Articles | Volume 10, issue 11
https://doi.org/10.5194/bg-10-7463-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-10-7463-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Foraminiferal survival after long-term in situ experimentally induced anoxia
D. Langlet
Université d'Angers, UMR6112 CNRS LPG-BIAF – Bio-Indicateurs Actuels et Fossiles, 2 Boulevard Lavoisier, 49045 Angers Cedex, France
E. Geslin
Université d'Angers, UMR6112 CNRS LPG-BIAF – Bio-Indicateurs Actuels et Fossiles, 2 Boulevard Lavoisier, 49045 Angers Cedex, France
C. Baal
University of Vienna, Department of Palaeontology, Althanstrasse 14, 1090 Vienna, Austria
E. Metzger
Université d'Angers, UMR6112 CNRS LPG-BIAF – Bio-Indicateurs Actuels et Fossiles, 2 Boulevard Lavoisier, 49045 Angers Cedex, France
F. Lejzerowicz
University of Geneva, Department of Genetics and Evolution, CH 1211 Genève 4, Switzerland
B. Riedel
University of Vienna, Department of Limnology and Oceanography, Althanstrasse 14, 1090 Vienna, Austria
M. Zuschin
University of Vienna, Department of Palaeontology, Althanstrasse 14, 1090 Vienna, Austria
J. Pawlowski
University of Geneva, Department of Genetics and Evolution, CH 1211 Genève 4, Switzerland
M. Stachowitsch
University of Vienna, Department of Limnology and Oceanography, Althanstrasse 14, 1090 Vienna, Austria
F. J. Jorissen
Université d'Angers, UMR6112 CNRS LPG-BIAF – Bio-Indicateurs Actuels et Fossiles, 2 Boulevard Lavoisier, 49045 Angers Cedex, France
Related authors
Dewi Langlet, Florian Mermillod-Blondin, Noémie Deldicq, Arthur Bauville, Gwendoline Duong, Lara Konecny, Mylène Hugoni, Lionel Denis, and Vincent M. P. Bouchet
EGUsphere, https://doi.org/10.5194/egusphere-2023-705, https://doi.org/10.5194/egusphere-2023-705, 2023
Short summary
Short summary
Benthic foraminifera are single cell marine organisms which can move in the sediment column. They were previously reported to horizontally and vertically transport sediment particles, yet the impact of their motion on the dissolved fluxes remains unknown. Using microprofiling we here show that foraminiferal burrow formation increase the oxygen penetration depth in the sediment. Leading to a change in the structure of the prokaryotic community.
Julien Richirt, Bettina Riedel, Aurélia Mouret, Magali Schweizer, Dewi Langlet, Dorina Seitaj, Filip J. R. Meysman, Caroline P. Slomp, and Frans J. Jorissen
Biogeosciences, 17, 1415–1435, https://doi.org/10.5194/bg-17-1415-2020, https://doi.org/10.5194/bg-17-1415-2020, 2020
Short summary
Short summary
The paper presents the response of benthic foraminiferal communities to seasonal absence of oxygen coupled with the presence of hydrogen sulfide, considered very harmful for several living organisms.
Our results suggest that the foraminiferal community mainly responds as a function of the duration of the adverse conditions.
This knowledge is especially useful to better understand the ecology of benthic foraminifera but also in the context of palaeoceanographic interpretations.
E. Metzger, D. Langlet, E. Viollier, N. Koron, B. Riedel, M. Stachowitsch, J. Faganeli, M. Tharaud, E. Geslin, and F. Jorissen
Biogeosciences, 11, 2211–2224, https://doi.org/10.5194/bg-11-2211-2014, https://doi.org/10.5194/bg-11-2211-2014, 2014
D. Langlet, C. Baal, E. Geslin, E. Metzger, M. Zuschin, B. Riedel, N. Risgaard-Petersen, M. Stachowitsch, and F. J. Jorissen
Biogeosciences, 11, 1775–1797, https://doi.org/10.5194/bg-11-1775-2014, https://doi.org/10.5194/bg-11-1775-2014, 2014
Maxime Daviray, Emmanuelle Geslin, Nils Risgaard-Petersen, Vincent V. Scholz, Marie Fouet, and Edouard Metzger
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-169, https://doi.org/10.5194/bg-2023-169, 2023
Preprint under review for BG
Short summary
Short summary
Coastal marine sediments are subject to major acidification processes because of climate change and human activities, but these processes can also result from biotic activity. We studied the cable bacteria activity effect on benthic calcareous foraminifera in intertidal mudflats. The strong pH decrease in sediments caused by these bacteria leads to the calcareous test dissolution of living and dead foraminifera, threatening the test preservation and their robustness as bioindicators or proxies.
Dewi Langlet, Florian Mermillod-Blondin, Noémie Deldicq, Arthur Bauville, Gwendoline Duong, Lara Konecny, Mylène Hugoni, Lionel Denis, and Vincent M. P. Bouchet
EGUsphere, https://doi.org/10.5194/egusphere-2023-705, https://doi.org/10.5194/egusphere-2023-705, 2023
Short summary
Short summary
Benthic foraminifera are single cell marine organisms which can move in the sediment column. They were previously reported to horizontally and vertically transport sediment particles, yet the impact of their motion on the dissolved fluxes remains unknown. Using microprofiling we here show that foraminiferal burrow formation increase the oxygen penetration depth in the sediment. Leading to a change in the structure of the prokaryotic community.
Christiane Schmidt, Emmanuelle Geslin, Joan M. Bernhard, Charlotte LeKieffre, Mette Marianne Svenning, Helene Roberge, Magali Schweizer, and Giuliana Panieri
Biogeosciences, 19, 3897–3909, https://doi.org/10.5194/bg-19-3897-2022, https://doi.org/10.5194/bg-19-3897-2022, 2022
Short summary
Short summary
This study is the first to show non-selective deposit feeding in the foraminifera Nonionella labradorica and the possible uptake of methanotrophic bacteria. We carried out a feeding experiment with a marine methanotroph to examine the ultrastructure of the cell and degradation vacuoles using transmission electron microscopy (TEM). The results revealed three putative methanotrophs at the outside of the cell/test, which could be taken up via non-targeted grazing in seeps or our experiment.
