Research article 18 Jun 2013
Research article | 18 Jun 2013
Long-term nitrogen addition decreases carbon leaching in a nitrogen-rich forest ecosystem
X. Lu et al.
Related authors
Geshere Abdisa Gurmesa, Xiankai Lu, Per Gundersen, Yunting Fang, Qinggong Mao, Chen Hao, and Jiangming Mo
Biogeosciences, 14, 2359–2370, https://doi.org/10.5194/bg-14-2359-2017, https://doi.org/10.5194/bg-14-2359-2017, 2017
Short summary
Short summary
We measured the abundance of a nitrogen (N) isotope (15N) in two subtropical forests in China to study the cycling of input N (deposition and addition). Plant leaves in both forests were 15N-depleted relative to the atmospheric standard, likely as an imprint from 15N-depleted deposition. Plant 15N changed into 15N of the added N, indicating incorporation of N into plants. Thus, interpretations of ecosystem 15N from high-N-deposition regions need to include data on the 15N deposition signature.
Bing Song, Jian Sun, Qingping Zhou, Ning Zong, Linghao Li, and Shuli Niu
Biogeosciences, 14, 3947–3956, https://doi.org/10.5194/bg-14-3947-2017, https://doi.org/10.5194/bg-14-3947-2017, 2017
Geshere Abdisa Gurmesa, Xiankai Lu, Per Gundersen, Yunting Fang, Qinggong Mao, Chen Hao, and Jiangming Mo
Biogeosciences, 14, 2359–2370, https://doi.org/10.5194/bg-14-2359-2017, https://doi.org/10.5194/bg-14-2359-2017, 2017
Short summary
Short summary
We measured the abundance of a nitrogen (N) isotope (15N) in two subtropical forests in China to study the cycling of input N (deposition and addition). Plant leaves in both forests were 15N-depleted relative to the atmospheric standard, likely as an imprint from 15N-depleted deposition. Plant 15N changed into 15N of the added N, indicating incorporation of N into plants. Thus, interpretations of ecosystem 15N from high-N-deposition regions need to include data on the 15N deposition signature.
Mianhai Zheng, Tao Zhang, Lei Liu, Weixing Zhu, Wei Zhang, and Jiangming Mo
Biogeosciences, 13, 3503–3517, https://doi.org/10.5194/bg-13-3503-2016, https://doi.org/10.5194/bg-13-3503-2016, 2016
Q.-Y. Tian, N.-N. Liu, W.-M. Bai, L.-H. Li, and W.-H. Zhang
Biogeosciences, 12, 3499–3512, https://doi.org/10.5194/bg-12-3499-2015, https://doi.org/10.5194/bg-12-3499-2015, 2015
Short summary
Short summary
We demonstrate that N addition reduced species richness, acidified soil and disturbed nutrient homeostasis in soil in an Inner Mongolia steppe. We further reveal that an increase in inorganic-N concentration, depletion of base cations (Ca2+ and Mg2+) and mobilization of Mn2+ and Cu2+ in soils were involved in reduction in species richness in the temperate steppe of northern China, highlighting the involvement of nutrient mobilization in decline in species richness of alkaline grasslands.
W. Zhang, X. Zhu, Y. Luo, R. Rafique, H. Chen, J. Huang, and J. Mo
Biogeosciences, 11, 4941–4951, https://doi.org/10.5194/bg-11-4941-2014, https://doi.org/10.5194/bg-11-4941-2014, 2014
H. Chen, W. Zhang, F. Gilliam, L. Liu, J. Huang, T. Zhang, W. Wang, and J. Mo
Biogeosciences, 10, 6609–6616, https://doi.org/10.5194/bg-10-6609-2013, https://doi.org/10.5194/bg-10-6609-2013, 2013
X. L. Ren, H. L. He, L. Zhang, L. Zhou, G. R. Yu, and J. W. Fan
Ann. Geophys., 31, 277–289, https://doi.org/10.5194/angeo-31-277-2013, https://doi.org/10.5194/angeo-31-277-2013, 2013
Related subject area
Biogeochemistry: Soils
Estimating maximum fine-fraction organic carbon in UK grasslands
Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: 14C-based evidence for stabilization of microbial necromass
Particles under stress: ultrasonication causes size and recovery rate artifacts with soil-derived POM but not with microplastics
Deepening roots can enhance carbonate weathering by amplifying CO2-rich recharge
Vertical mobility of pyrogenic organic matter in soils: a column experiment
Vertical partitioning of CO2 production in a forest soil
Interactions between biogeochemical and management factors explain soil organic carbon in Pyrenean grasslands
Reviews and syntheses: Ironing out wrinkles in the soil phosphorus cycling paradigm
Herbicide weed control increases nutrient leaching compared to mechanical weeding in a large-scale oil palm plantation
Key drivers of pyrogenic carbon redistribution during a simulated rainfall event
Reviews and syntheses: The mechanisms underlying carbon storage in soil
Long-term bare fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics
Identification of lower-order inositol phosphates (IP5 and IP4) in soil extracts as determined by hypobromite oxidation and solution 31P NMR spectroscopy
Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter
Geochemical zones and environmental gradients for soils from the Central Transantarctic Mountains, Antarctica
Warming increases soil respiration in a carbon-rich soil without changing microbial respiratory potential
Reviews and syntheses: Soil responses to manipulated precipitation changes – an assessment of meta-analyses
Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity
Denitrification in soil as a function of oxygen supply and demand at the microscale
Age distribution, extractability, and stability of mineral-bound organic carbon in central European soils
From fibrous plant residues to mineral-associated organic carbon – the fate of organic matter in Arctic permafrost soils
Relevance of aboveground litter for soil organic matter formation – a soil profile perspective
A revised pan-Arctic permafrost soil Hg pool based on Western Siberian peat Hg and carbon observations
Using respiration quotients to track changing sources of soil respiration seasonally and with experimental warming
The soil organic carbon stabilization potential of old and new wheat cultivars: a 13CO2-labeling study
Phosphorus Transport in Subsurface Flow at Beech Forest Stands: Does Phosphorus Mobilization Keep up with Transport?
