, 16, 1755–1780, https://doi.org/10.5194/bg-16-1755-2019, https://doi.org/10.5194/bg-16-1755-2019, 2019
Short summary
Short summary
The observed decrease of oxygen and warming in the ocean may adversely affect marine ecosystems and their services. We analyse results from an Earth system model for the last millennium and the 21st century. We find changes in temperature and oxygen due to fossil fuel burning and other human activities to exceed natural variations in many ocean regions already today. Natural variability is biased low in earlier studies neglecting forcing from past volcanic eruptions and solar change.
Stefan Kruse, Alexander Gerdes, Nadja J. Kath, Laura S. Epp, Kathleen R. Stoof-Leichsenring, Luidmila A. Pestryakova, and Ulrike Herzschuh
Biogeosciences, 16, 1211–1224, https://doi.org/10.5194/bg-16-1211-2019, https://doi.org/10.5194/bg-16-1211-2019, 2019
Short summary
Short summary
How fast might the arctic treeline in northern central Siberia migrate northwards under current global warming? To answer this, we newly parameterized dispersal processes in the individual-based and spatially explicit model LAVESI-WIND based on parentage analysis. Simulation results show that northernmost open forest stands are migrating at an unexpectedly slow rate into tundra. We conclude that the treeline currently lags behind the strong warming and will remain slow in the upcoming decades.
Rasoul Yousefpour, Julia E. M. S. Nabel, and Julia Pongratz
Biogeosciences, 16, 241–254, https://doi.org/10.5194/bg-16-241-2019, https://doi.org/10.5194/bg-16-241-2019, 2019
Short summary
Short summary
Global forest resources are accounted for to establish their potential to sink carbon in woody biomass. Climate prediction models realize the effects of future global forest utilization rates, defined by population demand and its evolution over time. However, forest management approaches consider the supply side to realize a sustainable forest carbon stock and adapt the harvest rates to novel climate conditions. This study simulates such an adaptive sustained
yield approach.
Terhikki Manninen, Tuula Aalto, Tiina Markkanen, Mikko Peltoniemi, Kristin Böttcher, Sari Metsämäki, Kati Anttila, Pentti Pirinen, Antti Leppänen, and Ali Nadir Arslan
Biogeosciences, 16, 223–240, https://doi.org/10.5194/bg-16-223-2019, https://doi.org/10.5194/bg-16-223-2019, 2019
Short summary
Short summary
The surface albedo time series CLARA-A2 SAL was used to study trends in the timing of the melting season of snow and preceding albedo value in Finland during 1982–2016 to assess climate change. The results were in line with operational snow depth data, JSBACH land ecosystem model, SYKE fractional snow cover and greening-up data. In the north a clear trend to earlier snowmelt onset, increasing melting season length, and decrease in pre-melt albedo (related to increased stem volume) was observed.
Yuan Meng, Zhenbin Guo, Susan C. Fitzer, Abhishek Upadhyay, Vera B. S. Chan, Chaoyi Li, Maggie Cusack, Haimin Yao, Kelvin W. K. Yeung, and Vengatesen Thiyagarajan
Biogeosciences, 15, 6833–6846, https://doi.org/10.5194/bg-15-6833-2018, https://doi.org/10.5194/bg-15-6833-2018, 2018
Short summary
Short summary
The paper revealed a potential structural deterioration induced by ocean acidification on the shells of an ecologically and economically important oyster, which is critical to forecasting the survival and production of edible oysters in the future ocean. Importantly, this is a multidisciplinary collaboration including aquaculture, crystallography, medical and materials science, which could be applied to other biomineral systems to hierarchically analyse the impact of ocean acidification.
Dominik Thom, Werner Rammer, Rita Garstenauer, and Rupert Seidl
Biogeosciences, 15, 5699–5713, https://doi.org/10.5194/bg-15-5699-2018, https://doi.org/10.5194/bg-15-5699-2018, 2018
Short summary
Short summary
Over the past decades temperate forests were a carbon (C) sink to the atmosphere. Yet the drivers of C uptake and how these affect the future carbon cycle remain uncertain. Our simulation and study revealed that the future C sink of central European forest landscapes is strongly driven by historic land use, while climate change reduces forest C uptake. Compared to land-use change, past natural disturbances (wind and bark beetles) have only marginal effects on the future carbon cycle.
