Articles | Volume 9, issue 8
https://doi.org/10.5194/bg-9-3381-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-9-3381-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Tree height integrated into pantropical forest biomass estimates
T. R. Feldpausch
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
J. Lloyd
School of Earth and Environmental Science, James Cook University, Cairns, Qld 4870, Australia
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
S. L. Lewis
Department of Geography, University College London, UK
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
R. J. W. Brienen
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
M. Gloor
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
A. Monteagudo Mendoza
RAINFOR/Jardín Botánico de Missouri, Peru
G. Lopez-Gonzalez
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
L. Banin
School of Environmental Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, UK
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
K. Abu Salim
Biology Programme, Faculty of Science, Universiti Brunei Darussalam, Tungku Link Road BE1410, Brunei Darussalam
K. Affum-Baffoe
Resource Management Support Centre, Forestry Commission of Ghana, P.O. Box 1457, Kumasi, Ghana
M. Alexiades
New York Botanical Garden, New York City, New York 10458, USA
S. Almeida
deceased
Museu Paraense Emilio Goeldi, Av. Magalhães Barata, 376, São Braz, 66040-170, Belém, PA, Brazil
I. Amaral
National Institute for Research in Amazonia (INPA), C.P. 478, Manaus, Amazonas, 69011-970, Brazil
A. Andrade
National Institute for Research in Amazonia (INPA), C.P. 478, Manaus, Amazonas, 69011-970, Brazil
L. E. O. C. Aragão
Geography, College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter, EX4 4RJ, UK
A. Araujo Murakami
Museo de Historia Natural Noel Kempff Mercado, Universidad Autonoma Gabriel Rene Moreno, Casilla 2489, Av. Irala 565, Santa Cruz, Bolivia
E. J. M. M. Arets
Centre for Ecosystem Studies, Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands
L. Arroyo
Museo de Historia Natural Noel Kempff Mercado, Universidad Autonoma Gabriel Rene Moreno, Casilla 2489, Av. Irala 565, Santa Cruz, Bolivia
G. A. Aymard C.
UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Mesa de Cavacas, Estado Portuguesa 3350, Venezuela
T. R. Baker
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
O. S. Bánki
IBED, University of Amsterdam, POSTBUS 94248, 1090 GE Amsterdam, The Netherlands
N. J. Berry
School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
N. Cardozo
Universidad Nacional de la Amazonía Peruana, Iquitos, Loreto, Perú
J. Chave
Université Paul Sabatier, Laboratoire EDB, bâtiment 4R3, 31062 Toulouse, France
J. A. Comiskey
Mid-Atlantic Network, Inventory and Monitoring Program, National Park Service, 120 Chatham Lane, Fredericksburg, VA 22405, USA
E. Alvarez
Jardin Botanico de Medellin, Colombia
A. Oliveira
National Institute for Research in Amazonia (INPA), C.P. 478, Manaus, Amazonas, 69011-970, Brazil
A. Fiore
Department of Anthropology, University of Texas at Austin, 1 University Station, SAC 5.150 Mailcode C3200, Austin, TX 78712, USA
G. Djagbletey
Ecosystem and Climate Change Division (ESCCD) Forestry Research Institute of Ghana (FORIG), U.P. Box 63, KNUST-Kumasi, Ghana
T. F. Domingues
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 05508-090, Brazil
T. L. Erwin
Department of Entomology, Smithsonian Institution, P.O. Box 37012, MRC 187, Washington, DC 20013-7012, USA
P. M. Fearnside
National Institute for Research in Amazonia (INPA), C.P. 478, Manaus, Amazonas, 69011-970, Brazil
M. B. França
National Institute for Research in Amazonia (INPA), C.P. 478, Manaus, Amazonas, 69011-970, Brazil
M. A. Freitas
Museu Paraense Emilio Goeldi, Av. Magalhães Barata, 376, São Braz, 66040-170, Belém, PA, Brazil
N. Higuchi
National Institute for Research in Amazonia (INPA), C.P. 478, Manaus, Amazonas, 69011-970, Brazil
E. Honorio C.
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
Y. Iida
Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
E. Jiménez
Universidad Nacional de Colombia, Kilómetro 2 Via Tarapacá, Leticia, Amazonas, Colombia
A. R. Kassim
Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Darul Ehsan, Malaysia
T. J. Killeen
Conservation International, 2011 Crystal Drive, Suite 500, Arlington, VA 22202, USA
W. F. Laurance
Centre for Tropical Environmental and Sustainability Science (TESS) and School of Marine and Tropical Biology, James Cook University, Cairns, Queensland 4878, Australia
J. C. Lovett
CSTM, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Y. Malhi
Environmental Change Institute, School of Geography and the Environment, University of Oxford, UK
B. S. Marimon
Universidade do Estado de Mato Grosso, Campus de Nova Xavantina, Caixa Postal 08, CEP 78.690-000, Nova Xavantina, MT, Brazil
B. H. Marimon-Junior
Universidade do Estado de Mato Grosso, Campus de Nova Xavantina, Caixa Postal 08, CEP 78.690-000, Nova Xavantina, MT, Brazil
E. Lenza
Universidade do Estado de Mato Grosso, Campus de Nova Xavantina, Caixa Postal 08, CEP 78.690-000, Nova Xavantina, MT, Brazil
A. R. Marshall
CIRCLE, Environment Department, University of York, York, UK
Flamingo Land Ltd., Kirby Misperton, YO17 6UX, UK
C. Mendoza
FOMABO (Manejo Forestal en las Tierras Tropicales de Bolivia), Sacta, Bolivia
D. J. Metcalfe
CSIRO Ecosystem Sciences, Tropical forest Research Centre, P.O. Box 780, Atherton, QLD 4883, Australia
E. T. A. Mitchard
School of GeoSciences, University of Edinburgh, Drummond St, Edinburgh, EH8 9XP, UK
D. A. Neill
Universidad Estatal Amazónica, Facultad de Ingeniería Ambiental, Paso lateral km 2 1/2 via Napo, Puyo, Pastaza, Ecuador
B. W. Nelson
National Institute for Research in Amazonia (INPA), Environmental Dynamics Department, C.P. 478, Manaus, Amazonas, CEP 69011-970, Brazil
R. Nilus
Forest Research Centre, Sabah Forestry Department, Sandakan, 90715, Malaysia
E. M. Nogueira
National Institute for Research in Amazonia (INPA), C.P. 478, Manaus, Amazonas, 69011-970, Brazil
A. Parada
Museo de Historia Natural Noel Kempff Mercado, Universidad Autonoma Gabriel Rene Moreno, Casilla 2489, Av. Irala 565, Santa Cruz, Bolivia
K. S.-H. Peh
Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, UK
A. Pena Cruz
Jardín Botánico de Missouri, Oxapampa, Pasco, Peru
M. C. Peñuela
Universidad Nacional de Colombia, Kilómetro 2 Via Tarapacá, Leticia, Amazonas, Colombia
N. C. A. Pitman
Center for Tropical Conservation, Duke University, Box 90381, Durham, NC 27708, USA
A. Prieto
Doctorado Instituto de Ciencias Naturales, Universidad Nacional de Colombia
C. A. Quesada
National Institute for Research in Amazonia (INPA), C.P. 478, Manaus, Amazonas, 69011-970, Brazil
F. Ramírez
Universidad Nacional de la Amazonía Peruana, Iquitos, Loreto, Perú
H. Ramírez-Angulo
Universidad de Los Andes, Facultad de Ciencias Forestales y Ambientales, Mérida, Venezuela
J. M. Reitsma
Bureau Waardenburg bv, P.O. Box 365, 4100 AJ Culemborg, The Netherlands
A. Rudas
Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Colombia
G. Saiz
Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
R. P. Salomão
Museu Paraense Emilio Goeldi, Av. Magalhães Barata, 376, São Braz, 66040-170, Belém, PA, Brazil
M. Schwarz
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
N. Silva
UFRA – Universidade Federal Rural da Amazônia, Brasil
J. E. Silva-Espejo
Universidad Nacional San Antonio Abad del Cusco, Av. de la Cultura No. 733. Cusco, Peru
M. Silveira
Universidade Federal do Acre, Rio Branco AC 69910-900, Brazil
B. Sonké
Department of Biology, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon
J. Stropp
European Commission – DG Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi 274, 21010 Ispra, Italy
H. E. Taedoumg
Department of Biology, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon
S. Tan
Sarawak Forestry Corporation, Kuching, Sarawak, Malaysia
H. Steege
NCB Naturalis, PO Box, 2300 RA, Leiden, The Netherlands
J. Terborgh
Center for Tropical Conservation, Duke University, Box 90381, Durham, NC 27708, USA
M. Torello-Raventos
School of Earth and Environmental Science, James Cook University, Cairns, Qld 4870, Australia
G. M. F. Heijden
University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, Department of Biological Sciences, P.O. Box 413, 53201, USA
Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama
R. Vásquez
Jardín Botánico de Missouri, Oxapampa, Pasco, Peru
E. Vilanova
Instituto de Investigaciones para el Desarrollo Forestal (INDEFOR), Universidad de Los Andes, Mérida, Venezuela
V. A. Vos
PROMAB, Casilla 107, Riberalta, Beni, Bolivia
Universidad Autonoma del Beni, Campus Universitario, Av. Ejército Nacional, final, Riberalta, Beni, Bolivia
L. White
Agence National des Parcs Nationaux, Libreville, Gabon
Institut de Recherche en Ecologie Tropicale (CENAREST), Gabon
School of Natural Sciences, University of Stirling, UK
S. Willcock
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
H. Woell
Sommersbergseestr. 291, 8990 Bad Aussee, Austria
O. L. Phillips
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
Related subject area
Biodiversity and Ecosystem Function: Terrestrial
Spruce bark beetles (Ips typographus) cause up to 700 times higher bark BVOC emission rates compared to healthy Norway spruce (Picea abies)
Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory
Observed water and light limitation across global ecosystems