Drivers and modelling of blue carbon stock variability in sediments of southeastern Australia
A comparison of patterns of microbial C : N : P stoichiometry between topsoil and subsoil along an aridity gradient
Soil total phosphorus and nitrogen explain vegetation community composition in a northern forest ecosystem near a phosphate massif
Contrasting conifer species productivity in relation to soil carbon, nitrogen and phosphorus stoichiometry of British Columbia perhumid rainforests
Increasing soil carbon stocks in eight permanent forest plots in China
Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools
Lability classification of soil organic matter in the northern permafrost region
Current, steady-state and historical weathering rates of base cations at two forest sites in northern and southern Sweden: a comparison of three methods
Anoxic conditions maintained high phosphorus sorption in humid tropical forest soils
Reviews and syntheses: Agropedogenesis – humankind as the sixth soil-forming factor and attractors of agricultural soil degradation
Weathering rates in Swedish forest soils
Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe
The simulated N deposition accelerates net N mineralization and nitrification in a tropical forest soil
Simulated wild boar bioturbation increases the stability of forest soil carbon
Spatial changes in soil stable isotopic composition in response to carrion decomposition
Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities
Physical constraints for respiration in microbial hotspots in soil and their importance for denitrification
Biological enhancement of mineral weathering by Pinus sylvestris seedlings – effects of plants, ectomycorrhizal fungi, and elevated CO2
Past aridity's effect on carbon mineralization potentials in grassland soils
Plant functional traits determine latitudinal variations in soil microbial function: evidence from forests in China
Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient
A novel isotope pool dilution approach to quantify gross rates of key abiotic and biological processes in the soil phosphorus cycle
Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe
Global soil–climate–biome diagram: linking surface soil properties to climate and biota
Kirsty C. Paterson, Joanna M. Cloy, Robert M. Rees, Elizabeth M. Baggs, Hugh Martineau, Dario Fornara, Andrew J. Macdonald, and Sarah Buckingham
Biogeosciences, 18, 605–620, https://doi.org/10.5194/bg-18-605-2021, https://doi.org/10.5194/bg-18-605-2021, 2021
Short summary
Short summary
Soil organic carbon sequestration across agroecosystems worldwide can contribute to mitigating the effects of climate change by reducing levels of atmospheric carbon dioxide. The maximum carbon sequestration potential is frequently estimated using the linear regression equation developed by Hassink (1997). This work examines the suitability of this equation for use in grasslands across the United Kingdom. The results highlight the need to ensure the fit of equations to the soils being studied.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Frederick Büks, Gilles Kayser, Antonia Zieger, Friederike Lang, and Martin Kaupenjohann
Biogeosciences, 18, 159–167, https://doi.org/10.5194/bg-18-159-2021, https://doi.org/10.5194/bg-18-159-2021, 2021
Short summary
Short summary
Ultrasonication/density fractionation is a common method used to extract particulate organic matter (POM) and, recently, microplastic (MP) from soil samples. In this study, ultrasonic treatment with mechanical stress increasing from 0 to 500 J mL−1 caused comminution and a reduced recovery rate of soil-derived POMs but no such effects with MP particles. In consequence, the extraction of MP from soils is not affected by particle size and recovery rate artifacts.
Hang Wen, Pamela L. Sullivan, Gwendolyn L. Macpherson, Sharon A. Billings, and Li Li
Biogeosciences, 18, 55–75, https://doi.org/10.5194/bg-18-55-2021, https://doi.org/10.5194/bg-18-55-2021, 2021
Short summary
Short summary
Carbonate weathering is essential in regulating carbon cycle at the century timescale. Plant roots accelerate weathering by elevating soil CO2 via respiration. It however remains poorly understood how and how much rooting characteristics modify flow paths and weathering. This work indicates that deepening roots in woodlands can enhance carbonate weathering by promoting recharge and CO2–carbonate contact in the deep, carbonate-abundant subsurface.
Marcus Schiedung, Severin-Luca Bellè, Gabriel Sigmund, Karsten Kalbitz, and Samuel Abiven
Biogeosciences, 17, 6457–6474, https://doi.org/10.5194/bg-17-6457-2020, https://doi.org/10.5194/bg-17-6457-2020, 2020
Short summary
Short summary
The mobility of pyrogenic organic matter (PyOM) in soils is largely unknow, while it is a major and persistent component of the soil organic matter. With a soil column experiment, we identified that only a small proportion of PyOM can migrate through the soil, but its export is continuous. Aging and associated oxidation increase its mobility but also its retention in soils. Further, PyOM can alter the vertical mobility of native soil organic carbon during its downward migration.
Patrick Wordell-Dietrich, Anja Wotte, Janet Rethemeyer, Jörg Bachmann, Mirjam Helfrich, Kristina Kirfel, Christoph Leuschner, and Axel Don
Biogeosciences, 17, 6341–6356, https://doi.org/10.5194/bg-17-6341-2020, https://doi.org/10.5194/bg-17-6341-2020, 2020
Short summary
Short summary
The release of CO2 from soils, known as soil respiration, plays a major role in the global carbon cycle. However, the contributions of different soil depths or the sources of soil CO2 have hardly been studied. We quantified the CO2 production for different soil layers (up to 1.5 m) in three soil profiles for 2 years. We found that 90 % of CO2 production occurs in the first 30 cm of the soil profile, and that the CO2 originated from young carbon sources, as revealed by radiocarbon measurements.
Antonio Rodríguez, Rosa Maria Canals, Josefina Plaixats, Elena Albanell, Haifa Debouk, Jordi Garcia-Pausas, Leticia San Emeterio, Àngela Ribas, Juan José Jimenez, and M.-Teresa Sebastià
Biogeosciences, 17, 6033–6050, https://doi.org/10.5194/bg-17-6033-2020, https://doi.org/10.5194/bg-17-6033-2020, 2020
Short summary
Short summary
The novelty of our work is that it presents a series of potential interactions between drivers of soil organic carbon at broad scales in temperate mountain grasslands. The most relevant contribution of our work is that it illustrates the importance of grazing management for soil carbon stocks, indicating that interactions between grazing species and soil nitrogen and herbage quality may be promising paths in order to design further management policies for palliating climate change.
Curt A. McConnell, Jason P. Kaye, and Armen R. Kemanian
Biogeosciences, 17, 5309–5333, https://doi.org/10.5194/bg-17-5309-2020, https://doi.org/10.5194/bg-17-5309-2020, 2020
Short summary
Short summary
Soil phosphorus (P) management is a critical challenge for agriculture worldwide; yet, simulation models of soil P processes lag those of other essential nutrients. In this review, we identify hindrances to measuring and modeling soil P pools and fluxes. We highlight the need to clarify biological and mineral interactions by defining P pools explicitly and using evolving techniques, such as tracing P in phosphates using oxygen isotopes.
Greta Formaglio, Edzo Veldkamp, Xiaohong Duan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 17, 5243–5262, https://doi.org/10.5194/bg-17-5243-2020, https://doi.org/10.5194/bg-17-5243-2020, 2020
Short summary
Short summary
The intensive management of large-scale oil palm plantations may result in high nutrient leaching losses which reduce soil fertility and potentially pollute water bodies. The reduction in management intensity with lower fertilization rates and with mechanical weeding instead of the use of herbicide results in lower nutrient leaching losses while maintaining high yield. Lower leaching results from lower nutrient inputs from fertilizer and from higher retention by enhanced cover vegetation.
Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Cristina Santin, Marcus Schiedung, Ilja van Meerveld, and Samuel Abiven
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-361, https://doi.org/10.5194/bg-2020-361, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash, and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
Isabelle Basile-Doelsch, Jérôme Balesdent, and Sylvain Pellerin
Biogeosciences, 17, 5223–5242, https://doi.org/10.5194/bg-17-5223-2020, https://doi.org/10.5194/bg-17-5223-2020, 2020
Short summary
Short summary
The 4 per 1000 initiative aims to restore carbon storage in soils to both mitigate climate change and contribute to food security. The French National Institute for Agricultural Research conducted a study to determine the carbon storage potential in French soils and associated costs. This paper is a part of that study. It reviews recent advances concerning the mechanisms that controls C stabilization in soils. Synthetic figures integrating new concepts should be of pedagogical interest.
Mathieu Chassé, Suzanne Luftalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-176, https://doi.org/10.5194/bg-2020-176, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding the factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterisation of carbon pools with distinct residence time in soils and gives insight on the mechanisms explaining soil organic carbon persistence.