Michael M. Loranty, Benjamin W. Abbott, Daan Blok, Thomas A. Douglas, Howard E. Epstein, Bruce C. Forbes, Benjamin M. Jones, Alexander L. Kholodov, Heather Kropp, Avni Malhotra, Steven D. Mamet, Isla H. Myers-Smith, Susan M. Natali, Jonathan A. O'Donnell, Gareth K. Phoenix, Adrian V. Rocha, Oliver Sonnentag, Ken D. Tape, and Donald A. Walker
Biogeosciences, 15, 5287–5313, https://doi.org/10.5194/bg-15-5287-2018, https://doi.org/10.5194/bg-15-5287-2018, 2018
Short summary
Short summary
Vegetation and soils strongly influence ground temperature in permafrost ecosystems across the Arctic and sub-Arctic. These effects will cause differences rates of permafrost thaw related to the distribution of tundra and boreal forests. As the distribution of forests and tundra change, the effects of climate change on permafrost will also change. We review the ecosystem processes that will influence permafrost thaw and outline how they will feed back to climate warming.
Aisling Fontanini, Alexandra Steckbauer, Sam Dupont, and Carlos M. Duarte
Biogeosciences, 15, 3717–3729, https://doi.org/10.5194/bg-15-3717-2018, https://doi.org/10.5194/bg-15-3717-2018, 2018
Short summary
Short summary
Invertebrate species of the Gullmar Fjord (Sweden) were exposed to four different treatments (high/low oxygen and low/high CO2) and respiration measured. Respiration responses of species of contrasting habitats and life-history strategies to single and multiple stressors was evaluated. Results show that the responses of the respiration were highly species specific as we observed both synergetic as well as antagonistic responses, and neither phylum nor habitat explained trends in respiration.
Jie Wang, Bayden D. Russell, Meng-Wen Ding, and Yun-Wei Dong
Biogeosciences, 15, 2803–2817, https://doi.org/10.5194/bg-15-2803-2018, https://doi.org/10.5194/bg-15-2803-2018, 2018
Short summary
Short summary
To understand ecological impacts of CO2-induced ocean acidification and temperature rise, a key question is if organisms become more vulnerable under multiple stressors. Here we tested heart rate and gene expression levels of a limpet under varying pCO2 and temperature. Results showed that while many individuals are more vulnerable to heat stress under high CO2 and increased temperature, some animals have the ability to alter their physiology to help them survive under future conditions.
Ting Liu, Liang Wang, Xiaojuan Feng, Jinbo Zhang, Tian Ma, Xin Wang, and Zongguang Liu
Biogeosciences, 15, 1627–1641, https://doi.org/10.5194/bg-15-1627-2018, https://doi.org/10.5194/bg-15-1627-2018, 2018
Short summary
Short summary
Compared to the respiration process, few studies have examined soil carbon leaching possibly enhanced by extreme precipitation events (EPEs). We show that soil carbon leaching was much higher than CO2 loss through respiration under EPEs in grassland soils through incubation experiments. The soil carbon leaching process should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems, especially considering the projected increase in EPEs with climate change.
Justine L. Ramage, Anna M. Irrgang, Anne Morgenstern, and Hugues Lantuit
Biogeosciences, 15, 1483–1495, https://doi.org/10.5194/bg-15-1483-2018, https://doi.org/10.5194/bg-15-1483-2018, 2018
Short summary
Short summary
We describe the evolution of thaw slumps between 1952 and 2011 along the Yukon Coast, Canada, and calculate the contribution of the slumps to the carbon budget in this area. The number of slumps has increased by 73 % over the period. These slumps displaced more than 16 billion m3 of material and mobilized 146 t of carbon. This represents 0.6 % of the annual carbon flux released from shoreline retreat, which shows that the contribution of slumps to the nearshore carbon budget is non-negligible.
Emeline Chaste, Martin P. Girardin, Jed O. Kaplan, Jeanne Portier, Yves Bergeron, and Christelle Hély
Biogeosciences, 15, 1273–1292, https://doi.org/10.5194/bg-15-1273-2018, https://doi.org/10.5194/bg-15-1273-2018, 2018
Short summary
Short summary
A vegetation model was used to reconstruct fire activity from 1901 to 2012 in relation to changes in lightning ignition, climate, and vegetation in eastern Canada's boreal forest. The model correctly simulated the history of fire activity. The results showed that fire activity is ignition limited but is also greatly affected by both climate and vegetation. This research aims to develop a vegetation model that could be used to predict the future impacts of climate changes on fire activity.