A question of scale: modeling biomass, gain and mortality distributions of a tropical forest
Seed traits and phylogeny explain plants' geographic distribution
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Excess radiation exacerbates drought stress impacts on canopy conductance along aridity gradients
Dispersal of bacteria and stimulation of permafrost decomposition by Collembola
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Updated estimation of forest biomass carbon pools in China, 1977–2018
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion
Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing
Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems
Water uptake patterns of pea and barley responded to drought but not to cropping systems
Geodiversity and biodiversity on a volcanic island: the role of scattered phonolites for plant diversity and performance
The role of cover crops for cropland soil carbon, nitrogen leaching, and agricultural yields – a global simulation study with LPJmL (V. 5.0-tillage-cc)
The biogeographic pattern of microbial communities inhabiting terrestrial mud volcanoes across the Eurasian continent
Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems
Net soil carbon balance in afforested peatlands and separating autotrophic and heterotrophic soil CO2 effluxes
Bioaerosols and atmospheric ice nuclei in a Mediterranean dryland: community changes related to rainfall
Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: results from 5 years of monthly drone data for a 50 ha plot
Nitrogen restricts future sub-arctic treeline advance in an individual-based dynamic vegetation model
Spatial patterns of aboveground phytogenic Si stocks in a grass-dominated catchment – results from UAS-based high-resolution remote sensing
Patterns in recent and Holocene pollen accumulation rates across Europe – the Pollen Monitoring Programme Database as a tool for vegetation reconstruction
Capturing functional strategies and compositional dynamics in vegetation demographic models
Drought effects on leaf fall, leaf flushing and stem growth in the Amazon forest: reconciling remote sensing data and field observations
Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests
The motion of trees in the wind: a data synthesis
The importance of antecedent vegetation and drought conditions as global drivers of burnt area
Evaluating the potential for Haloarchaea to serve as ice nucleating particles
A survey of proximal methods for monitoring leaf phenology in temperate deciduous forests
Recent above-ground biomass changes in central Chukotka (Russian Far East) using field sampling and Landsat satellite data
Climate change and elevated CO2 favor forest over savanna under different future scenarios in South Asia
Functional convergence of biosphere–atmosphere interactions in response to meteorological conditions
Multi-scale assessment of a grassland productivity model
Improving the monitoring of deciduous broadleaf phenology using the Geostationary Operational Environmental Satellite (GOES) 16 and 17
Factors controlling the productivity of tropical Andean forests: climate and soil are more important than tree diversity
Drought years in peatland rewetting: rapid vegetation succession can maintain the net CO2 sink function
Shift of seed mass and fruit type spectra along longitudinal gradient: high water availability and growth allometry
Retrieval and validation of forest background reflectivity from daily Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) data across European forests
Unraveling the physical and physiological basis for the solar- induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop
Machine learning estimates of eddy covariance carbon flux in a scrub in the Mexican highland
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Kai Chen, Kevin S. Burgess, Fangliang He, Xiang-Yun Yang, Lian-Ming Gao, and De-Zhu Li
Biogeosciences, 19, 4801–4810, https://doi.org/10.5194/bg-19-4801-2022, https://doi.org/10.5194/bg-19-4801-2022, 2022
Short summary
Short summary
Why does plants' distributional range size vary enormously? This study provides evidence that seed mass, intraspecific seed mass variation, seed dispersal mode and phylogeny contribute to explaining species distribution variation on a geographic scale. Our study clearly shows the importance of including seed life-history traits in modeling and predicting the impact of climate change on species distribution of seed plants.
Ying Ying Chen, Huan Yang, Gen Sheng Bao, Xiao Pan Pang, and Zheng Gang Guo
Biogeosciences, 19, 4521–4532, https://doi.org/10.5194/bg-19-4521-2022, https://doi.org/10.5194/bg-19-4521-2022, 2022
Short summary
Short summary
Investigating the effect of the presence of plateau pikas on ecosystem services of alpine meadows is helpful to understand the role of the presence of small mammalian herbivores in grasslands. The results of this study showed that the presence of plateau pikas led to higher biodiversity conservation, soil nitrogen and phosphorus maintenance, and carbon sequestration of alpine meadows, whereas it led to lower forage available to livestock and water conservation of alpine meadows.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Sylvain Monteux, Janine Mariën, and Eveline J. Krab
Biogeosciences, 19, 4089–4105, https://doi.org/10.5194/bg-19-4089-2022, https://doi.org/10.5194/bg-19-4089-2022, 2022
Short summary
Short summary
Quantifying the feedback from the decomposition of thawing permafrost soils is crucial to establish adequate climate warming mitigation scenarios. Past efforts have focused on abiotic and to some extent microbial drivers of decomposition but not biotic drivers such as soil fauna. We added soil fauna (Collembola Folsomia candida) to permafrost, which introduced bacterial taxa without affecting bacterial communities as a whole but increased CO2 production (+12 %), presumably due to priming.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022, https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Guoyu Lan, Bangqian Chen, Chuan Yang, Rui Sun, Zhixiang Wu, and Xicai Zhang
Biogeosciences, 19, 1995–2005, https://doi.org/10.5194/bg-19-1995-2022, https://doi.org/10.5194/bg-19-1995-2022, 2022
Short summary
Short summary
Little is known about the impact of rubber plantations on diversity of the Great Mekong Subregion. In this study, we uncovered latitudinal gradients of plant diversity of rubber plantations. Exotic species with high dominance result in loss of plant diversity of rubber plantations. Not all exotic species would reduce plant diversity of rubber plantations. Much more effort should be made to balance agricultural production with conservation goals in this region.
Ulrike Hiltner, Andreas Huth, and Rico Fischer
Biogeosciences, 19, 1891–1911, https://doi.org/10.5194/bg-19-1891-2022, https://doi.org/10.5194/bg-19-1891-2022, 2022
Short summary
Short summary
Quantifying biomass loss rates due to stem mortality is important for estimating the role of tropical forests in the global carbon cycle. We analyse the consequences of long-term elevated stem mortality for tropical forest dynamics and biomass loss. Based on simulations, we developed a statistical model to estimate biomass loss rates of forests in different successional states from forest attributes. Assuming a doubling of tree mortality, biomass loss increased from 3.2 % yr-1 to 4.5 % yr-1.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Qing Sun, Valentin H. Klaus, Raphaël Wittwer, Yujie Liu, Marcel G. A. van der Heijden, Anna K. Gilgen, and Nina Buchmann
Biogeosciences, 19, 1853–1869, https://doi.org/10.5194/bg-19-1853-2022, https://doi.org/10.5194/bg-19-1853-2022, 2022
Short summary
Short summary
Drought is one of the biggest challenges for future food production globally. During a simulated drought, pea and barley mainly relied on water from shallow soil depths, independent of different cropping systems.
David Kienle, Anna Walentowitz, Leyla Sungur, Alessandro Chiarucci, Severin D. H. Irl, Anke Jentsch, Ole R. Vetaas, Richard Field, and Carl Beierkuhnlein
Biogeosciences, 19, 1691–1703, https://doi.org/10.5194/bg-19-1691-2022, https://doi.org/10.5194/bg-19-1691-2022, 2022
Short summary
Short summary
Volcanic islands consist mainly of basaltic rocks. Additionally, there are often occurrences of small phonolite rocks differing in color and surface. On La Palma (Canary Islands), phonolites appear to be more suitable for plants than the omnipresent basalts. Therefore, we expected phonolites to be species-rich with larger plant individuals compared to the surrounding basaltic areas. Indeed, as expected, we found more species on phonolites and larger plant individuals in general.
Vera Porwollik, Susanne Rolinski, Jens Heinke, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Biogeosciences, 19, 957–977, https://doi.org/10.5194/bg-19-957-2022, https://doi.org/10.5194/bg-19-957-2022, 2022
Short summary
Short summary
The study assesses impacts of grass cover crop cultivation on cropland during main-crop off-season periods applying the global vegetation model LPJmL (V.5.0-tillage-cc). Compared to simulated bare-soil fallowing practices, cover crops led to increased soil carbon content and reduced nitrogen leaching rates on the majority of global cropland. Yield responses of main crops following cover crops vary with location, duration of altered management, crop type, water regime, and tillage practice.