Jolanda E. Reusser, René Verel, Daniel Zindel, Emmanuel Frossard, and Timothy I. McLaren
Biogeosciences, 17, 5079–5095, https://doi.org/10.5194/bg-17-5079-2020, https://doi.org/10.5194/bg-17-5079-2020, 2020
Short summary
Short summary
Inositol phosphates (IPs) are a major pool of organic P in soil. However, information on their diversity and abundance in soil is limited. We isolated IPs from soil and characterised them using solution nuclear magnetic resonance (NMR) spectroscopy. For the first time, we provide direct spectroscopic evidence for the existence of a multitude of lower-order IPs in soil extracts previously not detected with NMR. Our findings will help provide new insight into the cycling of IPs in ecosystems.
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Short summary
We present a simple model that describes, for the first time, the dynamic two-way interactions between soil organic matter and soil physical properties (porosity, pore size distribution, bulk density and layer thickness). The model was able to accurately reproduce the changes in soil organic carbon, soil bulk density and surface elevation observed during 63 years in a field trial, as well as soil water retention curves measured at the end of the experimental period.
Melisa A. Diaz, Christopher B. Gardner, Susan A. Welch, W. Andrew Jackson, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-316, https://doi.org/10.5194/bg-2020-316, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Water-soluble salt and nutrient concentrations of soils collected along the Shackleton Glacier, Antarctica show distinct geochemical gradients related to latitude, longitude, elevation, soil moisture, and distance from coast and glacier. Machine learning algorithms were used to estimate geochemical gradients for the region given the relationship with geography. Geography and surface exposure age drive salt and nutrient abundances, influencing invertebrate habitat suitability and biogeography.
Marion Nyberg and Mark J. Hovenden
Biogeosciences, 17, 4405–4420, https://doi.org/10.5194/bg-17-4405-2020, https://doi.org/10.5194/bg-17-4405-2020, 2020
Short summary
Short summary
Experimental warming increased soil respiration (RS) by more than 25 % in a Tasmanian C-rich soil, but there was no impact on microbial respiration in laboratory experiments. Plant community composition had no effect on RS, suggesting the response is likely due to enhanced belowground plant respiration and C supply through rhizodeposition and root exudates. Results imply we need studies of both C inputs and losses to model net ecosystem C exchange of these crucial, C-dense systems effectively.
Akane O. Abbasi, Alejandro Salazar, Youmi Oh, Sabine Reinsch, Maria del Rosario Uribe, Jianghanyang Li, Irfan Rashid, and Jeffrey S. Dukes
Biogeosciences, 17, 3859–3873, https://doi.org/10.5194/bg-17-3859-2020, https://doi.org/10.5194/bg-17-3859-2020, 2020
Short summary
Short summary
In this study, we provide a holistic view of soil responses to precipitation changes. A total of 16 meta-analyses focusing on the effects of precipitation changes on 42 soil response variables were compared. A strong agreement was found that the belowground carbon and nitrogen cycling accelerate under increased precipitation and slow under decreased precipitation, while bacterial and fungal communities are relatively resistant to decreased precipitation. Knowledge gaps were also identified.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-222, https://doi.org/10.5194/bg-2020-222, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil
microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
Lena Rohe, Bernd Apelt, Hans-Jörg Vogel, Reinhard Well, Gi-Mick Wu, and Steffen Schlüter
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-221, https://doi.org/10.5194/bg-2020-221, 2020
Revised manuscript accepted for BG
Short summary
Short summary
This study presents a well-defined and comprehensive experimental setup analyzing total denitrification, i.e. N2O and (N2O+N2) fluxes, in combination with X-ray CT image analysis. (N2O+N2) fluxes were mainly controlled by the interplay of oxygen supply and demand. The former could be estimated by abiotic proxies like the extent of anaerobic soil volumes or diffusivity, whereas the latter was best described by CO2 production or SOM. N2O fluxes additionally depended on the N2O reduction.
Marion Schrumpf, Klaus Kaiser, Allegra Mayer, Günter Hempel, and Susan Trumbore
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-212, https://doi.org/10.5194/bg-2020-212, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Large amounts of organic carbon (OC) in soil are protected against decay by bonding to minerals. We studied the release of mineral-bonded OC by NaF-NaOH extraction and H2O2 oxidation. Unexpectedly, extraction and oxidation removed mineral-bonded OC at roughly constant portions and of similar age distributions, irrespective of mineral composition, land use, and soil depth. The results suggest uniform modes of interactions between OC and minerals across soils in quasi-steady state with inputs.
Isabel Prater, Sebastian Zubrzycki, Franz Buegger, Lena C. Zoor-Füllgraff, Gerrit Angst, Michael Dannenmann, and Carsten W. Mueller
Biogeosciences, 17, 3367–3383, https://doi.org/10.5194/bg-17-3367-2020, https://doi.org/10.5194/bg-17-3367-2020, 2020
Short summary
Short summary
Large amounts of soil organic matter stored in permafrost-affected soils from Arctic Russia are present as undecomposed plant residues. This large fibrous organic matter might be highly vulnerable to microbial decay, while small mineral-associated organic matter can most probably attenuate carbon mineralization in a warmer future. Labile soil fractions also store large amounts of nitrogen, which might be lost during permafrost collapse while fostering the decomposition of soil organic matter.
Patrick Liebmann, Patrick Wordell-Dietrich, Karsten Kalbitz, Robert Mikutta, Fabian Kalks, Axel Don, Susanne K. Woche, Leena R. Dsilva, and Georg Guggenberger
Biogeosciences, 17, 3099–3113, https://doi.org/10.5194/bg-17-3099-2020, https://doi.org/10.5194/bg-17-3099-2020, 2020
Short summary
Short summary
We studied the contribution of litter-derived carbon (C) in the formation of subsoil organic matter (OM). Soil core sampling, 13C field labeling, density fractionation, and water extractions were used to track its contribution to different functional OM fractions down to the deep subsoil. We show that while migrating down the soil profile, OM undergoes a sequence of repeated sorption, microbial processing, and desorption. However, the contribution of litter-derived C to subsoil OM is small.
Artem G. Lim, Martin Jiskra, Jeroen E. Sonke, Sergey V. Loiko, Natalia Kosykh, and Oleg S. Pokrovsky
Biogeosciences, 17, 3083–3097, https://doi.org/10.5194/bg-17-3083-2020, https://doi.org/10.5194/bg-17-3083-2020, 2020
Short summary
Short summary
To better understand the mercury (Hg) content in northern soils, we measured Hg concentration in peat cores across a 1700 km permafrost gradient in Siberia. We demonstrated a northward increase in Hg concentration in peat and Hg pools in frozen peatlands. We revised the 0–30 cm northern soil Hg pool to be 72 Gg, which is 7 % of the global soil Hg pool of 1086 Gg. The results are important for understanding Hg exchange between soil, water, and the atmosphere under climate change in the Arctic.