Rong Bi, Stefanie M. H. Ismar, Ulrich Sommer, and Meixun Zhao
Biogeosciences, 15, 1029–1045, https://doi.org/10.5194/bg-15-1029-2018, https://doi.org/10.5194/bg-15-1029-2018, 2018
Short summary
Short summary
We observed that N : P supply ratios had the strongest effect on C : N : P stoichiometry, while temperature and pCO2 played more influential roles on PIC : POC and polyunsaturated fatty acid proportions in Emiliania huxleyi. Synergistic interactions indicated the enhanced effect of warming under nutrient deficiency and high pCO2. Simultaneous changes of elements and fatty acids should be considered when predicting future roles of E. huxleyi in biogeochemical cycles and ecological functions.
Wenmin Zhang, Martin Brandt, Xiaoye Tong, Qingjiu Tian, and Rasmus Fensholt
Biogeosciences, 15, 319–330, https://doi.org/10.5194/bg-15-319-2018, https://doi.org/10.5194/bg-15-319-2018, 2018
Lei Jiang, You-Fang Sun, Yu-Yang Zhang, Guo-Wei Zhou, Xiu-Bao Li, Laurence J. McCook, Jian-Sheng Lian, Xin-Ming Lei, Sheng Liu, Lin Cai, Pei-Yuan Qian, and Hui Huang
Biogeosciences, 14, 5741–5752, https://doi.org/10.5194/bg-14-5741-2017, https://doi.org/10.5194/bg-14-5741-2017, 2017
Short summary
Short summary
The negative effects of elevated temperature (31 °C) on larval settlement of P. damicornis was greatly tempered by diurnal temperature fluctuations, whilst diel oscillations in temperature reduced the heat stress on photo-physiology of coral recruits. Although elevated temperature greatly stimulated the growth of recruits, the daytime encounters with the maximum temperature of 33 °C in the fluctuating treatment elicited a notable reduction in calcification.
Siv K. Lauvset, Jerry Tjiputra, and Helene Muri
Biogeosciences, 14, 5675–5691, https://doi.org/10.5194/bg-14-5675-2017, https://doi.org/10.5194/bg-14-5675-2017, 2017
Short summary
Short summary
Solar radiation management (SRM) is suggested as a method to offset global warming and to buy time to reduce emissions. Here we use an Earth system model to project the impact of SRM on future ocean biogeochemistry. This work underscores the complexity of climate impacts on ocean primary production and highlights the fact that changes are driven by an integrated effect of many environmental drivers, which all change in different ways.
Cited articles
Agawin, N. S. R., Duarte, C. M., and Agustí, S.: Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production, Limnol. Oceanogr., 45, 591–600, 2000.
Alvain, S., Moulin, C., Dandonneau, Y., and Loisel, H.: Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view, Global Biogeochem. Cy., 22(3), GB3001, https://doi.org/10.1029/2007GB003154, 2008.
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep-Sea Res. Pt. II, 49, 219–236, 2002.
Aumont, O., Maier-Reimer, E., Blain, S., and Monfray, P.: An ecosystem model of the global ocean including Fe, Si, P colimitations, Global Biogeochem. Cy., 17(2), GB1060, https://doi.org/10.1029/2001GB001745, 2003.
Bopp, L., Monfray, P., Aumont, O., Dufresne, J. L., Le Treut, H., Madec, G., Terray, L., and Orr, J. C.: Potential impact of climate change on marine export production, Global Biogeochem. Cy., 15, 81–99, 2001.
Bopp, L., Aumont, O., Cadule, P., Alvain, S., and Gehlen, M.: Response of diatoms distribution to global warming and potential implications: A global modeling study, Geophys. Res. Lett., 32(19), L19606, https://doi.org/10.1029/2005GL023653, 2005.
Boyd, P. W. and Doney, S. C.: Modelling regional responses by marine pelagic ecosystems to global climate change, Geophys. Res. Lett., 29(16), 1806, https://doi.org/10.1029/2001GL014130, 2002.
Cermeno, P., Dutkiewicz, S., Harris, R. P., Follows, M., Schofield, O., and Falkowski, P. G.: The role of nutricline depth in regulating the ocean carbon cycle, PNAS, 105, 20344, https://doi.org/10.1073/pnas.0811302106, 2008.
Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., and Smith, R. D.: The Community Climate System Model Version 3 (CCSM3), J. Climate, 19(11), 2122–2143, 2006a.