Adam Tomašových, Michaela Berensmeier, Ivo Gallmetzer, Alexandra Haselmair, and Martin Zuschin
Biogeosciences, 18, 5929–5965, https://doi.org/10.5194/bg-18-5929-2021, https://doi.org/10.5194/bg-18-5929-2021, 2021
Short summary
Short summary
The timescale of mixing and irrigation of sediments by burrowers that affect biogeochemical cycles is difficult to estimate in the stratigraphic record. We show that pyrite linings in molluscan shells preserved below the mixed layer represent a signature of limited bioirrigation. We document an increase in the frequency of pyrite-lined shells in cores collected in the northern Adriatic Sea, suggesting that bioirrigation rates significantly declined during the late 20th century.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
Short summary
Marine microorganisms such as foraminifera are able to live temporarily without oxygen in sediments. In a Swedish fjord subjected to seasonal oxygen scarcity, a change in fauna linked to the decrease in oxygen and the increase in an invasive species was shown. The invasive species respire nitrate until 100 % of the nitrate porewater in the sediment and could be a major contributor to nitrogen balance in oxic coastal ecosystems. But prolonged hypoxia creates unfavorable conditions to survive.
Julien Richirt, Bettina Riedel, Aurélia Mouret, Magali Schweizer, Dewi Langlet, Dorina Seitaj, Filip J. R. Meysman, Caroline P. Slomp, and Frans J. Jorissen
Biogeosciences, 17, 1415–1435, https://doi.org/10.5194/bg-17-1415-2020, https://doi.org/10.5194/bg-17-1415-2020, 2020
Short summary
Short summary
The paper presents the response of benthic foraminiferal communities to seasonal absence of oxygen coupled with the presence of hydrogen sulfide, considered very harmful for several living organisms.
Our results suggest that the foraminiferal community mainly responds as a function of the duration of the adverse conditions.
This knowledge is especially useful to better understand the ecology of benthic foraminifera but also in the context of palaeoceanographic interpretations.
Shauna Ní Fhlaithearta, Christophe Fontanier, Frans Jorissen, Aurélia Mouret, Adriana Dueñas-Bohórquez, Pierre Anschutz, Mattias B. Fricker, Detlef Günther, Gert J. de Lange, and Gert-Jan Reichart
Biogeosciences, 15, 6315–6328, https://doi.org/10.5194/bg-15-6315-2018, https://doi.org/10.5194/bg-15-6315-2018, 2018
Short summary
Short summary
This study looks at how foraminifera interact with their geochemical environment in the seabed. We focus on the incorporation of the trace metal manganese (Mn), with the aim of developing a tool to reconstruct past pore water profiles. Manganese concentrations in foraminifera are investigated relative to their ecological preferences and geochemical environment. This study demonstrates that Mn in foraminiferal tests is a promising tool to reconstruct oxygen conditions in the seabed.
Jassin Petersen, Christine Barras, Antoine Bézos, Carole La, Lennart J. de Nooijer, Filip J. R. Meysman, Aurélia Mouret, Caroline P. Slomp, and Frans J. Jorissen
Biogeosciences, 15, 331–348, https://doi.org/10.5194/bg-15-331-2018, https://doi.org/10.5194/bg-15-331-2018, 2018
Short summary
Short summary
In Lake Grevelingen, a coastal ecosystem, foraminifera experience important temporal variations in oxygen concentration and in pore water manganese. The high resolution of LA-ICP-MS allows us to analyse the chambers of foraminiferal shells separately and to obtain signals from a series of calcification events. We estimate the variability in Mn/Ca observed within single shells due to biomineralization and show that a substantial part of the signal is related to environmental variability.
Marc Theodor, Gerhard Schmiedl, Frans Jorissen, and Andreas Mackensen
Biogeosciences, 13, 6385–6404, https://doi.org/10.5194/bg-13-6385-2016, https://doi.org/10.5194/bg-13-6385-2016, 2016
Jelena Vidović, Rafał Nawrot, Ivo Gallmetzer, Alexandra Haselmair, Adam Tomašových, Michael Stachowitsch, Vlasta Ćosović, and Martin Zuschin
Biogeosciences, 13, 5965–5981, https://doi.org/10.5194/bg-13-5965-2016, https://doi.org/10.5194/bg-13-5965-2016, 2016
Short summary
Short summary
We studied the ecological history of the Gulf of Trieste. Before the 20th century, the only activity here was ore mining, releasing high amounts of mercury into its northern part, Panzano Bay. Mercury did not cause changes to microorganisms, as it is not bioavailable. In the 20th century, agriculture caused nutrient enrichment in the bay and increased diversity of microorganisms. Industrial activities increased the concentrations of pollutants, causing only minor changes to microorganisms.
Joanna Pawłowska, Marek Zajączkowski, Magdalena Łącka, Franck Lejzerowicz, Philippe Esling, and Jan Pawlowski
Clim. Past, 12, 1459–1472, https://doi.org/10.5194/cp-12-1459-2016, https://doi.org/10.5194/cp-12-1459-2016, 2016
Short summary
Short summary
The presented study focuses on the last millennium of the palaeoclimatic history of Svalbard region. The investigation was based on classical palaeoceanographic proxies, strengthened by the analysis of ancient foraminiferal DNA in down-core sediment samples. This study is the first attempt to implement the aDNA record in the palaeoenvironmental reconstruction. The aDNA data revealed even small environmetal changes that were not evidenced in the sedimentological and micropalaeontological record.
Thierry Jauffrais, Bruno Jesus, Edouard Metzger, Jean-Luc Mouget, Frans Jorissen, and Emmanuelle Geslin
Biogeosciences, 13, 2715–2726, https://doi.org/10.5194/bg-13-2715-2016, https://doi.org/10.5194/bg-13-2715-2016, 2016
Short summary
Short summary
Some benthic foraminifera can incorporate chloroplasts from microalgae. We investigated chloroplast functionality of two benthic foraminifera (Haynesina germanica & Ammonia tepida) exposed to different light levels. Only H. germanica was capable of using the kleptoplasts, showing net oxygen production. Chloroplast functionality time was longer in darkness (2 weeks) than at high light (1 week). Kleptoplasts are unlikely to be completely functional, thus requiring continuous chloroplast resupply.
Mathias Harzhauser, Ana Djuricic, Oleg Mandic, Thomas A. Neubauer, Martin Zuschin, and Norbert Pfeifer
Biogeosciences, 13, 1223–1235, https://doi.org/10.5194/bg-13-1223-2016, https://doi.org/10.5194/bg-13-1223-2016, 2016
Short summary
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
A. Thibault de Chanvalon, E. Metzger, A. Mouret, F. Cesbron, J. Knoery, E. Rozuel, P. Launeau, M. P. Nardelli, F. J. Jorissen, and E. Geslin
Biogeosciences, 12, 6219–6234, https://doi.org/10.5194/bg-12-6219-2015, https://doi.org/10.5194/bg-12-6219-2015, 2015
Short summary
Short summary
We present a new rapid and accurate protocol to simultaneously sample, in two dimensions, benthic living foraminifera at the centimetre scale and dissolved iron and phosphorus at the submillimetre scale. It was applied to a highly bioturbated site in a mudflat of the Loire estuary and showed that, in the suboxic zone, foraminifera are less affected by active burrows (i.e. reoxygenated) than by iron reactive hotspots. This unexpected result calls for a generalization of this new protocol.