Caitlin Hicks Pries, Alon Angert, Cristina Castanha, Boaz Hilman, and Margaret S. Torn
Biogeosciences, 17, 3045–3055, https://doi.org/10.5194/bg-17-3045-2020, https://doi.org/10.5194/bg-17-3045-2020, 2020
Short summary
Short summary
The apparent respiration quotient (ARQ) changes according to which substrates microbes consume, allowing sources of soil respiration to be traced. In a forest soil warming experiment, ARQ had a strong seasonal pattern that reflected a shift from respiration being fueled by sugars and organic acids derived from roots during the growing season to respiration being fueled by dead microbes during winter. ARQ values also changed with experimental warming.
Marijn Van de Broek, Shiva Ghiasi, Charlotte Decock, Andreas Hund, Samuel Abiven, Cordula Friedli, Roland A. Werner, and Johan Six
Biogeosciences, 17, 2971–2986, https://doi.org/10.5194/bg-17-2971-2020, https://doi.org/10.5194/bg-17-2971-2020, 2020
Short summary
Short summary
Four wheat cultivars were labeled with 13CO2 to quantify the effect of rooting depth and root biomass on the belowground transfer of organic carbon. We found no clear relation between the time since cultivar development and the amount of carbon inputs to the soil. Therefore, the hypothesis that wheat cultivars with a larger root biomass and deeper roots promote carbon stabilization was rejected. The amount of root biomass that will be stabilized in the soil on the long term is, however, unknown.
Michael Rinderer, Jaane Krüger, Friederike Lang, Heike Puhlmann, and Markus Weiler
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-118, https://doi.org/10.5194/bg-2020-118, 2020
Revised manuscript accepted for BG
Short summary
Short summary
To quantify Phosphorus loss from forests by vertical and lateral soil water flow, we conducted six sprinkling experiments at three beech forests in Germany. Out data showed a nutrient flashing (high P concentrations) during the first 2 hours after the onset but no further depletion thereafter. This suggest that the mobilization of P can keep up with its transport. We also showed that the P concentrations decreased with soil depth suggesting an efficient retention of P in the forest soil.
Carolyn J. Ewers Lewis, Mary A. Young, Daniel Ierodiaconou, Jeffrey A. Baldock, Bruce Hawke, Jonathan Sanderman, Paul E. Carnell, and Peter I. Macreadie
Biogeosciences, 17, 2041–2059, https://doi.org/10.5194/bg-17-2041-2020, https://doi.org/10.5194/bg-17-2041-2020, 2020
Short summary
Short summary
Blue carbonecosystems – tidal marsh, mangrove, and seagrass – serve as important organic carbon sinks, mitigating impacts of climate change. We utilized a robust regional carbon stock dataset to identify ecological, geomorphological, and anthropogenic drivers of carbon stock variability and create high-spatial-resolution predictive carbon stock maps. This work facilitates strategic conservation and restoration of coastal blue carbon ecosystems to contribute to climate change mitigation.
Yuqing Liu, Wenhong Ma, Dan Kou, Xiaxia Niu, Tian Wang, Yongliang Chen, Dima Chen, Xiaoqin Zhu, Mengying Zhao, Baihui Hao, Jinbo Zhang, Yuanhe Yang, and Huifeng Hu
Biogeosciences, 17, 2009–2019, https://doi.org/10.5194/bg-17-2009-2020, https://doi.org/10.5194/bg-17-2009-2020, 2020
Short summary
Short summary
The microbial C : N ratio increased with aridity, while the microbial N : P ratio decreased with aridity, which implied that drought-stimulated microbes tend to be more N conservative. Among all examined ecological factors, substrate supply and microbial structure together controlled the microbial stoichiometry. Overall, these results illustrated N and P limitation in microbial biomass at deeper soil depths along the aridity gradient and limited responses to ecological factors in the subsoil.
Laura Matkala, Maija Salemaa, and Jaana Bäck
Biogeosciences, 17, 1535–1556, https://doi.org/10.5194/bg-17-1535-2020, https://doi.org/10.5194/bg-17-1535-2020, 2020
Short summary
Short summary
We studied how species number and abundance of the understorey vegetation correlates with nutrient contents of soil and tree leaves at a northern boreal forest site. The phosphorus (P) content of the humus layer showed higher correlation with vegetation than the nitrogen (N) content. Usually N is considered more important in boreal forests. The plots with high P content in humus had birch as the dominant tree species, implying that birch leaf litter is an important source of P to the plants.
John Marty Kranabetter, Ariana Sholinder, and Louise de Montigny
Biogeosciences, 17, 1247–1260, https://doi.org/10.5194/bg-17-1247-2020, https://doi.org/10.5194/bg-17-1247-2020, 2020
Short summary
Short summary
Temperate rainforests of the Pacific Northwest often have productive soils with high levels of organic matter. We describe the nitrogen and phosphorus attributes of this soil organic matter in relation to the growth of four conifer species. Sitka spruce thrived on high-nitrogen soils, more so than the other conifer species, but productivity overall is likely constrained by phosphorus deficiencies. Study results will guide wood production, carbon sequestration and conservation priorities.
Jianxiao Zhu, Chuankuan Wang, Zhang Zhou, Guoyi Zhou, Xueyang Hu, Lai Jiang, Yide Li, Guohua Liu, Chengjun Ji, Shuqing Zhao, Peng Li, Jiangling Zhu, Zhiyao Tang, Chengyang Zheng, Richard A. Birdsey, Yude Pan, and Jingyun Fang
Biogeosciences, 17, 715–726, https://doi.org/10.5194/bg-17-715-2020, https://doi.org/10.5194/bg-17-715-2020, 2020
Short summary
Short summary
Soil is the largest carbon pool in forests. Whether forest soils function as a sink or source of atmospheric carbon remains controversial. Here, we investigated the 20-year changes in the soil organic carbon pool at eight permanent forest plots in China. Our results revealed that the soils sequestered 3.6–16.3 % of the annual net primary production across the investigated sites, demonstrating that these forest soils have functioned as an important C sink during the past 2 decades.
Julian Helfenstein, Chiara Pistocchi, Astrid Oberson, Federica Tamburini, Daniel S. Goll, and Emmanuel Frossard
Biogeosciences, 17, 441–454, https://doi.org/10.5194/bg-17-441-2020, https://doi.org/10.5194/bg-17-441-2020, 2020
Short summary
Short summary
In this article we provide estimates of mean residence times of phosphorus in inorganic soil phosphorus pools. These values improve our understanding of the dynamics of phosphorus cycling and can be used to improve global land surface models.
Peter Kuhry, Jiří Bárta, Daan Blok, Bo Elberling, Samuel Faucherre, Gustaf Hugelius, Christian J. Jørgensen, Andreas Richter, Hana Šantrůčková, and Niels Weiss
Biogeosciences, 17, 361–379, https://doi.org/10.5194/bg-17-361-2020, https://doi.org/10.5194/bg-17-361-2020, 2020
Sophie Casetou-Gustafson, Harald Grip, Stephen Hillier, Sune Linder, Bengt A. Olsson, Magnus Simonsson, and Johan Stendahl
Biogeosciences, 17, 281–304, https://doi.org/10.5194/bg-17-281-2020, https://doi.org/10.5194/bg-17-281-2020, 2020
Short summary
Short summary
Reliable methods are required for estimating mineral supply rates to forest growth from weathering. We applied the depletion method, the PROFILE model and the base cation budget method to two forest sites in Sweden. The highest weathering rate was obtained from the budget method and the lowest from the depletion method. The high rate by the budget method suggests that there were additional sources for tree uptake not captured by measurements.