Tzu-Hsuan Tu, Li-Ling Chen, Yi-Ping Chiu, Li-Hung Lin, Li-Wei Wu, Francesco Italiano, J. Bruce H. Shyu, Seyed Naser Raisossadat, and Pei-Ling Wang
Biogeosciences, 19, 831–843, https://doi.org/10.5194/bg-19-831-2022, https://doi.org/10.5194/bg-19-831-2022, 2022
Short summary
Short summary
This investigation of microbial biogeography in terrestrial mud volcanoes (MVs) covers study sites over a geographic distance of up to 10 000 km across the Eurasian continent. It compares microbial community compositions' coupling with geochemical data across a 3D space. We demonstrate that stochastic processes operating at continental scales and environmental filtering at local scales drive the formation of patchy habitats and the pattern of diversification for microbes in terrestrial MVs.
Sami W. Rifai, Martin G. De Kauwe, Anna M. Ukkola, Lucas A. Cernusak, Patrick Meir, Belinda E. Medlyn, and Andy J. Pitman
Biogeosciences, 19, 491–515, https://doi.org/10.5194/bg-19-491-2022, https://doi.org/10.5194/bg-19-491-2022, 2022
Short summary
Short summary
Australia's woody ecosystems have experienced widespread greening despite a warming climate and repeated record-breaking droughts and heat waves. Increasing atmospheric CO2 increases plant water use efficiency, yet quantifying the CO2 effect is complicated due to co-occurring effects of global change. Here we harmonized a 38-year satellite record to separate the effects of climate change, land use change, and disturbance to quantify the CO2 fertilization effect on the greening phenomenon.
Renée Hermans, Rebecca McKenzie, Roxane Andersen, Yit Arn Teh, Neil Cowie, and Jens-Arne Subke
Biogeosciences, 19, 313–327, https://doi.org/10.5194/bg-19-313-2022, https://doi.org/10.5194/bg-19-313-2022, 2022
Short summary
Short summary
Peatlands are a significant global carbon store, which can be compromised by drainage and afforestation. We measured the peat decomposition under a 30-year-old drained forest plantation: 115 ± 16 g C m−2 yr−1, ca. 40 % of total soil respiration. Considering input of litter from trees, our results indicate that the soils in these 30-year-old drained and afforested peatlands are a net sink for C, since substantially more C enters the soil as organic matter than is decomposed heterotrophically.
Kai Tang, Beatriz Sánchez-Parra, Petya Yordanova, Jörn Wehking, Anna T. Backes, Daniel A. Pickersgill, Stefanie Maier, Jean Sciare, Ulrich Pöschl, Bettina Weber, and Janine Fröhlich-Nowoisky
Biogeosciences, 19, 71–91, https://doi.org/10.5194/bg-19-71-2022, https://doi.org/10.5194/bg-19-71-2022, 2022
Short summary
Short summary
Metagenomic sequencing and freezing experiments of aerosol samples collected on Cyprus revealed rain-related short-term changes of bioaerosol and ice nuclei composition. Filtration experiments showed a rain-related enhancement of biological ice nuclei > 5 µm and < 0.1 µm. The observed effects of rainfall on the composition of atmospheric bioaerosols and ice nuclei may influence the hydrological cycle as well as the health effects of air particulate matter (pathogens, allergens).
Raquel Fernandes Araujo, Samuel Grubinger, Carlos Henrique Souza Celes, Robinson I. Negrón-Juárez, Milton Garcia, Jonathan P. Dandois, and Helene C. Muller-Landau
Biogeosciences, 18, 6517–6531, https://doi.org/10.5194/bg-18-6517-2021, https://doi.org/10.5194/bg-18-6517-2021, 2021
Short summary
Short summary
Our study contributed to improving the understanding of temporal variation and climate correlates of canopy disturbances mainly caused by treefalls and branchfalls. We used a unique dataset of 5 years of approximately monthly drone-acquired RGB (red–green–blue) imagery for 50 ha of mature tropical forest on Barro Colorado Island, Panama. We found that canopy disturbance rates were highly temporally variable, were higher in the wet season, and were related to extreme rainfall events.
Adrian Gustafson, Paul A. Miller, Robert G. Björk, Stefan Olin, and Benjamin Smith
Biogeosciences, 18, 6329–6347, https://doi.org/10.5194/bg-18-6329-2021, https://doi.org/10.5194/bg-18-6329-2021, 2021
Short summary
Short summary
We performed model simulations of vegetation change for a historic period and a range of climate change scenarios at a high spatial resolution. Projected treeline advance continued at the same or increased rates compared to our historic simulation. Temperature isotherms advanced faster than treelines, revealing a lag in potential vegetation shifts that was modulated by nitrogen availability. At the year 2100 projected treelines had advanced by 45–195 elevational metres depending on the scenario.
Marc Wehrhan, Daniel Puppe, Danuta Kaczorek, and Michael Sommer
Biogeosciences, 18, 5163–5183, https://doi.org/10.5194/bg-18-5163-2021, https://doi.org/10.5194/bg-18-5163-2021, 2021
Short summary
Short summary
UAS remote sensing provides a promising tool for new insights into Si biogeochemistry at catchment scale. Our study on an artificial catchment shows surprisingly high silicon stocks in the biomass of two grass species (C. epigejos, 7 g m−2; P. australis, 27 g m−2). The distribution of initial sediment properties (clay, Tiron-extractable Si, nitrogen, plant-available potassium) controlled the spatial distribution of C. epigejos. Soil wetness determined the occurrence of P. australis.
Vojtěch Abraham, Sheila Hicks, Helena Svobodová-Svitavská, Elissaveta Bozilova, Sampson Panajiotidis, Mariana Filipova-Marinova, Christin Eldegard Jensen, Spassimir Tonkov, Irena Agnieszka Pidek, Joanna Święta-Musznicka, Marcelina Zimny, Eliso Kvavadze, Anna Filbrandt-Czaja, Martina Hättestrand, Nurgül Karlıoğlu Kılıç, Jana Kosenko, Maria Nosova, Elena Severova, Olga Volkova, Margrét Hallsdóttir, Laimdota Kalniņa, Agnieszka M. Noryśkiewicz, Bożena Noryśkiewicz, Heather Pardoe, Areti Christodoulou, Tiiu Koff, Sonia L. Fontana, Teija Alenius, Elisabeth Isaksson, Heikki Seppä, Siim Veski, Anna Pędziszewska, Martin Weiser, and Thomas Giesecke
Biogeosciences, 18, 4511–4534, https://doi.org/10.5194/bg-18-4511-2021, https://doi.org/10.5194/bg-18-4511-2021, 2021
Short summary
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
Polly C. Buotte, Charles D. Koven, Chonggang Xu, Jacquelyn K. Shuman, Michael L. Goulden, Samuel Levis, Jessica Katz, Junyan Ding, Wu Ma, Zachary Robbins, and Lara M. Kueppers
Biogeosciences, 18, 4473–4490, https://doi.org/10.5194/bg-18-4473-2021, https://doi.org/10.5194/bg-18-4473-2021, 2021
Short summary
Short summary
We present an approach for ensuring the definitions of plant types in dynamic vegetation models are connected to the underlying ecological processes controlling community composition. Our approach can be applied regionally or globally. Robust resolution of community composition will allow us to use these models to address important questions related to future climate and management effects on plant community composition, structure, carbon storage, and feedbacks within the Earth system.
Thomas Janssen, Ype van der Velde, Florian Hofhansl, Sebastiaan Luyssaert, Kim Naudts, Bart Driessen, Katrin Fleischer, and Han Dolman
Biogeosciences, 18, 4445–4472, https://doi.org/10.5194/bg-18-4445-2021, https://doi.org/10.5194/bg-18-4445-2021, 2021
Short summary
Short summary
Satellite images show that the Amazon forest has greened up during past droughts. Measurements of tree stem growth and leaf litterfall upscaled using machine-learning algorithms show that leaf flushing at the onset of a drought results in canopy rejuvenation and green-up during drought while simultaneously trees excessively shed older leaves and tree stem growth declines. Canopy green-up during drought therefore does not necessarily point to enhanced tree growth and improved forest health.
Boris Sakschewski, Werner von Bloh, Markus Drüke, Anna Amelia Sörensson, Romina Ruscica, Fanny Langerwisch, Maik Billing, Sarah Bereswill, Marina Hirota, Rafael Silva Oliveira, Jens Heinke, and Kirsten Thonicke
Biogeosciences, 18, 4091–4116, https://doi.org/10.5194/bg-18-4091-2021, https://doi.org/10.5194/bg-18-4091-2021, 2021
Short summary
Short summary
This study shows how local adaptations of tree roots across tropical and sub-tropical South America explain patterns of biome distribution, productivity and evapotranspiration on this continent. By allowing for high diversity of tree rooting strategies in a dynamic global vegetation model (DGVM), we are able to mechanistically explain patterns of mean rooting depth and the effects on ecosystem functions. The approach can advance DGVMs and Earth system models.