C. Caulle, M. Mojtahid, A. J. Gooday, F. J. Jorissen, and H. Kitazato
Biogeosciences, 12, 5005–5019, https://doi.org/10.5194/bg-12-5005-2015, https://doi.org/10.5194/bg-12-5005-2015, 2015
M. P. Nardelli, C. Barras, E. Metzger, A. Mouret, H. L. Filipsson, F. Jorissen, and E. Geslin
Biogeosciences, 11, 4029–4038, https://doi.org/10.5194/bg-11-4029-2014, https://doi.org/10.5194/bg-11-4029-2014, 2014
E. Metzger, D. Langlet, E. Viollier, N. Koron, B. Riedel, M. Stachowitsch, J. Faganeli, M. Tharaud, E. Geslin, and F. Jorissen
Biogeosciences, 11, 2211–2224, https://doi.org/10.5194/bg-11-2211-2014, https://doi.org/10.5194/bg-11-2211-2014, 2014
D. Langlet, C. Baal, E. Geslin, E. Metzger, M. Zuschin, B. Riedel, N. Risgaard-Petersen, M. Stachowitsch, and F. J. Jorissen
Biogeosciences, 11, 1775–1797, https://doi.org/10.5194/bg-11-1775-2014, https://doi.org/10.5194/bg-11-1775-2014, 2014
B. Riedel, T. Pados, K. Pretterebner, L. Schiemer, A. Steckbauer, A. Haselmair, M. Zuschin, and M. Stachowitsch
Biogeosciences, 11, 1491–1518, https://doi.org/10.5194/bg-11-1491-2014, https://doi.org/10.5194/bg-11-1491-2014, 2014
C. Caulle, K. A. Koho, M. Mojtahid, G. J. Reichart, and F. J. Jorissen
Biogeosciences, 11, 1155–1175, https://doi.org/10.5194/bg-11-1155-2014, https://doi.org/10.5194/bg-11-1155-2014, 2014
M. Grego, B. Riedel, M. Stachowitsch, and M. De Troch
Biogeosciences, 11, 281–292, https://doi.org/10.5194/bg-11-281-2014, https://doi.org/10.5194/bg-11-281-2014, 2014
M. Blasnig, B. Riedel, L. Schiemer, M. Zuschin, and M. Stachowitsch
Biogeosciences, 10, 7647–7659, https://doi.org/10.5194/bg-10-7647-2013, https://doi.org/10.5194/bg-10-7647-2013, 2013
N. Koron, N. Ogrinc, E. Metzger, B. Riedel, and J. Faganeli
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-11729-2013, https://doi.org/10.5194/bgd-10-11729-2013, 2013
Revised manuscript not accepted
M. Grego, M. Stachowitsch, M. De Troch, and B. Riedel
Biogeosciences, 10, 4565–4575, https://doi.org/10.5194/bg-10-4565-2013, https://doi.org/10.5194/bg-10-4565-2013, 2013
M. De Troch, M. Roelofs, B. Riedel, and M. Grego
Biogeosciences, 10, 4259–4272, https://doi.org/10.5194/bg-10-4259-2013, https://doi.org/10.5194/bg-10-4259-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Marine
Spawner weight and ocean temperature drive Allee effect dynamics in Atlantic cod, Gadus morhua: inherent and emergent density regulation
Bacterioplankton dark CO2 fixation in oligotrophic waters
The bottom mixed layer depth as an indicator of subsurface Chlorophyll a distribution
Ideas and perspectives: The fluctuating nature of oxygen shapes the ecology of aquatic habitats and their biogeochemical cycles – the aquatic oxyscape
Impact of deoxygenation and warming on global marine species in the 21st century
Ecological divergence of a mesocosm in an eastern boundary upwelling system assessed with multi-marker environmental DNA metabarcoding
Unique benthic foraminiferal communities (stained) in diverse environments of sub-Antarctic fjords, South Georgia
Upwelled plankton community modulates surface bloom succession and nutrient availability in a natural plankton assemblage
First phytoplankton community assessment of the Kong Håkon VII Hav, Southern Ocean, during austral autumn
Early life stages of a Mediterranean coral are vulnerable to ocean warming and acidification
Mediterranean seagrasses as carbon sinks: methodological and regional differences
Contrasting vertical distributions of recent planktic foraminifera off Indonesia during the southeast monsoon: implications for paleoceanographic reconstructions
The onset of the spring phytoplankton bloom in the coastal North Sea supports the Disturbance Recovery Hypothesis
Species richness and functional attributes of fish assemblages across a large-scale salinity gradient in shallow coastal areas
Modeling the growth and sporulation dynamics of the macroalga Ulva in mixed-age populations in cultivation and the formation of green tides
Spatial changes in community composition and food web structure of mesozooplankton across the Adriatic basin (Mediterranean Sea)
Predicting mangrove forest dynamics across a soil salinity gradient using an individual-based vegetation model linked with plant hydraulics
Will daytime community calcification reflect reef accretion on future, degraded coral reefs?
Modeling polar marine ecosystem functions guided by bacterial physiological and taxonomic traits
Quantifying functional consequences of habitat degradation on a Caribbean coral reef
Enhanced chlorophyll-a concentration in the wake of Sable Island, eastern Canada, revealed by two decades of satellite observations: a response to grey seal population dynamics?