Yang Lin, Avner Gross, Christine S. O'Connell, and Whendee L. Silver
Biogeosciences, 17, 89–101, https://doi.org/10.5194/bg-17-89-2020, https://doi.org/10.5194/bg-17-89-2020, 2020
Short summary
Short summary
Phosphorus (P) is an important soil nutrient that often limits plant growth and microbial activity in humid tropical forests. These ecosystems receive a large amount of rainfall that helps create frequent anoxic events in soils. Our results show that anoxic conditions reduced the strength of soil minerals to bind P even though a large amount of P was still bound to minerals. Our study suggests that anoxic events might serve as hot moments for plants and microbes to acquire P.
Yakov Kuzyakov and Kazem Zamanian
Biogeosciences, 16, 4783–4803, https://doi.org/10.5194/bg-16-4783-2019, https://doi.org/10.5194/bg-16-4783-2019, 2019
Short summary
Short summary
Agropedogenesis, i.e. soil development under agricultural use, is the anthropogenic modification of soil and environmental factors for optimization of crop production. Maximization of only this function, crop production, leads to declines in all other soil functions and consequently promotes uniformity in soil properties around the globe. Here we developed a new scientific background for the theory of agropedogenesis and the identification of soil degradation stages.
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt A. Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences, 16, 4429–4450, https://doi.org/10.5194/bg-16-4429-2019, https://doi.org/10.5194/bg-16-4429-2019, 2019
Short summary
Short summary
The release of elements from soil through weathering is an important process, controlling nutrient availability for plants and recovery from acidification. However, direct measurements cannot be done, and present estimates are burdened with high uncertainties. In this paper we use different approaches to quantify weathering rates in different scales in Sweden and discuss the pros and cons. The study contributes to more robust assessments of sustainable harvesting of forest biomass.
Heyong Liu, Ruzhen Wang, Hongyi Wang, Yanzhuo Cao, Feike A. Dijkstra, Zhan Shi, Jiangping Cai, Zhengwen Wang, Hongtao Zou, and Yong Jiang
Biogeosciences, 16, 4293–4306, https://doi.org/10.5194/bg-16-4293-2019, https://doi.org/10.5194/bg-16-4293-2019, 2019
Yanxia Nie, Xiaoge Han, Jie Chen, Mengcen Wang, and Weijun Shen
Biogeosciences, 16, 4277–4291, https://doi.org/10.5194/bg-16-4277-2019, https://doi.org/10.5194/bg-16-4277-2019, 2019
Short summary
Short summary
The N–transformation rates and N–related functional gene abundance were surveyed in a tropical forest soil with experimental N additions. The C : N ratio was the determinant factor for N transformations in the dry season while the microbial biomass was the one in the wet season. This study also found that high N addition imposed significant positive effects on the functional gene abundance of AOA amoA and nirK but negative effects on that of AOB amoA and nosZ.
Axel Don, Christina Hagen, Erik Grüneberg, and Cora Vos
Biogeosciences, 16, 4145–4155, https://doi.org/10.5194/bg-16-4145-2019, https://doi.org/10.5194/bg-16-4145-2019, 2019
Short summary
Short summary
Forest soils have a steep carbon gradient from the forest floor to the mineral soil, indicating that carbon is prevented from entry into the soil. Wild boar are effective in mixing the soil when searching for food. In a 6–year field study, we found no significant changes in soil organic carbon stocks in the wild boar treatment plots. However, around 50 % of forest floor carbon was transferred with mixing into mineral soil carbon and increased the stabilised fraction of soil organic carbon.
Sarah W. Keenan, Sean M. Schaeffer, and Jennifer M. DeBruyn
Biogeosciences, 16, 3929–3939, https://doi.org/10.5194/bg-16-3929-2019, https://doi.org/10.5194/bg-16-3929-2019, 2019
Short summary
Short summary
Decaying animals perturb soil biogeochemical cycles. Stable δ15N composition, which reflects the sum of all biogeochemical processes, increases during decay and persists for years. Enrichment following beaver decay persisted after at least 1 year, and was evident up to 10 cm depth and 60 cm from the decaying animals, beyond where soils were visibly impacted by decomposition. Nutrients sourced from decaying animals represent an integral and long–lived component of nitrogen cycling in soils.
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019, https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary
Short summary
Coastal terrestrial–aquatic interfaces represent dynamic yet poorly understood zones of biogeochemical cycles. We evaluated associations between the soil salinity gradient, molecular-level soil-C chemistry, and microbial community assembly processes in a coastal watershed on the Olympic Peninsula in Washington, USA. Results revealed salinity-driven gradients in molecular-level C chemistry, with little evidence of an association between C chemistry and microbial community assembly processes.
Steffen Schlüter, Jan Zawallich, Hans-Jörg Vogel, and Peter Dörsch
Biogeosciences, 16, 3665–3678, https://doi.org/10.5194/bg-16-3665-2019, https://doi.org/10.5194/bg-16-3665-2019, 2019
Short summary
Short summary
A combination of gas chromatography and X-ray CT reveals the microscale processes that govern soil respiration. Aerobic and anaerobic respiration in microbial hotspots depends not only on the quality and quantity of soil organic matter, but also on the spatial distribution of hotspots. Denitrification kinetics are mainly governed by hotspot architecture due to local competition for oxygen during growth. Cumulative behavior is mainly governed by water saturation due to the overall supply with O2.
Nicholas P. Rosenstock, Patrick A. W. van Hees, Petra M. A. Fransson, Roger D. Finlay, and Anna Rosling
Biogeosciences, 16, 3637–3649, https://doi.org/10.5194/bg-16-3637-2019, https://doi.org/10.5194/bg-16-3637-2019, 2019
Short summary
Short summary
We examined the effects of elevated CO2, pine seedlings, and ectomycorrhizal fungi on mineral weathering. Seedlings significantly increased mineral weathering, while elevated CO2 increased plant growth and organic acid concentrations but had no effect on weathering. Ectomycorrhial fungi showed some tendency to increase weathering. We conclude that nutrient uptake, which reduces transport limitation to weathering, is the primary mechanism by which plants enhanced weathering in this system.
Zhenjiao Cao, Yufu Jia, Yue Cai, Xin Wang, Huifeng Hu, Jinbo Zhang, Juan Jia, and Xiaojuan Feng
Biogeosciences, 16, 3605–3619, https://doi.org/10.5194/bg-16-3605-2019, https://doi.org/10.5194/bg-16-3605-2019, 2019
Short summary
Short summary
Using pathway analysis, we demonstrate that past aridity's effect is mediated by differential mechanisms for substrates of varied complexity. While microbial biomass plays a more important role in the decomposition of fresh litter, enzyme-catalyzed extracellular reactions predominantly govern the mineralization of SOC. Our findings have significant implications for assessing and modeling decomposition in different aridity regimes.