Toby D. Jackson, Sarab Sethi, Ebba Dellwik, Nikolas Angelou, Amanda Bunce, Tim van Emmerik, Marine Duperat, Jean-Claude Ruel, Axel Wellpott, Skip Van Bloem, Alexis Achim, Brian Kane, Dominick M. Ciruzzi, Steven P. Loheide II, Ken James, Daniel Burcham, John Moore, Dirk Schindler, Sven Kolbe, Kilian Wiegmann, Mark Rudnicki, Victor J. Lieffers, John Selker, Andrew V. Gougherty, Tim Newson, Andrew Koeser, Jason Miesbauer, Roger Samelson, Jim Wagner, Anthony R. Ambrose, Andreas Detter, Steffen Rust, David Coomes, and Barry Gardiner
Biogeosciences, 18, 4059–4072, https://doi.org/10.5194/bg-18-4059-2021, https://doi.org/10.5194/bg-18-4059-2021, 2021
Short summary
Short summary
We have all seen trees swaying in the wind, but did you know that this motion can teach us about ecology? We summarized tree motion data from many different studies and looked for similarities between trees. We found that the motion of trees in conifer forests is quite similar to each other, whereas open-grown trees and broadleaf forests show more variation. It has been suggested that additional damping or amplification of tree motion occurs at high wind speeds, but we found no evidence of this.
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
Jessie M. Creamean, Julio E. Ceniceros, Lilyanna Newman, Allyson D. Pace, Thomas C. J. Hill, Paul J. DeMott, and Matthew E. Rhodes
Biogeosciences, 18, 3751–3762, https://doi.org/10.5194/bg-18-3751-2021, https://doi.org/10.5194/bg-18-3751-2021, 2021
Short summary
Short summary
Microorganisms have the unique ability to form ice in clouds at relatively warm temperatures, especially specific types of plant bacteria. However, to date, members of the domain Archaea have not been evaluated for their cloud-forming capabilities. Here, we show the first results of Haloarchaea that have the ability to form cloud ice at moderate supercooled temperatures that are found in hypersaline environments on Earth.
Kamel Soudani, Nicolas Delpierre, Daniel Berveiller, Gabriel Hmimina, Jean-Yves Pontailler, Lou Seureau, Gaëlle Vincent, and Éric Dufrêne
Biogeosciences, 18, 3391–3408, https://doi.org/10.5194/bg-18-3391-2021, https://doi.org/10.5194/bg-18-3391-2021, 2021
Short summary
Short summary
We present an exhaustive comparative survey of eight proximal methods to estimate forest phenology. We focused on methodological aspects and thoroughly assessed deviations between predicted and observed phenological dates and pointed out their main causes. We show that proximal methods provide robust phenological metrics. They can be used to retrieve long-term phenological series at flux measurement sites and help interpret the interannual variability and trends of mass and energy exchanges.
Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, Luise Schulte, Simone Stünzi, Luidmila A. Pestryakova, Evgeniy S. Zakharov, and Stefan Kruse
Biogeosciences, 18, 3343–3366, https://doi.org/10.5194/bg-18-3343-2021, https://doi.org/10.5194/bg-18-3343-2021, 2021
Short summary
Short summary
In the light of climate changes in subarctic regions, notable general increase in above-ground biomass for the past 15 years (2000 to 2017) was estimated along a tundra–taiga gradient of central Chukotka (Russian Far East). The greatest increase occurred in the northern taiga in the areas of larch closed-canopy forest expansion with Cajander larch as a main contributor. For the estimations, we used field data (taxa-separated plant biomass, 2018) and upscaled it based on Landsat satellite data.
Dushyant Kumar, Mirjam Pfeiffer, Camille Gaillard, Liam Langan, and Simon Scheiter
Biogeosciences, 18, 2957–2979, https://doi.org/10.5194/bg-18-2957-2021, https://doi.org/10.5194/bg-18-2957-2021, 2021
Short summary
Short summary
In this paper, we investigated the impact of climate change and rising CO2 on biomes using a vegetation model in South Asia, an often neglected region in global modeling studies. Understanding these impacts guides ecosystem management and biodiversity conservation. Our results indicate that savanna regions are at high risk of woody encroachment and transitioning into the forest, and the bioclimatic envelopes of biomes need adjustments to account for shifts caused by climate change and CO2.
Christopher Krich, Mirco Migliavacca, Diego G. Miralles, Guido Kraemer, Tarek S. El-Madany, Markus Reichstein, Jakob Runge, and Miguel D. Mahecha
Biogeosciences, 18, 2379–2404, https://doi.org/10.5194/bg-18-2379-2021, https://doi.org/10.5194/bg-18-2379-2021, 2021
Short summary
Short summary
Ecosystems and the atmosphere interact with each other. These interactions determine e.g. the water and carbon fluxes and thus are crucial to understand climate change effects. We analysed the interactions for many ecosystems across the globe, showing that very different ecosystems can have similar interactions with the atmosphere. Meteorological conditions seem to be the strongest interaction-shaping factor. This means that common principles can be identified to describe ecosystem behaviour.
Shawn D. Taylor and Dawn M. Browning
Biogeosciences, 18, 2213–2220, https://doi.org/10.5194/bg-18-2213-2021, https://doi.org/10.5194/bg-18-2213-2021, 2021
Short summary
Short summary
Grasslands in North America provide multiple ecosystem services and drive the production of a lot of grain, beef, and other staples. We evaluated a grassland productivity model using nearly 500 years of grassland camera data and found the areas where the model worked well and locations where it did not. Long-term productivity projections for the suitable locations can be made immediately with the current model, while other areas, such as the southwest, will need further model development.
Kathryn I. Wheeler and Michael C. Dietze
Biogeosciences, 18, 1971–1985, https://doi.org/10.5194/bg-18-1971-2021, https://doi.org/10.5194/bg-18-1971-2021, 2021
Short summary
Short summary
Monitoring leaf phenology (i.e., seasonality) allows for tracking the progression of climate change and seasonal variations in a variety of organismal and ecosystem processes. Recent versions of the Geostationary Operational Environmental Satellites allow for the monitoring of a phenological-sensitive index at a high temporal frequency (5–10 min) throughout most of the western hemisphere. Here we show the high potential of these new data to measure the phenology of deciduous forests.
Jürgen Homeier and Christoph Leuschner
Biogeosciences, 18, 1525–1541, https://doi.org/10.5194/bg-18-1525-2021, https://doi.org/10.5194/bg-18-1525-2021, 2021
Short summary
Short summary
We studied aboveground productivity in humid tropical montane old-growth forests in two highly diverse Andean regions with large geological and topographic heterogeneity and related productivity to tree diversity and climatic, edaphic and stand structural factors. From our results we conclude that the productivity of highly diverse Neotropical montane forests is primarily controlled by thermal and edaphic factors and stand structural properties, while tree diversity is of minor importance.
Florian Beyer, Florian Jansen, Gerald Jurasinski, Marian Koch, Birgit Schröder, and Franziska Koebsch
Biogeosciences, 18, 917–935, https://doi.org/10.5194/bg-18-917-2021, https://doi.org/10.5194/bg-18-917-2021, 2021
Short summary
Short summary
Increasing drought frequency can jeopardize the restoration of the CO2 sink function in degraded peatlands. We explored the effect of the summer drought in 2018 on vegetation development and CO2 exchange in a rewetted fen. Drought triggered a rapid spread of new vegetation whose CO2 assimilation could partially outweigh the drought-related rise in respiratory CO2 loss. Our study shows important regulatory mechanisms of a rewetted fen to maintain its net CO2 sink function even in a very dry year.
Shunli Yu, Guoxun Wang, Ofir Katz, Danfeng Li, Qibing Wang, Ming Yue, and Canran Liu
Biogeosciences, 18, 655–667, https://doi.org/10.5194/bg-18-655-2021, https://doi.org/10.5194/bg-18-655-2021, 2021
Short summary
Short summary
As key traits of plants, the mechanisms of diversity of fruit sizes and seed sizes have not been solved completely until now. Therefore, the research related to them will continue to be done in the future. Our research, combined with future works, will provide a profound basis for solving the origin of fleshy-fruited species and seed size diversity.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Peiqi Yang, Christiaan van der Tol, Petya K. E. Campbell, and Elizabeth M. Middleton
Biogeosciences, 18, 441–465, https://doi.org/10.5194/bg-18-441-2021, https://doi.org/10.5194/bg-18-441-2021, 2021
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) has the potential to facilitate the monitoring of photosynthesis from space. This study presents a systematic analysis of the physical and physiological meaning of the relationship between fluorescence and photosynthesis at both leaf and canopy levels. We unravel the individual effects of incoming light, vegetation structure and leaf physiology and highlight their joint effects on the relationship between canopy fluorescence and photosynthesis.