Population dynamics and reproduction strategies of planktonic foraminifera in the open ocean
The Bouraké semi-enclosed lagoon (New Caledonia) – a natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions
Atypical, high-diversity assemblages of foraminifera in a mangrove estuary in northern Brazil
Permanent ectoplasmic structures in deep-sea Cibicides and Cibicidoides taxa – long-term observations at in situ pressure
Ideas and perspectives: Ushering the Indian Ocean into the UN Decade of Ocean Science for Sustainable Development (UNDOSSD) through marine ecosystem research and operational services – an early career's take
Persistent effects of sand extraction on habitats and associated benthic communities in the German Bight
Spatial patterns of ectoenzymatic kinetics in relation to biogeochemical properties in the Mediterranean Sea and the concentration of the fluorogenic substrate used
A 2-decade (1988–2009) record of diatom fluxes in the Mauritanian coastal upwelling: impact of low-frequency forcing and a two-step shift in the species composition
Review and syntheses: Impacts of turbidity flows on deep-sea benthic communities
Ideas and perspectives: When ocean acidification experiments are not the same, repeatability is not tested
The effect of the salinity, light regime and food source on carbon and nitrogen uptake in a benthic foraminifer
Changes in population depth distribution and oxygen stratification are involved in the current low condition of the eastern Baltic Sea cod (Gadus morhua)
Effects of spatial variability on the exposure of fish to hypoxia: a modeling analysis for the Gulf of Mexico
Plant genotype determines biomass response to flooding frequency in tidal wetlands
Factors controlling the competition between Phaeocystis and diatoms in the Southern Ocean and implications for carbon export fluxes
Characterization of particle-associated and free-living bacterial and archaeal communities along the water columns of the South China Sea
Adult life strategy affects distribution patterns in abyssal isopods – implications for conservation in Pacific nodule areas
Diversity and distribution of nitrogen fixation genes in the oxygen minimum zones of the world oceans
Structure and function of epipelagic mesozooplankton and their response to dust deposition events during the spring PEACETIME cruise in the Mediterranean Sea
Distribution of planktonic foraminifera in the subtropical South Atlantic: depth hierarchy of controlling factors
Technical note: Estimating light-use efficiency of benthic habitats using underwater O2 eddy covariance
Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates
Dynamics of environmental conditions during the decline of a Cymodocea nodosa meadow
Megafauna community assessment of polymetallic-nodule fields with cameras: platform and methodology comparison
A meta-analysis on environmental drivers of marine phytoplankton C : N : P
Spatial and temporal variability in the response of phytoplankton and prokaryotes to B-vitamin amendments in an upwelling system
Biogeography and community structure of abyssal scavenging Amphipoda (Crustacea) in the Pacific Ocean
Are seamounts refuge areas for fauna from polymetallic nodule fields?
Ocean deoxygenation and copepods: coping with oxygen minimum zone variability
Anna-Marie Winter, Nadezda Vasilyeva, and Artem Vladimirov
Biogeosciences, 20, 3683–3716, https://doi.org/10.5194/bg-20-3683-2023, https://doi.org/10.5194/bg-20-3683-2023, 2023
Short summary
Short summary
There is an increasing number of fish in poor state, and many do not recover, even when fishing pressure is ceased. An Allee effect can hinder population recovery because it suppresses the fish's productivity at low abundance. With a model fitted to 17 Atlantic cod stocks, we find that ocean warming and fishing can cause an Allee effect. If present, the Allee effect hinders fish recovery. This shows that Allee effects are dynamic, not uncommon, and calls for precautionary management measures.
Afrah Alothman, Daffne López-Sandoval, Carlos M. Duarte, and Susana Agustí
Biogeosciences, 20, 3613–3624, https://doi.org/10.5194/bg-20-3613-2023, https://doi.org/10.5194/bg-20-3613-2023, 2023
Short summary
Short summary
This study investigates bacterial dissolved inorganic carbon (DIC) fixation in the Red Sea, an oligotrophic ecosystem, using stable-isotope labeling and spectroscopy. The research reveals that bacterial DIC fixation significantly contributes to total DIC fixation, in the surface and deep water. The study demonstrates that as primary production decreases, the role of bacterial DIC fixation increases, emphasizing its importance with photosynthesis in estimating oceanic carbon dioxide production.
Arianna Zampollo, Thomas Cornulier, Rory O'Hara Murray, Jacqueline Fiona Tweddle, James Dunning, and Beth E. Scott
Biogeosciences, 20, 3593–3611, https://doi.org/10.5194/bg-20-3593-2023, https://doi.org/10.5194/bg-20-3593-2023, 2023
Short summary
Short summary
This paper highlights the use of the bottom mixed layer depth (BMLD: depth between the end of the pycnocline and the mixed layer below) to investigate subsurface Chlorophyll a (a proxy of primary production) in temperate stratified shelf waters. The strict correlation between subsurface Chl a and BMLD becomes relevant in shelf-productive waters where multiple stressors (e.g. offshore infrastructure) will change the stratification--mixing balance and related carbon fluxes.
Marco Fusi, Sylvain Rigaud, Giovanna Guadagnin, Alberto Barausse, Ramona Marasco, Daniele Daffonchio, Julie Régis, Louison Huchet, Capucine Camin, Laura Pettit, Cristina Vina-Herbon, and Folco Giomi
Biogeosciences, 20, 3509–3521, https://doi.org/10.5194/bg-20-3509-2023, https://doi.org/10.5194/bg-20-3509-2023, 2023
Short summary
Short summary
Oxygen availability in marine water and freshwater is very variable at daily and seasonal scales. The dynamic nature of oxygen fluctuations has important consequences for animal and microbe physiology and ecology, yet it is not fully understood. In this paper, we showed the heterogeneous nature of the aquatic oxygen landscape, which we defined here as the
oxyscape, and we addressed the importance of considering the oxyscape in the modelling and managing of aquatic ecosystems.
Anne L. Morée, Tayler M. Clarke, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 20, 2425–2454, https://doi.org/10.5194/bg-20-2425-2023, https://doi.org/10.5194/bg-20-2425-2023, 2023
Short summary
Short summary
Ocean temperature and oxygen shape marine habitats together with species’ characteristics. We calculated the impacts of projected 21st-century warming and oxygen loss on the contemporary habitat volume of 47 marine species and described the drivers of these impacts. Most species lose less than 5 % of their habitat at 2 °C of global warming, but some species incur losses 2–3 times greater than that. We also calculate which species may be most vulnerable to climate change and why this is the case.
Markus A. Min, David M. Needham, Sebastian Sudek, Nathan Kobun Truelove, Kathleen J. Pitz, Gabriela M. Chavez, Camille Poirier, Bente Gardeler, Elisabeth von der Esch, Andrea Ludwig, Ulf Riebesell, Alexandra Z. Worden, and Francisco P. Chavez
Biogeosciences, 20, 1277–1298, https://doi.org/10.5194/bg-20-1277-2023, https://doi.org/10.5194/bg-20-1277-2023, 2023
Short summary
Short summary
Emerging molecular methods provide new ways of understanding how marine communities respond to changes in ocean conditions. Here, environmental DNA was used to track the temporal evolution of biological communities in the Peruvian coastal upwelling system and in an adjacent enclosure where upwelling was simulated. We found that the two communities quickly diverged, with the open ocean being one found during upwelling and the enclosure evolving to one found under stratified conditions.
Wojciech Majewski, Witold Szczuciński, and Andrew J. Gooday
Biogeosciences, 20, 523–544, https://doi.org/10.5194/bg-20-523-2023, https://doi.org/10.5194/bg-20-523-2023, 2023
Short summary
Short summary
We studied foraminifera living in the fjords of South Georgia, a sub-Antarctic island sensitive to climate change. As conditions in water and on the seafloor vary, different associations of these microorganisms dominate far inside, in the middle, and near fjord openings. Assemblages in inner and middle parts of fjords are specific to South Georgia, but they may become widespread with anticipated warming. These results are important for interpretating fossil records and monitoring future change.