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Briegleb, B. P., Bitz, C. M., Lin, S. J., and Zhang, M. H.: The Formulation and Atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3), J. Climate, 19(11), 2144–2161, 2006b.
Doney, S. C.: Plankton in a warmer world, Nature, 444, 695–696, 2006.
Doney, S. C., Lindsay, K., Fung, I., and John, J.: Natural variability in a stable, 1000-yr global coupled climate-carbon cycle simulation, J. Climate, 19(13), 3033–3054, 2006.
Doney, S. C., Lima, I., Moore, J. K., Lindsay, K., Behrenfeld, M. J., Westberry, T. K., Mahowald, N., Glover, D. M., and Takahashi, T.: Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data, J. Marine Syst., 76, 95–112, https://doi.org/10.1016/j.jmarsys.2008.05.015, 2009.
Falkowski, P. G., Barber, R. T., and Smetacek, V.: Biogeochemical controls and feedbacks on ocean primary production, Science, 281, 5374, 200–206, 1998.
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., and Taylor, F. J. R.: The evolution of modern eukaryotic phytoplankton, Science, 305, 354–360, 2004.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary production of the biosphere: Integrating terrestrial and oceanic components, Science, 281(537), 237–240, 1998.
Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W.: Emergent biogeography of microbial communities in a model ocean, Science, 315, 1843–1846, 2007.
Geider, R. J., MacIntyre, H. L., and Kana, T. M.: A dynamic regulatory model of phytoplankton acclimation to light, nutrients, and temperature, Limnol. Oceanogr., 43, 679–694, 1998.
Gent, P. R. and McWilliams, J. C.: Isopycnal Mixing in Ocean Circulation Models, J. Phys. Oceanogr., 20(1), 150–155, 1990.
Jin, X., Gruber, N., Dunne, J. P., Sarmiento, J. L., and Armstrong, R. A.: Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions, Global Biogeochem. Cy., 20, GB2015, https://doi.org/10.1029/2005GB002532, 2006.
Kostadinov, T. S., Siegel, D. A., and Maritorena, S.: Retrieval of the particle size distribution from satellite ocean color observations, J. Geophys. Res., 114, C09015, https://doi.org/10.1029/2009JC005303, 2009.
Kostadinov, T. S., Siegel, D. A., and Maritorena, S.: Global variability of phytoplankton functional types from space: assessment via the particle size distribution, Biogeosciences, 7, 3239–3257, https://doi.org/10.5194/bg-7-3239-2010, 2010.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32(4), 363–403, 1994.
Le Quere, C., Aumont, O., Monfray, P., and Orr, J.: Propagation of climatic events on ocean stratification, marine biology, and CO2: Case studies over the 1979–1999 period, J. Geophys. Res., 108(C12), 3375, https://doi.org/10:1029/2001JC000920, 2003.
Le Quere, C., Harrisson, S. P., Prentice, I. C., Buitenhuis, E. T., Aumont, O., Bopp, L., Claustre, H., Da Cunha, L. C., Geider, R., Giraud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J., Watson, A. J., and Wolf-Gladrow, D.: Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models, Glob. Change Biol., 11, 2016–2040, 2005.
Lima, I. D. and Doney, S. C.: A three-dimensional, multinutrient, and size-structured ecosystem model for the North Atlantic, Global Biogeochem. Cy., 18(3), GB3019, https://doi.org/1029/2003GB002146, 2004.
López-Urrutia, A.: The metabolic theory of ecology and algal bloom formation, Limnol. Oceanogr., 53(5), 2046–2047, 2008.
López-Urrutia, A., San Martin, E., Harris, R. P., and Irigoien, X.: Scaling the Metabolic Balance of the Oceans, PNAS, 103(23), 8739–8744, 2006.
Moore, J. K. and Braucher, O.: Sedimentary and mineral dust sources of dissolved iron to the world ocean, Biogeosciences, 5, 631–656, https://doi.org/10.5194/bg-5-631-2008, 2008.
Moore, J. K., Doney, S. C., Kleypas, J. C., Glover, D. M., and Fung, I. Y.: An intermediate complexity marine ecosystem model for the global domain, Deep-Sea Res. Pt. II, 49, 403–462, 2002.
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model, Global Biogeochem. Cy., 18, GB4028, https://doi.org/10.1029/2004GB002220, 2004.
Moore, J. K., Doney, S. C., Lindsay, K., Mahowald, N., and Michaels, A. F.: Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition, Tellus B, 58(5), 560–572, 2006.