Aurelio Guevara-Escobar, Enrique González-Sosa, Mónica Cervantes-Jiménez, Humberto Suzán-Azpiri, Mónica Elisa Queijeiro-Bolaños, Israel Carrillo-Ángeles, and Víctor Hugo Cambrón-Sandoval
Biogeosciences, 18, 367–392, https://doi.org/10.5194/bg-18-367-2021, https://doi.org/10.5194/bg-18-367-2021, 2021
Short summary
Short summary
All vegetation types can sequester carbon dioxide. We compared ground measurements (eddy covariance) with remotely sensed data (Moderate Resolution Imaging Spectroradiometer, MODIS) and machine learning ensembles of primary production in a semiarid scrub in Mexico. The annual carbon sink for this vegetation type was −283.5 g C m−2 y−1; MODIS underestimated the primary productivity, and the machine learning modeling was better locally.
Cited articles
Akaike, H.: A new look at the statistical model identification, IEEE Trans. Autom. Contr., 19, 716–723, 1974.
Alvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, I., Lema, A., Moreno, F., Orrego, S., and Rodr\'{i}guez, L.: Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia, For. Ecol. Manage., 267, 297–308, https://doi.org/10.1016/j.foreco.2011.12.013, 2012.
Anten, N. P. and Schieving, F.: The role of wood mass density and mechanical constraints in the economy of tree architecture, Am. Nat., 175, 250–260, https://doi.org/10.1086/649581, 2010.
Aragao, L. E. and Shimabukuro, Y. E.: The incidence of fire in Amazonian forests with implications for REDD, Science, 328, 1275–1278, https://doi.org/10.1126/science.1186925, 2010.
Araújo, T. M., Higuchi, N., and Andrade de Carvalho Júnior, J.: Comparison of formulae for biomass content determination in a tropical rain forest site in the state of Pará, Brazil, For. Ecol. Manage., 117, 43–52, 1999.
Asner, G. P., Powell, G. V. N., Mascaro, J., Knapp, D. E., Clark, J. K., Jacobson, J., Kennedy-Bowdoin, T., Balaji, A., Paez-Acosta, G., Victoria, E., Secada, L., Valqui, M., and Hughes, R. F.: High-resolution forest carbon stocks and emissions in the Amazon, Proc. Natl. Acad. Sci. USA, 107, 16738–16742, https://doi.org/10.1073/pnas.1004875107, 2010.
Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nature Clim. Change, 2, 182–185, available at: http://www.nature.com/nclimate/journal/v2/n3/abs/nclimate1354.html#supplementary- information, 2012.
Bailey, R. L.: The potential of Weibull-type functions as flexible growth curves: discussion, Can. J. For. Res., 10, 117–118, 1979.
Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Monteagudo, A., Neill, D. A., Vargas, P. N., Pitman, N. C., Silva, J. N., and Martinez, R. V.: Increasing biomass in Amazonian forest plots, Philos. Trans. R. Soc. Lond. B Biol. Sci., 359, 353–365, https://doi.org/10.1098/rstb.2003.1422, 2004a.
Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Lloyd, J., Monteagudo, A., Neill, D. A., Patino, S., Pitman, N. C. A., Silva, J. N. M., and Martinez, R. V.: Variation in wood density determines spatial patterns in Amazonian forest biomass, Global Change Biol., 10, 545–562, https://doi.org/10.1111/j.1529- 8817.2003.00751.x, 2004b.
Baker, T. R., Phillips, O. L., Laurance, W. F., Pitman, N. C. A., Almeida, S., Arroyo, L., DiFiore, A., Erwin, T., Higuchi, N., Killeen, T. J., Laurance, S. G., Nascimento, H., Monteagudo, A., Neill, D. A., Silva, J. N. M., Malhi, Y., López Gonzalez, G., Peacock, J., Quesada, C. A., Lewis, S. L., and Lloyd, J.: Do species traits determine patterns of wood production in Amazonian forests?, Biogeosciences, 6, 297–307, https://doi.org/10.5194/bg-6-297-2009, 2009.
Banin, L.: Cross-continental comparisons of tropical forest structure and function, PhD, School of Geography, PhD Thesis, University of Leeds, Leeds, UK, 2010.
Banin, L., Feldpausch, T. R., Phillips, O. L., Baker, T. R., Lloyd, J., Affum-Baffoe, K., Arets, E. J. M. M., Berry, N. J., Bradford, M., Breinen, R. J. W., Davies, S., Drescher, M., Higuchi, N., Hilbert, D., Hladik, A., Iida, Y., Silam, K. A., Kassim, A. R., King, D. A., Lopez-Gonzalez, G., Metcalfe, D., Nilus, R., Peh, K. S.-H., Reitsma, J. M., Sonké, B., Taedoumg, H., Tan, S., White, L., Wöll, H., and Lewis, S. L.: What controls forest architecture? Testing environmental, structural and floristic drivers, Global Ecol. Biogeogr., in press, https://doi.org/10.1111/j.1466-8238.2012.00778.x, 2012.
Barbier, N., Couteron, P., Proisy, C., Malhi, Y., and Gastellu-Etchegorry, J. P.: The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests, Global Ecol. Biogeogr., 19, 72–84, https://doi.org/10.1111/j.1466-8238.2009.00493.x, 2010.
Bartholomé, E. and Belward, A. S.: GLC2000: a new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26, 1959–1977, 2005.
Baskerville, G.: Use of logarithmic regression in the estimation of plant biomass, Can. J. For. Res., 2, 49–53, 1972.
Basuki, T. M., van Laake, P. E., Skidmore, A. K., and Hussin, Y. A.: Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests, For. Ecol. Manage., 257, 1684–1694, https://doi.org/10.1016/j.foreco.2009.01.027, 2009.
Brown, I. F., Martinelli, L. A., Thomas, W. W., Moreira, M. Z., Ferreira, C. A. C., and Victoria, R. A.: Uncertainty in the biomass of Amazonian forests: an example from Rondonia, Brazil, For. Ecol. Manage., 75, 175–189, 1995.
Brown, S.: Estimating biomass and biomass change of tropical forests: a primer, FAO Forestry Paper, 134, 1997.
Brown, S., Gillespie, A. J. R., and Lugo, A. E.: Biomass estimation methods for tropical forests with applications to forestry inventory data, For. Sci., 35, 881–902, 1989.
Buschbacher, R., Uhl, C., and Serrão, E. A. S.: Abandoned pastures in eastern Amazonia. II. Nutrient stocks in the soil and vegetation, J. Ecol., 76, 682–699, 1988.
Chambers, J. Q., dos Santos, J., Ribeiro, R. J., and Higuchi, N.: Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest, For. Ecol. Manage., 152, 73–84, 2001.
Chave, J., Condit, R., Lao, S., Caspersen, J. P., Foster, R. B., and Hubbell, S. P.: Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama, J. Ecol., 91, 240–252, 2003.
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., and Perez, R.: Error propagation and scaling for tropical forest biomass estimates, Philos. Trans. R. Soc. Lond. B Biol. Sci., 359, 409–420, https://doi.org/10.1098/rstb.2003.1425, 2004.
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riera, B., and Yamakura, T.: Tree allometry and improved estimation of carbon stocks and balance in tropical forests, Oecologia, 145, 87–99, https://doi.org/10.1007/s00442- 005-0100-x, 2005.
Chave, J., Muller-Landau, H. C., Baker, T. R., Easdale, T. A., ter Steege, H., and Webb, C. O.: Regional and phylogenetic variation of wood density across 2456 Neotropical tree species, Ecol. Appl., 16, 2356–2367, 2006.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne, A. E.: Towards a worldwide wood economics spectrum, Ecol. Lett., 12, 351–366, https://doi.org/10.1111/j.1461- 0248.2009.01285.x, 2009.
Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., and Ni, J.: Measuring net primary production in forests: concepts and field methods, Ecol. Appl., 11, 356–370, 2001.
Crow, T. R.: Notes: common regressions to estimate tree biomass in tropical stands, For. Sci., 24, 110–114, 1978.
Davies, S. J., Palmiotto, P. A., Ashton, P. S., Lee, H. S., and Lafrankie, J. V.: Comparative ecology of 11 sympatric species of Macaranga in Borneo: tree distribution in relation to horizontal and vertical resource heterogeneity, J. Ecol., 86, 662–673, 1998.
Deans, J. D., Moran, J., and Grace, J.: Biomass relationships for tree species in regenerating semi-deciduous tropical moist forest in Cameroon, For. Ecol. Manage., 88, 215–225, 1996.
DeFries, R. S., Houghton, R. A., Hansen, M. C., Field, C. B., Skole, D., and Townshend, J.: Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s, Proc. Natl. Acad. Sci., 99, 14256–14261, https://doi.org/10.1073/pnas.182560099, 2002.
Denman, K., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P., Dickinson, R., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., Pedro Leite da Silva, D., Wofsy, S., and Zhang, X.: Couplings between changes in the climate system and biogeochemistry, in: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, and Miller, H. L., Cambridge University Press, 499–587, 2007.
Djomo, A. N., Ibrahima, A., Saborowski, J., and Gravenhorst, G.: Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa, For. Ecol. Manage., 260, 1873–1885, https://doi.org/10.1016/j.foreco.2010.08.034, 2010.