Allanah Joy Paul, Lennart Thomas Bach, Javier Arístegui, Elisabeth von der Esch, Nauzet Hernández-Hernández, Jonna Piiparinen, Laura Ramajo, Kristian Spilling, and Ulf Riebesell
Biogeosciences, 19, 5911–5926, https://doi.org/10.5194/bg-19-5911-2022, https://doi.org/10.5194/bg-19-5911-2022, 2022
Short summary
Short summary
We investigated how different deep water chemistry and biology modulate the response of surface phytoplankton communities to upwelling in the Peruvian coastal zone. Our results show that the most influential drivers were the ratio of inorganic nutrients (N : P) and the microbial community present in upwelling source water. These led to unexpected and variable development in the phytoplankton assemblage that could not be predicted by the amount of inorganic nutrients alone.
Hanna M. Kauko, Philipp Assmy, Ilka Peeken, Magdalena Różańska-Pluta, Józef M. Wiktor, Gunnar Bratbak, Asmita Singh, Thomas J. Ryan-Keogh, and Sebastien Moreau
Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, https://doi.org/10.5194/bg-19-5449-2022, 2022
Short summary
Short summary
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
Chloe Carbonne, Steeve Comeau, Phoebe T. W. Chan, Keyla Plichon, Jean-Pierre Gattuso, and Núria Teixidó
Biogeosciences, 19, 4767–4777, https://doi.org/10.5194/bg-19-4767-2022, https://doi.org/10.5194/bg-19-4767-2022, 2022
Short summary
Short summary
For the first time, our study highlights the synergistic effects of a 9-month warming and acidification combined stress on the early life stages of a Mediterranean azooxanthellate coral, Astroides calycularis. Our results predict a decrease in dispersion, settlement, post-settlement linear extention, budding and survival under future global change and that larvae and recruits of A. calycularis are stages of interest for this Mediterranean coral resistance, resilience and conservation.
Iris E. Hendriks, Anna Escolano-Moltó, Susana Flecha, Raquel Vaquer-Sunyer, Marlene Wesselmann, and Núria Marbà
Biogeosciences, 19, 4619–4637, https://doi.org/10.5194/bg-19-4619-2022, https://doi.org/10.5194/bg-19-4619-2022, 2022
Short summary
Short summary
Seagrasses are marine plants with the capacity to act as carbon sinks due to their high primary productivity, using carbon for growth. This capacity can play a key role in climate change mitigation. We compiled and published data showing that two Mediterranean seagrass species have different metabolic rates, while the study method influences the rates of the measurements. Most communities act as carbon sinks, while the western basin might be more productive than the eastern Mediterranean.
Raúl Tapia, Sze Ling Ho, Hui-Yu Wang, Jeroen Groeneveld, and Mahyar Mohtadi
Biogeosciences, 19, 3185–3208, https://doi.org/10.5194/bg-19-3185-2022, https://doi.org/10.5194/bg-19-3185-2022, 2022
Short summary
Short summary
We report census counts of planktic foraminifera in depth-stratified plankton net samples off Indonesia. Our results show that the vertical distribution of foraminifera species routinely used in paleoceanographic reconstructions varies in hydrographically distinct regions, likely in response to food availability. Consequently, the thermal gradient based on mixed layer and thermocline dwellers also differs for these regions, suggesting potential implications for paleoceanographic reconstructions.
Ricardo González-Gil, Neil S. Banas, Eileen Bresnan, and Michael R. Heath
Biogeosciences, 19, 2417–2426, https://doi.org/10.5194/bg-19-2417-2022, https://doi.org/10.5194/bg-19-2417-2022, 2022
Short summary
Short summary
In oceanic waters, the accumulation of phytoplankton biomass in winter, when light still limits growth, is attributed to a decrease in grazing as the mixed layer deepens. However, in coastal areas, it is not clear whether winter biomass can accumulate without this deepening. Using 21 years of weekly data, we found that in the Scottish coastal North Sea, the seasonal increase in light availability triggers the accumulation of phytoplankton biomass in winter, when light limitation is strongest.
Birgit Koehler, Mårten Erlandsson, Martin Karlsson, and Lena Bergström
Biogeosciences, 19, 2295–2312, https://doi.org/10.5194/bg-19-2295-2022, https://doi.org/10.5194/bg-19-2295-2022, 2022
Short summary
Short summary
Understanding species richness patterns remains a challenge for biodiversity management. We estimated fish species richness over a coastal salinity gradient (3–32) with a method that allowed comparing data from various sources. Species richness was 3-fold higher at high vs. low salinity, and salinity influenced species’ habitat preference, mobility and feeding type. If climate change causes upper-layer freshening of the Baltic Sea, further shifts along the identified patterns may be expected.
Uri Obolski, Thomas Wichard, Alvaro Israel, Alexander Golberg, and Alexander Liberzon
Biogeosciences, 19, 2263–2271, https://doi.org/10.5194/bg-19-2263-2022, https://doi.org/10.5194/bg-19-2263-2022, 2022
Short summary
Short summary
The algal genus Ulva plays a major role in coastal ecosystems worldwide and is a promising prospect as an seagriculture crop. A substantial hindrance to cultivating Ulva arises from sudden sporulation, leading to biomass loss. This process is not yet well understood. Here, we characterize the dynamics of Ulva growth, considering the potential impact of sporulation inhibitors, using a mathematical model. Our findings are an essential step towards understanding the dynamics of Ulva growth.
Emanuela Fanelli, Samuele Menicucci, Sara Malavolti, Andrea De Felice, and Iole Leonori
Biogeosciences, 19, 1833–1851, https://doi.org/10.5194/bg-19-1833-2022, https://doi.org/10.5194/bg-19-1833-2022, 2022
Short summary
Short summary
Zooplankton play a key role in marine ecosystems, forming the base of the marine food web and a link between primary producers and higher-order consumers, such as fish. This aspect is crucial in the Adriatic basin, one of the most productive and overexploited areas of the Mediterranean Sea. A better understanding of community and food web structure and their response to water mass changes is essential under a global warming scenario, as zooplankton are sensitive to climate change.