Zhiwei Xu, Guirui Yu, Qiufeng Wang, Xinyu Zhang, Ruili Wang, Ning Zhao, Nianpeng He, and Ziping Liu
Biogeosciences, 16, 3333–3349, https://doi.org/10.5194/bg-16-3333-2019, https://doi.org/10.5194/bg-16-3333-2019, 2019
Short summary
Short summary
Plant functional traits have increasingly been studied as determinants of ecosystem properties. While the relationships between biological community structures and ecological functions remain poorly understood at the large scale, we found that there was considerable variation in the profiles of different substrate uses along the NSTEC. The soil silt content and plant functional traits together shaped the biogeographical pattern of the soil microbial substrate use.
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019, https://doi.org/10.5194/bg-16-3233-2019, 2019
Short summary
Short summary
The carbon stored in soils is the largest reservoir of organic carbon on land. In the context of greenhouse gas emissions and a changing climate, it is very important to understand how stable the carbon in the soil is and why. The deeper parts of the soil have often been overlooked even though they store a lot of carbon. In this paper, we discovered that although deep soil carbon is expected to be old and stable, there can be a significant young component that cycles much faster.
Wolfgang Wanek, David Zezula, Daniel Wasner, Maria Mooshammer, and Judith Prommer
Biogeosciences, 16, 3047–3068, https://doi.org/10.5194/bg-16-3047-2019, https://doi.org/10.5194/bg-16-3047-2019, 2019
Short summary
Short summary
Efforts to understand the global phosphorus (P) cycle are limited by the scarcity of global data on rates of soil P processes, as well as on its environmental controls. Here, we present a novel approach using radiophosphorus labeling of soils, which allows for the measurement of fluxes of abiotic and biotic soil P processes. This approach is also suitable for strongly weathered and P-depleted soils. Biotic processes are corrected for abiotic processes by comparing live and sterile soils.
Tianpeng Li, Heyong Liu, Ruzhen Wang, Xiao-Tao Lü, Junjie Yang, Yunhai Zhang, Peng He, Zhirui Wang, Xingguo Han, and Yong Jiang
Biogeosciences, 16, 2891–2904, https://doi.org/10.5194/bg-16-2891-2019, https://doi.org/10.5194/bg-16-2891-2019, 2019
Xia Zhao, Yuanhe Yang, Haihua Shen, Xiaoqing Geng, and Jingyun Fang
Biogeosciences, 16, 2857–2871, https://doi.org/10.5194/bg-16-2857-2019, https://doi.org/10.5194/bg-16-2857-2019, 2019
Short summary
Short summary
Surface soils interact strongly with both climate and biota and provide fundamental ecosystem services. However, the quantitative linkages between soil, climate, and biota remain unclear at a global scale. By compiling a large global soil database, we mapped eight major soil properties based on machine learning algorithms and developed a global soil–climate–biome diagram. Our results suggest shifts in soil properties under global climate and land cover change.
Cited articles
Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., and Fernandez, I.: 1998: Nitrogen saturation in temperate forest ecosystems, Hypotheses revisited, Bioscience, 48, 921–934, 1998.
Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M.-L., Magil, A. H., Martin, M. E., Hallett, R. A., and Stoddard, J. L.: Is nitrogen deposition altering the nitrogen status of Northeastern forests?, Bioscience, 53, 375–389, 2003.
Adams, A. B., Harrison, R. B., Sletten, R. S., Strahm, B. D., Turnblom, E. C., and Jensen, C. M.: Nitrogen-fertilization impacts on carbon sequestration and flux in managed coastal Douglas-fir stands of the Pacific Northwest, Forest Ecol. Manag., 220, 313–325, 2005.
Aitkenhead, J. A., and McDowell, W. H.: Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales, Global Biogeochem. Cy., 14, 127–138, 2000.
Báez, S., Fargione, J., Moore, D. I., Collins, S. L., and Gosz, J. R.: Atmospheric nitrogen deposition in the northern Chihuahuan Desert: temporal trends and potential consequences, J. Arid Environ., 68, 640–651, 2007.
Boudot, J. P., Belhadjbrahim, A., Steiman, R., and Seiglemurandi, F.: Biodegradation of synthetic organo-metallic complexes of iron and aluminium with selected metal to carbon ratios, Soil Biol. Biochem., 21, 961–966, 1989.
Bowman, W. D., Cleveland, C. C., Halada, L., Hresko, J., and Baron, J. S.: Negative impact of nitrogen deposition on soil buffering capacity, Nat. Geosci., 1, 767–770, 2008.
Brookshire, E. N. J., Gerber, S., Menge, D. N. L., and Hedin, L. O.: Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation, Ecol. Lett., 15, 9–16, 2012.
Bragazza, L., Freeman, C., Jones, T., Rydin, H., Limpens, J., Fenner, N., Ellis, T., Gerdol, R., Hájek, M., Hájek, T., Iacumin, P., Kutnar, L., Tahvanainen, T., and Toberman, H.: Atmospheric nitrogen deposition promotes carbon loss from peat bogs, P. Natl. Acad. Sci. USA, 103, 19386–19389, 2006.
Cao, H. L., Huang, Z. L., Zhang, L. Y., and Kong, G. H.: Vegetation Map of Dinghushan Nature Reserve, In Tropical and Subtropical Forest Ecosystem, Vo l9 (ed. Dinghushan Forest Ecosystem Research Station), 1–9, China Environmental Science Press, Beijing, 2002 (in Chinese with English abstract).
Carter, M. R. and Gregorich, E. G. (Eds.): Soil Sampling and Methods of Analysis, 2nd Edn., CRC Press, Taylor & Francis, Boca Raton, FL., 1224 pp., ISBN 978-0-8493-3586-0, 2008.
Chapin III, F. S., McFarland, J. W., McGuire, A. D., Euskirchen, E. S., Ruess, R. W., and Kielland, K.: The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences, J. Ecol., 97, 840–850, 2009.
Chantigny, M. H., Angers, D. A., Prévost, D., Simard, R. R., and Chalifour, F.-P.: Dynamics of soluble organic C and C-mineralization in cultivated soils with varying N fertilization, Soil Biol. Biochem., 31, 543–550, 1999.
Clark, C. M. and Tilman, D.: Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands, Nature, 451, 712–715, 2008.
Currie, W. S., Aber, J. D., McDowell, W. H., Boone, R. D., and Magill, A. H.: Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests, Biogeochemistry, 35, 471–505, 1996.
Cusack, D. F., Torn, M. S., McDowell, W. H., and Silver, W.: The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils, Glob. Change Biol., 16, 2555–2572, 2010.
Corre, M. D., Veldkamp, E., Arnold, J., and Wright, S. J.: Impact of elevated N input on soil N cycling and losses in lowland and montane forests in Panama, Ecology, 91, 1715–1729, 2010.
de Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D., van Oijen, M., Evans C., Gundersen, P., Kros, J., Wamelink, G. W. W., Reinds, G. J., and Sutton, M. A.: The impact of nitrogen deposition on carbon sequestration by European forests and heathlands, Forest Ecol. Manag., 258, 1814–1823, 2009.
Evans, C. D., Goodale, C. L., Caporn, S. J. M., Dise, N. B., Emmett, B. A., Fernandez, I. J., Field, C. D., Findlay, S. E. G., Lovett, G. M., Meesenburg, H., Moldan, F., and Sheppard, J.: Does elevated nitrogen deposition or ecosystem recovery from acidification drive an increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen experiments, Biogeochemistry, 91, 13–35, 2008.