Drake, J. B., Dubayah, R. O., Clark, D. B., Knox, R. G., Blair, J. B., Hofton, M. A., Chazdon, R. L., Weishampel, J. F., and Prince, S. D.: Estimation of tropical forest structural characteristics using large-footprint lidar, Remote Sens. Environ., 79, 305–319, 2002.
Ebuy, J., Lokombe, J. P., Ponette, Q., Sonwa, D., and Picard, N.: Allometric equation for predicting aboveground biomass of three tree species, J. Trop. For. Sci., 23, 125–132, 2011.
Elias, M. and Potvin, C.: Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species, Can. J. For. Res., 33, 1039–1045, 2003.
ESRI: ArcGIS Desktop: Release 10, Environmental Systems Research Institute, Redlands, CA, USA, available at: http://www.esri.com/ (last access: 13 August 2012), 2010.
Fang, Z. and Bailey, R. L.: Height-diameter models for tropical forests on Hainan Island in southern China, For. Ecol. Manage., 110, 315–327, 1998.
Fearnside, P. M.: Wood density for estimating forest biomass in Brazilian Amazonia, For. Ecol. Manage., 90, 59–87, 1997.
Feldpausch, T. R., Rondon, M. A., Fernandes, E. C. M., Riha, S. J., and Wandelli, E.: Carbon and nutrient accumulation in secondary forests regenerating on pastures in central Amazonia, Ecol. Appl., 14, S164–S176, https://doi.org/10.1890/01-6015, 2004.
Feldpausch, T. R., Jirka, S., Passos, C. A. M., Jasper, F., and Riha, S. J.: When big trees fall: damage and carbon export by reduced impact logging in southern Amazonia, For. Ecol. Manage., 219, 199–215, https://doi.org/10.1016/j.foreco.2005.09.003, 2005.
Feldpausch, T. R., Coutoz, E. G., Rodrigues, L. C., Pauletto, D., Johnson, M. S., Fahey, T. J., Lehmann, J., and Riha, S. J.: Nitrogen aboveground turnover and soil stocks to 8 m depth in primary and selectively logged forest in southern Amazonia, Global Change Biol., 16, 1793–1805, https://doi.org/10.1111/j.1365-2486.2009.02068.x, 2010.
Feldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S. L., Quesada, C. A., Affum-Baffoe, K., Arets, E. J. M. M., Berry, N. J., Bird, M., Brondizio, E. S., de Camargo, P., Chave, J., Djagbletey, G., Domingues, T. F., Drescher, M., Fearnside, P. M., Franca, M. B., Fyllas, N. M., Lopez-Gonzalez, G., Hladik, A., Higuchi, N., Hunter, M. O., Iida, Y., Salim, K. A., Kassim, A. R., Keller, M., Kemp, J., King, D. A., Lovett, J. C., Marimon, B. S., Marimon, B. H., Lenza, E., Marshall, A. R., Metcalfe, D. J., Mitchard, E. T. A., Moran, E. F., Nelson, B. W., Nilus, R., Nogueira, E. M., Palace, M., Patiño, S., Peh, K. S. H., Raventos, M. T., Reitsma, J. M., Saiz, G., Schrodt, F., Sonké, B., Taedoumg, H. E., Tan, S., White, L., Wöll, H., and Lloyd, J.: Height-diameter allometry of tropical forest trees, Biogeosciences, 8, 1081–1106, https://doi.org/10.5194/bg-8- 1081-2011, 2011.
Fittkau, E. J.: Esboço de uma divisão ecolôgica da região amazônica, Proc. Symp. Biol. Trop. Amaz., Florencia y Leticia, 1969, 1363–1372, 1971.
Fittkau, E. J. and Klinge, H.: On biomass and trophic structure of the central Amazonian rain forest ecosystem, Biotropica, 5, 2–14, 1973.
Gibbs, H. K., Brown, S., Niles, J. O., and Foley, J. A.: Monitoring and estimating tropical forest carbon stocks: making REDD a reality, Environ. Res. Lett., 2, 1–13, 2007.
Graham, A. W.: The CSIRO rainforest permanent plots of North Queensland: site, structural, floristic and edaphic descriptions, available at: http://nla.gov.au/nla.cat-vn3708155, Rainforest CRC, James Cook University, Cairns, Australia, 227 pp., 2006.
Griscom, B. W. and Ashton, P. M. S.: A self-perpetuating bamboo disturbance cycle in a neotropical forest, J. Trop. Ecol., 22, 587–597, https://doi.org/10.1017/S0266467406003361, 2006.
Henry, M., Besnard, A., Asante, W. A., Eshun, J., Adu-Bredu, S., Valentini, R., Bernoux, M., and Saint-Andre, L.: Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa, For. Ecol. Manage., 260, 1375–1388, https://doi.org/10.1016/j.foreco.2010.07.040, 2010.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965–1978, 2005.
Houghton, R. A.: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000, Tellus B, 55, 378–390, https://doi.org/10.1034/j.1600- 0889.2003.01450.x, 2003.
Houghton, R. A.: Carbon flux to the atmosphere from land-use changes: 1850–2005, in: TRENDS: a compendium of data on global change, Carbon Dioxide Information Analysis Center, US Department of Energy, Oak Ridge, Tenn., USA, 2008.
Houghton, R. A.: How well do we know the flux of CO2 from land-use change?, Tellus B, 62, 337–351, https://doi.org/10.1111/j.1600-0889.2010.00473.x, 2010.
Houghton, R. A., Skole, D. L., Nobre, C. A., Hackler, J. L., Lawrence, K. T., and Chomentowski, W. H.: Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon, Nature, 403, 301–304, 2000.
Hozumi, K., Yoda, K., Kokawa, S., and Kira, T.: Production ecology of tropical rain forests in southwestern Cambodia. I. Plant biomass, Nature and Life in Southeast Asia, 6, 1–51, 1969.
Iida, Y., Kohyama, T. S., Kubo, T., Kassim, A. R., Poorter, L., Sterck, F., and Potts, M. D.: Tree architecture and life-history strategies across 200 co-occurring tropical tree species, Funct. Ecol., 25, 1260–1268, https://doi.org/10.1111/j.1365-2435.2011.01884.x, 2011.
Iida, Y., Poorter, L., Sterck, F. J., Kassim, A. R., Kubo, T., Potts, M. D., and Kohyama, T. S.: Wood density explains architectural differentiation across 145 co-occurring tropical tree species, Funct. Ecol., 26, 274–282, https://doi.org/10.1111/j.1365-2435.2011.01921.x, 2012.
INPE: Monitoramento da floresta Amazônica Brasileira por satélite 2009, available at: http://www.inpe.br (last access: 13 August 2012), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil, 2009.
IPCC: 2006 IPCC guidelines for national greenhouse gas inventories, Institute for Global Environmental Strategies, Hayama, Japan, 2006.
Kindermann, G., Obersteiner, M., Sohngen, B., Sathaye, J., Andrasko, K., Rametsteiner, E., Schlamadinger, B., Wunder, S., and Beach, R.: Global cost estimates of reducing carbon emissions through avoided deforestation, Proc. Natl. Acad. Sci. USA, 105, 10302–10307, https://doi.org/10.1073/pnas.0710616105, 2008.
Ketterings, Q. M., Coe, R., van Noordwijk, M., Ambagau, Y., and Palm, C. A.: Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests, For. Ecol. Manage., 146, 199–209, 2001.
Larjavaara, M. and Muller-Landau, H. C.: Measuring tree height in moist tropical forest: a quantitative comparison of two common field methods, in preparation, 2012.
Laurance, W. F. and Curran, T. J.: Impacts of wind disturbance on fragmented tropical forests: A review and synthesis, Austral Ecol., 33, 399–408, https://doi.org/10.1111/j.1442- 9993.2008.01895.x, 2008.
Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C., Espirito-Santo, F. D. B., Hunter, M. O., and de Oliveira Jr., R.: Estimates of forest canopy height and aboveground biomass using ICESat, Geophys. Res. Lett., 32, 1–4, 2005.
Lescure, J.-P., Puig, H., Riéra, B., Leclerc, D., Beekman, A., and Bénéteau, A.: La phytomasse épigée d'une forêt dense en Guyane française, Acta Oecol., 4, 237–251, 1983.
Lewis, S. L., Lopez-Gonzalez, G., Sonke, B., Affum-Baffoe, K., Baker, T. R., Ojo, L. O., Phillips, O. L., Reitsma, J. M., White, L., Comiskey, J. A., Djuikouo, K. M., Ewango, C. E., Feldpausch, T. R., Hamilton, A. C., Gloor, M., Hart, T., Hladik, A., Lloyd, J., Lovett, J. C., Makana, J. R., Malhi, Y., Mbago, F. M., Ndangalasi, H. J., Peacock, J., Peh, K. S., Sheil, D., Sunderland, T., Swaine, M. D., Taplin, J., Taylor, D., Thomas, S. C., Votere, R., and Woll, H.: Increasing carbon storage in intact African tropical forests, Nature, 457, 1003–1006, https://doi.org/10.1038/nature07771, 2009.