Masaya Yoshikai, Takashi Nakamura, Rempei Suwa, Sahadev Sharma, Rene Rollon, Jun Yasuoka, Ryohei Egawa, and Kazuo Nadaoka
Biogeosciences, 19, 1813–1832, https://doi.org/10.5194/bg-19-1813-2022, https://doi.org/10.5194/bg-19-1813-2022, 2022
Short summary
Short summary
This study presents a new individual-based vegetation model to investigate salinity control on mangrove productivity. The model incorporates plant hydraulics and tree competition and predicts unique and complex patterns of mangrove forest structures that vary across soil salinity gradients. The presented model does not hold an empirical expression of salinity influence on productivity and thus may provide a better understanding of mangrove forest dynamics in future climate change.
Coulson A. Lantz, William Leggat, Jessica L. Bergman, Alexander Fordyce, Charlotte Page, Thomas Mesaglio, and Tracy D. Ainsworth
Biogeosciences, 19, 891–906, https://doi.org/10.5194/bg-19-891-2022, https://doi.org/10.5194/bg-19-891-2022, 2022
Short summary
Short summary
Coral bleaching events continue to drive the degradation of coral reefs worldwide. In this study we measured rates of daytime coral reef community calcification and photosynthesis during a reef-wide bleaching event. Despite a measured decline in coral health across several taxa, there was no change in overall daytime community calcification and photosynthesis. These findings highlight potential limitations of these community-level metrics to reflect actual changes in coral health.
Hyewon Heather Kim, Jeff S. Bowman, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Biogeosciences, 19, 117–136, https://doi.org/10.5194/bg-19-117-2022, https://doi.org/10.5194/bg-19-117-2022, 2022
Short summary
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Emmanuel Devred, Andrea Hilborn, and Cornelia Elizabeth den Heyer
Biogeosciences, 18, 6115–6132, https://doi.org/10.5194/bg-18-6115-2021, https://doi.org/10.5194/bg-18-6115-2021, 2021
Short summary
Short summary
A theoretical model of grey seal seasonal abundance on Sable Island (SI) coupled with chlorophyll-a concentration [chl-a] measured by satellite revealed the impact of seal nitrogen fertilization on the surrounding waters of SI, Canada. The increase in seals from about 100 000 in 2003 to about 360 000 in 2018 during the breeding season is consistent with an increase in [chl-a] leeward of SI. The increase in seal abundance explains 8 % of the [chl-a] increase.
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Federica Maggioni, Mireille Pujo-Pay, Jérome Aucan, Carlo Cerrano, Barbara Calcinai, Claude Payri, Francesca Benzoni, Yves Letourneur, and Riccardo Rodolfo-Metalpa
Biogeosciences, 18, 5117–5140, https://doi.org/10.5194/bg-18-5117-2021, https://doi.org/10.5194/bg-18-5117-2021, 2021
Short summary
Short summary
Based on current experimental evidence, climate change will affect up to 90 % of coral reefs worldwide. The originality of this study arises from our recent discovery of an exceptional study site where environmental conditions (temperature, pH, and oxygen) are even worse than those forecasted for the future.
While these conditions are generally recognized as unfavorable for marine life, we found a rich and abundant coral reef thriving under such extreme environmental conditions.
Nisan Sariaslan and Martin R. Langer
Biogeosciences, 18, 4073–4090, https://doi.org/10.5194/bg-18-4073-2021, https://doi.org/10.5194/bg-18-4073-2021, 2021
Short summary
Short summary
Analyses of foraminiferal assemblages from the Mamanguape mangrove estuary (northern Brazil) revealed highly diverse, species-rich, and structurally complex biotas. The atypical fauna resembles shallow-water offshore assemblages and are interpreted to be the result of highly saline ocean waters penetrating deep into the estuary. The findings contrast with previous studies, have implications for the fossil record, and provide novel perspectives for reconstructing mangrove environments.
Jutta E. Wollenburg, Jelle Bijma, Charlotte Cremer, Ulf Bickmeyer, and Zora Mila Colomba Zittier
Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, https://doi.org/10.5194/bg-18-3903-2021, 2021
Short summary
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
Kumar Nimit
Biogeosciences, 18, 3631–3635, https://doi.org/10.5194/bg-18-3631-2021, https://doi.org/10.5194/bg-18-3631-2021, 2021
Short summary
Short summary
The Indian Ocean Rim hosts many of the underdeveloped and emerging economies that depend on ocean resources for the livelihood of millions. Operational ocean information services cater to the requirements of resource managers and end-users to efficiently harness resources, mitigate threats and ensure safety. This paper outlines existing tools and explores the ongoing research that has the potential to convert the findings into operational services in the near- to midterm.
Finn Mielck, Rune Michaelis, H. Christian Hass, Sarah Hertel, Caroline Ganal, and Werner Armonies
Biogeosciences, 18, 3565–3577, https://doi.org/10.5194/bg-18-3565-2021, https://doi.org/10.5194/bg-18-3565-2021, 2021
Short summary
Short summary
Marine sand mining is becoming more and more important to nourish fragile coastlines that face global change. We investigated the largest sand extraction site in the German Bight. The study reveals that after more than 35 years of mining, the excavation pits are still detectable on the seafloor while the sediment composition has largely changed. The organic communities living in and on the seafloor were strongly decimated, and no recovery is observable towards previous conditions.
France Van Wambeke, Elvira Pulido, Philippe Catala, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Barbara Marie, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences, 18, 2301–2323, https://doi.org/10.5194/bg-18-2301-2021, https://doi.org/10.5194/bg-18-2301-2021, 2021
Short summary
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
Oscar E. Romero, Simon Ramondenc, and Gerhard Fischer
Biogeosciences, 18, 1873–1891, https://doi.org/10.5194/bg-18-1873-2021, https://doi.org/10.5194/bg-18-1873-2021, 2021
Short summary
Short summary
Upwelling intensity along NW Africa varies on the interannual to decadal timescale. Understanding its changes is key for the prediction of future changes of CO2 sequestration in the northeastern Atlantic. Based on a multiyear (1988–2009) sediment trap experiment at the site CBmeso, fluxes and the species composition of the diatom assemblage are presented. Our data help in establishing the scientific basis for forecasting and modeling future states of this ecosystem and its decadal changes.
Katharine T. Bigham, Ashley A. Rowden, Daniel Leduc, and David A. Bowden
Biogeosciences, 18, 1893–1908, https://doi.org/10.5194/bg-18-1893-2021, https://doi.org/10.5194/bg-18-1893-2021, 2021
Short summary
Short summary
Turbidity flows – underwater avalanches – are large-scale physical disturbances believed to have profound impacts on productivity and diversity of benthic communities in the deep sea. We reviewed published studies and found that current evidence for changes in productivity is ambiguous at best, but the influence on regional and local diversity is clearer. We suggest study design criteria that may lead to a better understanding of large-scale disturbance effects on deep-sea benthos.