Moran, X. A. G., López-Urrutia, A., Calvo-Diaz, A., and Li, W. K. W.: Increasing importance of small phytoplankton in a warmer ocean, Glob. Change Biol., 16(3), 1137–1144, 2010.
Mouw, C. B. and Yoder, J. A.: Optical determination of phytoplankton size distribution from global SeaWiFS imagery, J. Geophys. Res., in press, 2010.
Najjar, R. G., Jin, X., Louanchi, F., Aumont, O., Caldeira, K., Doney, S. C., Dutay, J.-C., Follows, M., Gruber, N., Joos, F., Lindsay, K., Maier-Reimer, E., Matear, R. J., Matsumoto, K., Monfray, P., Mouchet, A., Orr, J. C., Plattner, G.-K., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Weirig, M.-F., Yamanaka, Y., and Yool, A.: Impact of circulation on export production, dissolved organic matter and dissolved oxygen in the ocean: results from OCMIP-2, Global Biogeochem. Cy., 21(3), GB3007, https://doi.org/10.1029/2006GB002857, 2007.
Pahlow, M.: Linking chlorophyll-nutrient dynamics to the Redfield N:C ratio with a a model of optimal phytoplankton growth, Mar. Ecol.-Prog. Ser., 287, 33–43, 2005.
Rose, J. M. and Caron, D. A.: Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold water, Limnol. Oceanogr., 52, 886–895, 2007.
Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A. C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S. A., and Stouffer, R.: Response of ocean ecosystems to climate warming, Global Biogeochem. Cy., 18(3), GB3003, https://doi.org/10.1029/2003GB002134, 2004.
Schmittner, A., Oschlies, A., Giraud, X., Eby, M., and Simmons, H. L.: A global model of the marine ecosystem for long-term simulations: Sensitivity to ocean mixing, buoyancy forcing, particle sinking, and dissolved organic matter cycling, Global Biogeochem. Cy., 19, GB3004, https://doi.org/10.029/2004GB002283, 2005.
Smetacek, V.: Diatoms and the ocean carbon cycle, Protist, 150, 25–32, 1999.
Smith, R. D. and Gent, P. R.: Reference manual for the Parallel ocean Program (POP), ocean component of the Community Climate System Model (CCSM2.0 and 3.0), Tech. Rep. LA-UR-02-2484, Los Alamos National Laboratory, available at: http://www.ccsm.ucar.edu/models/ccsm3.0/pop, 2002.
Smith, S. L. and Yamanaka, Y.: Optimization-based model of multinutrient uptake kinetics, Limnol. Oceanogr., 52, 1545–1558, 2007.
Smith, S. L., Yamanaka, Y., Pahlow, M., and Oschlies, A.: Optimal uptake kinetics: Physiological acclimation explains the pattern of nitrate uptake by phytoplankton in the ocean, Mar. Ecol.-Prog. Ser., 384, 1–12, 2009.
Steinacher, M., Joos, F., Frölicher, T. L., Bopp, L., Cadule, P., Cocco, V., Doney, S. C., Gehlen, M., Lindsay, K., Moore, J. K., Schneider, B., and Segschneider, J.: Projected 21st century decrease in marine productivity: a multi-model analysis, Biogeosciences, 7, 979–1005, https://doi.org/10.5194/bg-7-979-2010, 2010.
Thornton, P. E., Doney, S. C., Lindsay, K., Moore, J. K., Mahowald, N., Randerson, J. T., Fung, I., Lamarque, J.-F., Feddema, J. J., and Lee, Y.-H.: Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model, Biogeosciences, 6, 2099–2120, https://doi.org/10.5194/bg-6-2099-2009, 2009.
Tilman, D.: Resource competition between planktonic algae: an experimental and theoretical approach, Ecology, 58, 338–348, 1977.
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll, J. Geophys. Res., 111, C08005, https://doi.org/10.1029/2005JC003207, 2006.
Uitz, J., Claustre, H., Gentili, B., and Stramski, D.: Phytoplankton class-specific primary production in the world's oceans: Seasonal and interannual variability from satellite observations, Global Biogeochem. Cy., 24, GB3016, https://doi.org/10.1029/2009GB003680, 2010.
Yeager, S. G., Shields, C. A., Large, W. G., and Hack, J. J.: The low-resolution CCSM3, J. Climate, 19, 2545–2566, 2006.
Altmetrics
Final-revised paper
Preprint