Fang, Y. T., Gundersen, P., Mo, J. M., and Zhu, W. X.: Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution, Biogeosciences, 5, 339–352, https://doi.org/10.5194/bg-5-339-2008, 2008.
Fang, Y., Zhu, W., Gundersen, P., Mo, J., Zhou, G., and Yoh, M.: Large loss of dissolved organic nitrogen in nitrogen-saturated forests in subtropical China, Ecosystems, 12, 33–45, 2009.
Findlay, S. E. G.: Increased carbon transport in the Hudson River: unexpected consequence of nitrogen deposition?, Front Ecol. Environ., 3, 133–137, 2005.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C., Green, P., Holland, E., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A., and Vörösmarty, C.: Nitrogen cycles: past, present, and future, Biogeochemistry, 70, 153–226, 2004.
Gilliam, F. S. and Adams, M. B.: Effects of nitrogen on temporal and spatial patterns of nitrate in streams and soil solution of a central hardwood forest, ISRN Ecology, Article ID 138487, https://doi.org/10.5402/2011/138487, 2011
Guggenberger, G.: Acidification effects on dissolved organic matter mobility in spruce forest ecosystems, Environ. Int., 20, 31–41, 1994.
Gundersen, P., Emmett, B. A., Kjønaas, O. J., Koopmans, C. J., and Tietema, A.: Impact of nitrogen deposition on nitrogen cycling in forest: a synthesis of NITREX data, Forest Ecol. Manag., 101, 37–55, 1998.
Hagedorn, F., Blaser, P., and Siegwolf, R.: Elevated atmospheric CO2 and increased N deposition effects on dissolved organic carbon- clues from δ13C signature, Soil Biol. Biochem., 34, 355–366, 2002.
Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L., and Barron, A. R.: The nitrogen paradox in tropical forest ecosystems, Annu. Rev. Ecol. Evol. Syst., 40, 613–635, 2009.
Huang, W. Z. and Schoenau, J. J.: Fluxes of water-soluble nitrogen and phosphorous in the forest floor and surface mineral soil of a boreal aspen stand, Geoderma, 81, 251–264, 1998.
Huang, Z. F. and Fan, Z. G.: The climate of Dinghushan (in Chinese with English abstract), in: Tropical and Subtropical Forest Ecosystem, vol. 1, 11–23, Science Press, Beijing, 1982.
Huang, Z. L., Ding, M. M., Zhang, Z. P., and Yi, W. M.: The hydrological processes and nitrogen dynamics in a monsoon evergreen broad-leafed forest of Dinghushan, Acta Phytoecol. Sin., 18, 194–199, 1994 (in Chinese with English abstract).
Hyvönen, R., Persson, T., Andersson, S., Olsso, B., Ågren, G. I., and Linde S.: Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe, Biogeochemistry, 89, 121–137, 2008.
Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B., and Matzner, E.: Controls on the dynamics of dissolved organic matter in soils: a review, Soil Sci., 165, 277–304, 2000.
Kaiser, K. and Guggenberger, G.: The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils, Org. Geochem, 31, 711–725, 2000.
Kindler, R., Siemens, J., Kaiser, K., Walmsley, D. C., Bernhofer, C., Buchmann, N., Cellier, P., Eugster, W., Gleixner, G., Gru nwald, T., Heim, A., Ibrom, A., Jones, S. K., Jones, M., Klumpp, K., Kutsch, W., Larsen, K. S., Lehuger, S., Loubet, B., Mckenzie, R., Moors, E., Osborne, B., Pilegaard, K., Rebmann, C., Saunders, M., Schmidt, M. W. I., Schrumpf, M., Seyfferth, J., Skiba, U., Soussana, J.-F., Sutton, M. A., Tefs, C., Vowinckel, B., Zeeman, M. J., and Kaupenjohann, M: Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance, Glob. Change Biol., 17, 1167–1185, 2011.
Knorr, M., Frey, S. D., and Curtis, P. S.: Nitrogen additions and litter decomposition: a meta-analysis, Ecology, 86, 3252–3257, 2005.
Lal, R.: Forest soils and carbon sequestration, Forest Ecol. Manag., 220, 242–258, 2005.
LeBauer, D. S. and Treseder, K. K.: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed, Ecology, 89, 371–379, 2008.
Liao, L. Y., Ding, M. M., Zhang, Z. P., Yi, W. M., Guo, G. Z., and Huang, Z. L.: Root biomass and its nitrogen dynamic of some communities in Dinghushan, Acta Phytoecol. Geobot. Sin., 17, 56–60, 1993 (in Chinese with English abstract).
Liu, G. S., Jiang, N. H., and Zhang, L. D.: Soil physical and chemical analysis and description of soil profiles, Beijing, Standards Press of China, 1996.
Liu, L. and Greaver, T. L.: A global perspective on below-ground carbon dynamics under nitrogen enrichment, Ecol. Lett., 13, 819–828, 2010.
Liu, X., Duan, L., Mo, J., Du, E., Shen, J., Lu, X., Zhang, Y., Zhou, X., He, C., and Zhang, F.: Nitrogen deposition and its ecological impact in China: An overview, Environ. Pollut., 159, 2251–2264, 2011.
Lu, X., Mo, J., Gilliam, F. S., Zhou, G., and Fang, Y.: Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest, Glob. Change Biol., 16, 2688–2700, 2010.
Lü, C. and Tian, H.: Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data, J. Geophys. Res., 112, D22S05, https://doi.org/10.1029/2006JD007990, 2007.
Luyssaert, S., Schulze, E.-D., Börner, A., Knohl, A., Hessenmöller, D., Law, B. E., Ciais, P., and Grace, J.: Old-growth forests as global carbon sinks, Nature, 455, 213–215, 2008.
Magill, A. H. and Aber, J. D.: Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition, Soil Biol. Biochem., 32, 603–613, 2000.
Magill, A. H., Aber, J. D., Currie, W. S., Nadelhoffer, K. J., Martin, M. E., McDowell, W. H., Melillo, J. M., and Steudler, P.: Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA, Forest Ecol. Manag., 196, 7–28, 2004.
Martinelli, L. A., Piccolo, M. C., Townsend, A. R., Vitousek, P. M., Cuevas, E., McDowell, W., Robertson, G. P., Santos, O. C., and Treseder, K.: Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests, Biogeochemistry, 46, 45–65, 1999.
Matson, P. A., McDowell, W. H., Townsend, A. R., and Vitousek, P. M.: The globalization of nitrogen deposition: ecosystem consequences in tropical environments, Biogeochemistry, 46, 67–83, 1999.
McDowell, W. H., Currie, W. S., Aber, J. D., and Yano, Y.: Effects of chronic nitrogen amendment on production of dissolved organic carbon and nitrogen in forest soils, Water Air Soil Pollut., 105, 175–182, 1998.
McDowell, W. H., Magill, A. H., Aitkenhead-Peterson, J. A., Aber, J. D., Merriam, J. L., and Kaushal, S. S.: Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution, Forest Ecol. Manag., 196, 29–41, 2004.
Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S., and Matzner, E.: Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests, Biogeochemistry, 52, 173–205, 2001.
Michel, K., Matzner, E., Dignac, M. F., and Kögel-Knabner, I.: Properties of dissolved organic matter related to soil organic matter quality and nitrogen additions in Norway spruce forest floors, Geoderma, 130, 250–264, 2006.