Phillip Williamson, Hans-Otto Pörtner, Steve Widdicombe, and Jean-Pierre Gattuso
Biogeosciences, 18, 1787–1792, https://doi.org/10.5194/bg-18-1787-2021, https://doi.org/10.5194/bg-18-1787-2021, 2021
Short summary
Short summary
The reliability of ocean acidification research was challenged in early 2020 when a high-profile paper failed to corroborate previously observed impacts of high CO2 on the behaviour of coral reef fish. We now know the reason why: the
replicatedstudies differed in many ways. Open-minded and collaborative assessment of all research results, both negative and positive, remains the best way to develop process-based understanding of the impacts of ocean acidification on marine organisms.
Michael Lintner, Bianca Lintner, Wolfgang Wanek, Nina Keul, and Petra Heinz
Biogeosciences, 18, 1395–1406, https://doi.org/10.5194/bg-18-1395-2021, https://doi.org/10.5194/bg-18-1395-2021, 2021
Short summary
Short summary
Foraminifera are unicellular marine organisms that play an important role in the marine element cycle. Changes of environmental parameters such as salinity or temperature have a significant impact on the faunal assemblages. Our experiments show that changes in salinity immediately influence the foraminiferal activity. Also the light regime has a significant impact on carbon or nitrogen processing in foraminifera which contain no kleptoplasts.
Michele Casini, Martin Hansson, Alessandro Orio, and Karin Limburg
Biogeosciences, 18, 1321–1331, https://doi.org/10.5194/bg-18-1321-2021, https://doi.org/10.5194/bg-18-1321-2021, 2021
Short summary
Short summary
In the past 20 years the condition of the eastern Baltic cod has dropped, with large implications for the fishery. Our results show that simultaneously the cod population has moved deeper while low-oxygenated waters detrimental for cod growth have become shallower. Cod have thus dwelled more in detrimental waters, explaining the drop in its condition. This study, using long-term fish and hydrological monitoring data, evidences the impact of deoxygenation on fish biology and fishing.
Elizabeth D. LaBone, Kenneth A. Rose, Dubravko Justic, Haosheng Huang, and Lixia Wang
Biogeosciences, 18, 487–507, https://doi.org/10.5194/bg-18-487-2021, https://doi.org/10.5194/bg-18-487-2021, 2021
Short summary
Short summary
The hypoxic zone is an area of low dissolved oxygen (DO) in the Gulf of Mexico. Fish can be killed by exposure to hypoxia and can be negatively impacted by exposure to low, nonlethal DO concentrations (sublethal DO). We found that high sublethal area resulted in higher exposure and DO variability had a small effect on exposure. There was a large variation in exposure among individuals, which when combined with spatial variability of DO, can result in an underestimation of exposure when averaged.
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021, https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Short summary
By conducting a flooding experiment with two genotypes of the salt-marsh grass Elymus athericus, we show considerable differences in biomass response to flooding within the same species. As biomass production plays a major role in sedimentation processes and thereby salt-marsh accretion, we emphasise the importance of taking intraspecific differences into account when evaluating ecosystem resilience to accelerated sea level rise.
Cara Nissen and Meike Vogt
Biogeosciences, 18, 251–283, https://doi.org/10.5194/bg-18-251-2021, https://doi.org/10.5194/bg-18-251-2021, 2021
Short summary
Short summary
Using a regional Southern Ocean ecosystem model, we find that the relative importance of Phaeocystis and diatoms at high latitudes is controlled by iron and temperature variability, with light levels controlling the seasonal succession in coastal areas. Yet, biomass losses via aggregation and grazing matter as well. We show that the seasonal succession of Phaeocystis and diatoms impacts the seasonality of carbon export fluxes with ramifications for nutrient cycling and food web dynamics.
Jiangtao Li, Lingyuan Gu, Shijie Bai, Jie Wang, Lei Su, Bingbing Wei, Li Zhang, and Jiasong Fang
Biogeosciences, 18, 113–133, https://doi.org/10.5194/bg-18-113-2021, https://doi.org/10.5194/bg-18-113-2021, 2021
Short summary
Short summary
Few studies have focused on the particle-attached (PA) and free-living (FL) microbes of the deep ocean. Here we determined PA and FL microbial communities along depth profiles of the SCS. PA and FL fractions accommodated divergent microbial compositions, and most of them are potentially generalists with PA and FL dual lifestyles. A potential vertical connectivity between surface-specific microbes and those in the deep ocean was indicated, likely through microbial attachment to sinking particles.
Saskia Brix, Karen J. Osborn, Stefanie Kaiser, Sarit B. Truskey, Sarah M. Schnurr, Nils Brenke, Marina Malyutina, and Pedro Martinez Arbizu
Biogeosciences, 17, 6163–6184, https://doi.org/10.5194/bg-17-6163-2020, https://doi.org/10.5194/bg-17-6163-2020, 2020
Short summary
Short summary
The Clarion–Clipperton Fracture Zone (CCZ) located in the Pacific is commercially the most important area of proposed manganese nodule mining. Extraction of this will influence the life and distribution of small deep-sea invertebrates like peracarid crustaceans, of which >90 % are undescribed species new to science. We are doing a species delimitation approach as baseline for an ecological interpretation of species distribution and discuss the results in light of future deep-sea conservation.
Amal Jayakumar and Bess B. Ward
Biogeosciences, 17, 5953–5966, https://doi.org/10.5194/bg-17-5953-2020, https://doi.org/10.5194/bg-17-5953-2020, 2020
Short summary
Short summary
Diversity and community composition of nitrogen-fixing microbes in the three main oxygen minimum zones of the world ocean were investigated using nifH clone libraries. Representatives of three main clusters of nifH genes were detected. Sequences were most diverse in the surface waters. The most abundant OTUs were affiliated with Alpha- and Gammaproteobacteria. The sequences were biogeographically distinct and the dominance of a few OTUs was commonly observed in OMZs in this (and other) studies.
Guillermo Feliú, Marc Pagano, Pamela Hidalgo, and François Carlotti
Biogeosciences, 17, 5417–5441, https://doi.org/10.5194/bg-17-5417-2020, https://doi.org/10.5194/bg-17-5417-2020, 2020
Short summary
Short summary
The impact of Saharan dust deposition events on the Mediterranean Sea ecosystem was studied during a basin-scale survey (PEACETIME cruise, May–June 2017). Short-term responses of the zooplankton community were observed after episodic dust deposition events, highlighting the impact of these events on productivity up to the zooplankton level in the poorly fertilized pelagic ecosystems of the southern Mediterranean Sea.