Lohman, D. J., de Bruyn, M., Page, T., von Kintelen, K., Hall, R., Ng, P. K. L., and von Rintelen, T.: Biogeography of the Indo-Australian archipeligo, Ann. Rev. Ecol. Syst., 42, 205–206, 2011.
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., and Phillips, O. L.: ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data, J. Veg. Sci., 22, 610–613, https://doi.org/10.1111/j.1654-1103.2011.01312.x, 2011.
Lucas, R. M., Honzak, M., Amaral, I. D., Curran, P. J., and Foody, G. M.: Forest regeneration on abandoned clearances in central Amazonia, Int. J. Remote Sens., 23, 965–988, 2002.
Mackensen, J., Tillery-Stevens, M., Klinge, R., and Fölster, H.: Site parameters, species composition, phytomass structure and element stores of a terra-firme forest in East-Amazonia, Brazil, Plant Ecol., 151, 101–119, 2000.
Malhi, Y. and Wright, J.: Spatial patterns and recent trends in the climate of tropical rainforest regions, Phil. Trans. R. Soc. Lond. B., 359, 311–329, 2004.
Malhi, Y., Baker, T. R., Phillips, O. L., Almeida, S., Alvarez, E., Arroyo, L., Chave, J., Czimczik, C. I., Di Fiore, A., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Montoya, L. M. M., Monteagudo, A., Neill, D. A., Vargas, P. N., Patino, S., Pitman, N. C. A., Quesada, C. A., Salomao, R., Silva, J. N. M., Lezama, A. T., Martinez, R. V., Terborgh, J., Vinceti, B., and Lloyd, J.: The above-ground coarse wood productivity of 104 Neotropical forest plots, Global Change Biol., 10, 563–591, 2004.
Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., Meir, P., Chave, J., Almeida, S., Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Monteagudo, A., Neill, D. A., Vargas, P. N., Pitman, N. C. A., Quesada, C. A., Salomao, R., Silva, J. N. M., Lezama, A. T., Terborgh, J., Martinez, R. V., and Vinceti, B.: The regional variation of aboveground live biomass in old-growth Amazonian forests, Global Change Biol., 12, 1107–1138, 2006.
Marshall, A. R., Willcock, S., Platts, P. J., Lovett, J. C., Balmford, A., Burgess, N. D., Latham, J. E., Munishi, P. K.T., Salter, R., Shirima, D. D., and Lewis, S. L.: Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient, Biol. Conserv., in press, https://doi.org/10.1016/j.biocon.2012.03.017, 2012.
Martin, A. R. and Thomas, S. C.: A reassessment of carbon content in tropical trees, PLoS ONE, 6, e23533, https://doi.org/10.1371/journal.pone.0023533, 2011.
Martinelli, L. A., Almeida, S., Brown, I. F., Moreira, M. Z., Victoria, R. L., Filoso, S., Ferreira, C. A. C., and Thomas, W. W.: Variation in nutrient distribution and potential nutrient losses by selective logging in a humid tropical forest of Rondonia, Brazil, Biotropica, 32, 597–613, 2000.
Mayaux, P., Holmgren, P., Achard, F., Eva, H., Stibig, H., and Branthomme, A.: Tropical forest cover change in the 1990s and options for future monitoring, Philos. Trans. R. Soc. B, 360, 373–384, https://doi.org/10.1098/rstb.2004.1590, 2005.
Miles, L. and Kapos, V.: Reducing greenhouse gas emissions from deforestation and forest degradation: global land-use implications, Science, 320, 1454–1455, https://doi.org/10.1126/science.1155358, 2008.
Mitchard, E. T. A., Saatchi, S. S., Woodhouse, I. H., Nangendo, G., Ribeiro, N. S., Williams, M., Ryan, C. M., Lewis, S. L., Feldpausch, T. R., and Meir, P.: Using satellite radar backscatter to predict above-ground woody biomass: a consistent relationship across four different African landscapes, Geophys. Res. Lett., 36, L23401, https://doi.org/10.1029/2009GL040692, 2009.
Mitchard, E. T. A., Saatchi, S. S., Lewis, S. L., Feldpausch, T. R., Woodhouse, I. H., Sonké, B., Rowland, C., and Meir, P.: Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest-savanna boundary region of central Africa using multi-temporal L-band radar backscatter, Remote Sens. Environ., 115, 2861–2873, https://doi.org/10.1016/j.rse.2010.02.022, 2011.
Montgomery, R. A. and Chazdon, R. L.: Forest structure, canopy architecture, and light transmittance in tropical wet forests, Ecology, 82, 2707–2718, 2001.
Morel, A. C., Saatchi, S. S., Malhi, Y., Berry, N. J., Banin, L., Burslem, D., Nilus, R., and Ong, R. C.: Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data, For. Ecol. Manage., 262, 1786–1798, https://doi.org/10.1016/j.foreco.2011.07.008, 2011.
Nelson, B. W., Mesquita, R., Pereira, J. L. G., de Souza, S. G. A., Batista, G. T., and Couto, L. B.: Allometric regressions for improved estimate of secondary forest biomass in the central Amazon, For. Ecol. Manage., 117, 149–167, 1999.
Nogueira, E. M., Fearnside, P. M., Nelson, B. W., and Franca, M. B.: Wood density in forests of Brazil's "arc of deforestation": implications for biomass and flux of carbon from land-use change in Amazonia, For. Ecol. Manage., 248, 119–135, https://doi.org/10.1016/j.foreco.2007.04.047, 2007.
Nogueira, E. M., Fearnside, P. M., Nelson, B. W., Barbosa, R. I., and Keizer, E. W. H.: Estimates of forest biomass in the Brazilian Amazon: new allometric equations and adjustments to biomass from wood-volume inventories, For. Ecol. Manage., 256, 1853–1867, 2008a.
Nogueira, E. M., Nelson, B. W., Fearnside, P. M., França, M. B., and Oliveira, Á. C. A. d.: Tree height in Brazil's 'arc of deforestation': Shorter trees in south and southwest Amazonia imply lower biomass, For. Ecol. Manage., 255, 2963–2972, 2008b.
Ogawa, H., Yoda, K., and Kira, T.: Comparative ecological studies on three main types of forest vegetation in Thailand: II. Plant biomass, Nature and Life in South East Asia, 4, 49–80, 1965.
Overman, J. P. M., Witte, H. J. L., and Saldarriaga, J. G.: Evaluation of regression models for above-ground biomass determination in Amazon rainforest, J. Trop. Ecol., 10, 207–218, 1994.
Patiño, S., Lloyd, J., Paiva, R., Baker, T. R., Quesada, C. A., Mercado, L. M., Schmerler, J., Schwarz, M., Santos, A. J. B., Aguilar, A., Czimczik, C. I., Gallo, J., Horna, V., Hoyos, E. J., Jimenez, E. M., Palomino, W., Peacock, J., Peña-Cruz, A., Sarmiento, C., Sota, A., Turriago, J. D., Villanueva, B., Vitzthum, P., Alvarez, E., Arroyo, L., Baraloto, C., Bonal, D., Chave, J., Costa, A. C. L., Herrera, R., Higuchi, N., Killeen, T., Leal, E., Luizão, F., Meir, P., Monteagudo, A., Neil, D., Núñez-Vargas, P., Peñuela, M. C., Pitman, N., Priante Filho, N., Prieto, A., Panfil, S. N., Rudas, A., Salomão, R., Silva, N., Silveira, M., Soares deAlmeida, S., Torres-Lezama, A., Vásquez-Mart\'{i}nez, R., Vieira, I., Malhi, Y., and Phillips, O. L.: Branch xylem density variations across the Amazon Basin, Biogeosciences, 6, 545–568, https://doi.org/10.5194/bg-6-545-2009, 2009.
Peacock, J., Baker, T. R., Lewis, S. L., Lopez-Gonzalez, G., and Phillips, O. L.: The RAINFOR database: monitoring forest biomass and dynamics, J. Veg. Sci., 18, 535–542, 2007.
Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Núñez, P. V., Vásquez, R. M., Laurance, S. G., Ferreira, L. V., Stern, M., Brown, S., and Grace, J.: Changes in the carbon balance of tropical forests: evidence from long-term plots, Science, 282, 439–442, 1998.
Phillips, O. L., Baker, T. R., Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, W. F., Lewis, S. L., Lloyd, J., Malhi, Y., Monteagudo, A., Neill, D. A., Vargas, P. N., Silva, J. N. M., Terborgh, J., Martinez, R. V., Alexiades, M., Almeida, S., Brown, S., Chave, J., Comiskey, J. A., Czimczik, C. I., Di Fiore, A., Erwin, T., Kuebler, C., Laurance, S. G., Nascimento, H. E. M., Olivier, J., Palacios, W., Patiño, S., Pitman, N. C. A., Quesada, C. A., Salidas, M., Lezama, A. T., and Vinceti, B.: Pattern and process in Amazon tree turnover, 1976–2001, Phil. Trans. Roy. Soc. Lnd. S. B-Bio Sci., 359, 381–407, 2004.