Mo, J. M., Brown, S., Xue, J. H., Fang, Y., and Li, Z.: Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China, Plant Soil, 282, 135–151, 2006.
Mo, J. M., Zhang, W., Zhu, W., Gundersen, P., Fang, F., Li, D., and Wang, H.: Nitrogen addition reduces soil respiration in a mature tropical forest in southern China, Glob. Change Biol., 14, 403–412, 2008.
Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Høgåsen, T., Wilander, A., Skjelkvåle, B. L., Jeffries, D. S., Vuorenmaa, J., Keller, B., Kopácek, J., and Vesely, J.: Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry, Nature, 450, 537–540, 2007.
Moore, T. R., Desouza, W., and Koprivnijak, J. F.: Controls on the sorption of dissolved organic carbon in soils, Soil Sci., 154, 120–129, 1992.
Nadelhoffer, K. J., Emmett, B. A., Gundersen, P., Kjonaas, O. J., Koopmans, C. J., Schleppi, P., Tietema, A., and Wright, R. F.: Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests, Nature, 398, 145–148, 1999.
Neff, J. C. and Asner, G. P.: Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model, Ecosystems, 4, 29–48, 2001.
Ouyang, X., Zhou, G., Huang, Z., Zhou, C., Li, J., Shi, J., and Zhang, D.: Effect of N and P addition on soil organic C potential mineralization in forest soils in South China, J. Environ. Sci., 20, 1082–1089, 2008.
Park, J. H., Kalbitz, K., and Matzner, E.: Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floor, Soil Biol. Biochem., 34, 813–822, 2002.
Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Nuñez, P. V., Vasquez, R. M., Laurance, S. G., Ferreira, L. V., Stern, M., Brown, S., and Grace, J.: Changes in the carbon balance of tropical forests: evidence from long-term plots, Science, 282, 439–442, 1998.
Post, W. M., Emanuel, W. R., Zinke, P. J., and Stangenberger, A. G.: Soil carbon pools and world life zones, Nature, 298, 156–159, 1982.
Pregitzer, K. S., Zak, D. R., Burton, A. J., Ashby, J. A., and MacDonald, N. W.: Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems, Biogeochemistry, 68, 179–197, 2004.
Qualls, R. G. and Bridgham, S. D.: Mineralization rate of 14C-labeled dissolved organic matter from leaf litter in soils of a weathering chronosequence, Soil Biol. Biochem., 37, 905–916, 2005.
Rappe-George, M. O., Gärdenäs, A. I., and Kleja, D. B.: The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil, Biogeosciences, 10, 1365–1377, https://doi.org/10.5194/bg-10-1365-2013, 2013.
Schindler, D. W. and Bayley, S. E.: The biosphere as an increasing sink for atmospheric carbon – estimates from increased nitrogen deposition, Global Biogeochem. Cy., 7, 717–733, 1993.
Schwesig, D., Kalbitz, K., and Matzner, E.: Mineralization of dissolved organic carbon in mineral soil solution of two forest soils, J. Plant Nutr. Soil Sci., 166, 585–593, 2003.
Shen, C. D., Liu, D. S., Peng, S. L., Sun, Y. M., Jiang, M. T., Yi, W. X., Xing, C. P., Gao, Q. Z., Li, Z., and Zhou, G. Y.: 14C measurement of forest soils in Dinghushan Biosphere Reserve, Chinese Sci. Bull., 44, 251–256, 1999.
Sinsabaugh, R. L., Zak, D. R., Gallo, M., Lauber, C., and Amonette, R.: Nitrogen deposition and dissolved organic carbon production in northern temperate forests, Soil Biol. Biochem., 36, 1509–1515, 2004.
Sjöberg, G., Bergkvist, B., Berggren, D., and Nilsson, S. I.: Long-term N addition effects on the C mineralization and DOC production in mor humus under spruce, Soil Biol. Biochem., 35, 1305–1315, 2003.
Sleutel, S., Vandenbruwane, J., De Schrijver, A., Wuyts, K., Moeskops, B., Verheyen, K., and De Neve, S.: Patterns of dissolved organic carbon and nitrogen fluxes in deciduous and coniferous forests under historic high nitrogen deposition, Biogeosciences, 6, 2743–2758, https://doi.org/10.5194/bg-6-2743-2009, 2009.
Smemo, K. A., Zak, D. R., Pregitzer, K. S., and Burton, A. J.: Characteristics of DOC exported from northern hardwood forests receiving chronic experimental NO3- deposition, Ecosystems, 10, 369–379, 2007.
Thomas, R. Q., Canham, C. D., Weathers, K. C. and Goodale, C. L.: Increased tree carbon storage in response to nitrogen deposition in the US, Nat. Geosci., 3, 13–17, 2010.
Townsend, A., Cleveland, C., Houlton, B., Alden, C., and White, J. W.: Multi-element regulation of the tropical forest carbon cycle, Front. Ecol. Environ., 9, 9–17, 2011.
Van den Berg, L. J., Peters, C. J., Ashmore, M. R., and Roelofs, J. G.: Reduced nitrogen has a greater effect than oxidised nitrogen on dry heathland vegetation, Environ. Pollut., 154, 359–369, 2008.
Vitousek, P. M. and Howarth, R. W.: Nitrogen limitation on land and in the sea. How can it occur?, Biogeochemistry, 13, 87–115, 1991.
Vitousek, P. M. and Sanford, R. L.: Nutrient cycling in moist tropical forest, Annu. Rev. Ecol. Syst., 17, 137–167, 1986.
Wen, D. Z., Wei, P., Kong, G. H., and Ye, W. H.: Production and turnover rate of fine roots in two lower subtropical forest sites at Dinghushan, Acta Phytoecol, Sin,, 23, 361–369, 1999 (in Chinese with English abstract).
Wright, S. J., Yavitt J. B., Wurzburger, N., Turner, B. L., Tanner, E. V., Sayer, E. J., Santiago, L. S., Kaspari, M., Hedin, L. O., Harms, K. E., Garcia, M. N., and Corre, M. D.: Potassium, phosphorus or nitrogen limit root allocation, tree growth and litter production in a lowland tropical forest, Ecology, 92, 1616–1625, 2011.
Yano, Y., McDowell, W. H., and Aber, J. D.: Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition, Soil Biol. Biochem., 32, 1743–1751, 2000.
Zak, D. R., Holmes, W. E., Burton, A. J., Pregitzer, K. S., and Talhelm, A. F.: Simulated atmospheric NO3- deposition increases soil organic matter by slowing decomposition, Ecol. Appl., 18, 2016–2027, 2008.
Zhou, G. Y. and Yan, J. H.: The influences of regional atmospheric precipitation characteristics and its element inputs on the existence and development of Dinghushan forest ecosystems, Acta Ecol. Sin., 21, 2002–2012, 2001 (in Chinese with English abstract).
Zhou, G. Y., Liu, S. G., Li, Z. A., Zhang, D. Q., Tang, X. L., Zhou, C. Y., Yan, J. H., and Mo, J. M.: Old-growth forests can accumulate carbon in soils, Science, 314, 1417, https://doi.org/10.1126/science.1130168, 2006.
Altmetrics
Final-revised paper
Preprint