Phillips, O. L., Aragao, L. E., Lewis, S. L., Fisher, J. B., Lloyd, J., Lopez-Gonzalez, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Banki, O., Blanc, L., Bonal, D., Brando, P., Chave, J., de Oliveira, A. C., Cardozo, N. D., Czimczik, C. I., Feldpausch, T. R., Freitas, M. A., Gloor, E., Higuchi, N., Jimenez, E., Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D. A., Nepstad, D., Patiño, S., Penuela, M. C., Prieto, A., Ramirez, F., Schwarz, M., Silva, J., Silveira, M., Thomas, A. S., Steege, H. T., Stropp, J., Vásquez, R., Zelazowski, P., Alvarez Davila, E., Andelman, S., Andrade, A., Chao, K. J., Erwin, T., Di Fiore, A., Honorio, C. E., Keeling, H., Killeen, T. J., Laurance, W. F., Pena Cruz, A., Pitman, N. C., Núñez Vargas, P., Ramirez-Angulo, H., Rudas, A., Salamao, R., Silva, N., Terborgh, J., and Torres-Lezama, A.: Drought sensitivity of the Amazon rainforest, Science, 323, 1344–1347, https://doi.org/10.1126/science.1164033, 2009.
Phillips, O. L., Baker, T. R., Brienen, R., and Feldpausch, T. R.: Field manual for plot establishment and remeasurement, available at: http://www.geog.leeds.ac.uk/projects/rainfor/ (last access: February 2012), 2010.
Pinard, M. A. and Putz, F. E.: Retaining forest biomass by reducing logging damage, Biotropica, 28, 278–295, 1996.
Pinheiro, J. C., Bates, D. M., and Lindstrom, M. J.: Model building in nonlinear mixed effects models. Department of Statistics, Technical Report 931, University of Wisconsin, Madison, 1994.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and the R Development Core Team: nlme: Linear and nonlinear mixed effects models, R package version 3.1-102, 2011.
Pitman, N. C. A., Terborgh, J., Silman, M. R., and Núñez, P.: Tree species distributions in an upper Amazonian forest, Ecology, 80, 2651–2661, 1999.
Poorter, L., Bongers, L., and Bongers, F.: Architecture of 54 moist-forest tree species: Traits, trade-offs, and functional groups, Ecology, 87, 1289–1301, 2006.
Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., Patiño, S., Fyllas, N. M., Hodnett, M. G., Herrera, R., Almeida, S., Alvarez Dávila, E., Arneth, A., Arroyo, L., Chao, K. J., Dezzeo, N., Erwin, T., di Fiore, A., Higuchi, N., Honorio Coronado, E., Jimenez, E. M., Killeen, T., Lezama, A. T., Lloyd, G., López-González, G., Luizão, F. J., Malhi, Y., Monteagudo, A., Neill, D. A., Núñez Vargas, P., Paiva, R., Peacock, J., Peñuela, M. C., Peña Cruz, A., Pitman, N., Priante Filho, N., Prieto, A., Ram\'irez, H., Rudas, A., Salomão, R., Santos, A. J. B., Schmerler, J., Silva, N., Silveira, M., Vásquez, R., Vieira, I., Terborgh, J., and Lloyd, J.: Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate, Biogeosciences, 9, 2203–2246, https://doi.org/10.5194/bg-9-2203-2012, 2012.
R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, available at: http://www.R-project.org (last access: 13 August 2012), Vienna, Austria, 2011.
Rich, P. M., Helenurm, K., Kearns, D., Morse, S. R., Palmer, M. W., and Short, L.: Height and stem diameter relationships for dicotyledonous trees and arborescent palms of Costa Rican tropical wet forest, Bull. Torrey Bot. Club, 113, 241–246, 1986.
Saatchi, S. S., Houghton, R. A., Alvala, R., Soares, J. V., and Yu, Y.: Distribution of aboveground live biomass in the Amazon basin, Global Change Biol., 13, 816-837, 10.1111/j.1365-2486.2007.01323.x, 2007.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S., White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks in tropical regions across three continents, Proc. Natl. Acad. Sci. USA, 108, 9899–9904, https://doi.org/10.1073/pnas.1019576108, 2011.
Samalca, I. K.: Estimation of forest biomass and its error: a case in Kalimantan, Indonesia, MSc., International Institute for Geo-information Science and Earth Observation, The Netherlands, 74 pp., 2007.
Schargel, R.: Una reseña de la geograf\'{i}a f\'{i}sica de Venezuela, con énfasis en los suelos, BioLlania Edición Esp., 10, 11–26, 2011.
Schargel, R., Marvez, P., Aymard, G., Stergios, B., and Berry, P.: Caracter\'{i}sticas de los suelos alrededor de San Carlos de R\'{i}o Negro, Estado Amazonas, Venezuela, BioLlania Edic. Esp. No., 7, 234–264, 2001.
Schobbenhaus, C. and A. Bellizzia (coord.): Geological Map of South America, 1:5,000,000, CGMW- CPRM-DNPM-UNESCO, Paris, 2001.
Shuttleworth, W. J.: Evaporation from Amazonian rainforest, Proc. Roy. Soc. Ldn. Ser. B. Biol. Sci., 233, 321–346, https://doi.org/10.1098/rspb.1988.0024, 1988.
Slik, J. W. F., Aiba, S.-I., Brearley, F. Q., Cannon, C. H., Forshed, O., Kitayama, K., Nagamasu, H., Nilus, R., Payne, J., Paoli, G., Poulsen, A. D., Raes, N., Sheil, D., Sidiyasa, K., Suzuki, E., and van Valkenburg, J. L. C. H.: Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo's tropical forests, Global Ecol. Biogeogr., 19, 50–60, https://doi.org/10.1111/j.1466-8238.2009.00489.x, 2010.
Sprugel, D.: Correcting for bias in log-transformed allometric equations, Ecology, 64, 209–210, 1983.
Steininger, M. K.: Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia, Int. J. Remote Sens., 21, 1139–1157, 2000.
Thomas, S. C.: Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest trees, Am. J. Bot., 83, 556–566, 1996.
Thomas, S. C. and Bazzaz, F. A.: Asymptotic height as a predictor of photosynthetic characteristics in Malaysian forest trees, Ecology, 80, 1607–1622, 1999.
Torello-Raventosa, M., Feldpausch, T. R., Veenendaal, E., Schrodt, F., Saiz, G., Domingues, T. R., Djagbletey, G., Ford, A., Kemp, J., Marimon, B. S., Marimon Junior, B. H., Lenza, E., Ratter, J. A., Maracahipes, L., Sasaki, D., Sonké, B., Zapfack, L., Taedoumg, H., Villarroel, D., Schwarz, M., Quesada, C. A., Ishida, F. Y., Nardoto, G. B., Affum-Baffoe, K., Arroyo, L., Bowman, D. M. J. S., Compaore, H., Davies, K., Diallo, A., Fyllas, N. M., Gilpin, M., Hien, F., Johnson, M., Killeen, T. J., Metcalfe, D., Miranda, H. S., Steininger, M., Thomson, J., Sykora, K., Mougin, E., Hiernaux, P., Bird, M. I., Grace, J., Lewis, S. L., Phillips, O. L., and Lloyd, J.: On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions, Plant Ecology and Diversity, in review, 2012.
Uhl, C. and Jordan, C. F.: Succession and nutrient dynamics following forest cutting and burning in Amazonia, Ecology, 65, 1476–1490, 1984.
UK Department of Energy and Climate Change: 5NC: The UK's Fifth National Communication under the United Nations Framework Convention on Climate Change, Department of Energy and Climate Change, London, UK, 153, 2009.
Vieilledent, G., Vaudry, R., Andriamanohisoa, S. F. D., Rakotonarivo, O. S., Randrianasolo, H. Z., Razafindrabe, H. N., Rakotoarivony, C. B., Ebeling, J., and Rasamoelina, M.: A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models, Ecol. Appl., 22, 572–583, https://doi.org/10.1890/11-0039.1, 2012.
Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., Verardo, D. J., and Dokken, D. J.: Land use, land-use change, and forestry: a special report of the Intergovernmental Panel on Climate Change, edited by: Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., Verardo, David, J., and Dokken, D. J., Intergovernmental Panel on Climate Change, available at: http://www.grida.no/publications/other/ipcc_sr/, Cambridge Univ Press, Cambridge, UK, 377 pp., 2000.
Yamakura, T., Hagihara, A., Sukardjo, S., and Ogawa, H.: Aboveground biomass of tropical rain forest stands in Indonesian Borneo, Plant Ecol., 68, 71–82, 1986.
Zanne, A. E., Westoby, M., Falster, D. S., Ackerly, D. D., Loarie, S. R., Arnold, S. E. J., and Coomes, D. A.: Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity, Am. J. Bot., 97, 207–215, https://doi.org/10.3732/ajb.0900178, 2010.
Altmetrics
Final-revised paper
Preprint