Douglas Lessa, Raphaël Morard, Lukas Jonkers, Igor M. Venancio, Runa Reuter, Adrian Baumeister, Ana Luiza Albuquerque, and Michal Kucera
Biogeosciences, 17, 4313–4342, https://doi.org/10.5194/bg-17-4313-2020, https://doi.org/10.5194/bg-17-4313-2020, 2020
Short summary
Short summary
We observed that living planktonic foraminifera had distinct vertically distributed communities across the Subtropical South Atlantic. In addition, a hierarchic alternation of environmental parameters was measured to control the distribution of planktonic foraminifer's species depending on the water depth. This implies that not only temperature but also productivity and subsurface processes are signed in fossil assemblages, which could be used to perform paleoceanographic reconstructions.
Karl M. Attard and Ronnie N. Glud
Biogeosciences, 17, 4343–4353, https://doi.org/10.5194/bg-17-4343-2020, https://doi.org/10.5194/bg-17-4343-2020, 2020
Short summary
Short summary
Light-use efficiency defines the ability of primary producers to convert sunlight energy to primary production. This report provides a framework to compute hourly and daily light-use efficiency using underwater eddy covariance, a recent technological development that produces habitat-scale rates of primary production for many different habitat types. The approach, tested on measured flux data, provides a useful means to compare habitat productivity across time and space.
Stacy Deppeler, Kai G. Schulz, Alyce Hancock, Penelope Pascoe, John McKinlay, and Andrew Davidson
Biogeosciences, 17, 4153–4171, https://doi.org/10.5194/bg-17-4153-2020, https://doi.org/10.5194/bg-17-4153-2020, 2020
Short summary
Short summary
Our study showed how ocean acidification can exert both direct and indirect influences on the interactions among trophic levels within the microbial loop. Microbial grazer abundance was reduced at CO2 concentrations at and above 634 µatm, while microbial communities increased in abundance, likely due to a reduction in being grazed. Such changes in predator–prey interactions with ocean acidification could have significant effects on the food web and biogeochemistry in the Southern Ocean.
Mirjana Najdek, Marino Korlević, Paolo Paliaga, Marsej Markovski, Ingrid Ivančić, Ljiljana Iveša, Igor Felja, and Gerhard J. Herndl
Biogeosciences, 17, 3299–3315, https://doi.org/10.5194/bg-17-3299-2020, https://doi.org/10.5194/bg-17-3299-2020, 2020
Short summary
Short summary
The response of Cymodocea nodosa to environmental changes was reported during a 15-month period. The meadow decline was triggered in spring by the simultaneous reduction of available light in the water column and the creation of anoxic conditions in the rooted area. This disturbance was critical for the plant since it took place during its recruitment phase when metabolic needs are maximal and stored reserves minimal. The loss of such habitat-forming seagrass is a major environmental concern.
Timm Schoening, Autun Purser, Daniel Langenkämper, Inken Suck, James Taylor, Daphne Cuvelier, Lidia Lins, Erik Simon-Lledó, Yann Marcon, Daniel O. B. Jones, Tim Nattkemper, Kevin Köser, Martin Zurowietz, Jens Greinert, and Jose Gomes-Pereira
Biogeosciences, 17, 3115–3133, https://doi.org/10.5194/bg-17-3115-2020, https://doi.org/10.5194/bg-17-3115-2020, 2020
Short summary
Short summary
Seafloor imaging is widely used in marine science and industry to explore and monitor areas of interest. The selection of the most appropriate imaging gear and deployment strategy depends on the target application. This paper compares imaging platforms like autonomous vehicles or towed camera frames and different deployment strategies of those in assessing the megafauna abundance of polymetallic-nodule fields. The deep-sea mining industry needs that information for robust impact monitoring.
Tatsuro Tanioka and Katsumi Matsumoto
Biogeosciences, 17, 2939–2954, https://doi.org/10.5194/bg-17-2939-2020, https://doi.org/10.5194/bg-17-2939-2020, 2020
Short summary
Short summary
We conducted an extensive literature survey (meta-analysis) on how the C : N : P ratio varies with change in key environmental drivers. We found that the expected reduction in nutrients and warming under the future climate change scenario is likely to result in increased C : P and C : N of marine phytoplankton. Further, our findings highlight the greater stoichiometric plasticity of eukaryotes over prokaryotes, which provide us insights on how to understand and model plankton.
Vanessa Joglar, Antero Prieto, Esther Barber-Lluch, Marta Hernández-Ruiz, Emilio Fernández, and Eva Teira
Biogeosciences, 17, 2807–2823, https://doi.org/10.5194/bg-17-2807-2020, https://doi.org/10.5194/bg-17-2807-2020, 2020
Short summary
Short summary
Coastal marine ecosystems are among the most ecologically and economically productive areas providing a large fraction of ecosystem goods and services to human populations, and B vitamins have long been considered important growth factors for phytoplankton. Our findings indicate that the responses of microbial plankton to B-vitamin supply are mainly driven by the bacterial community composition and that microbial plankton in this area seems to be well adapted to cope with B-vitamin shortage.
Tasnim Patel, Henri Robert, Cedric D'Udekem D'Acoz, Koen Martens, Ilse De Mesel, Steven Degraer, and Isa Schön
Biogeosciences, 17, 2731–2744, https://doi.org/10.5194/bg-17-2731-2020, https://doi.org/10.5194/bg-17-2731-2020, 2020
Short summary
Short summary
Exploitation of deep-sea resources in one of the largest ecosystems on the planet has rendered research of its biodiversity more urgent than ever before. We investigated the known habitats and connectivity of deep-sea scavenging amphipods and obtained important knowledge about several species. We also demonstrated that a long-term disturbance experiment has possibly reduced amphipod biodiversity. These data and further sampling expeditions are instrumental for formulating sustainable policies.
Daphne Cuvelier, Pedro A. Ribeiro, Sofia P. Ramalho, Daniel Kersken, Pedro Martinez Arbizu, and Ana Colaço
Biogeosciences, 17, 2657–2680, https://doi.org/10.5194/bg-17-2657-2020, https://doi.org/10.5194/bg-17-2657-2020, 2020
Short summary
Short summary
Polymetallic nodule mining will remove hard substrata from the abyssal deep-sea floor. The only neighbouring ecosystems featuring hard substratum are seamounts, and their inhabiting fauna could aid in recovery post-mining. Nevertheless, first observations of seamount megafauna were very different from nodule-associated megafauna and showed little overlap. The possible uniqueness of these ecosystems implies that they should be included in management plans for the conservation of biodiversity.
Karen F. Wishner, Brad Seibel, and Dawn Outram
Biogeosciences, 17, 2315–2339, https://doi.org/10.5194/bg-17-2315-2020, https://doi.org/10.5194/bg-17-2315-2020, 2020
Short summary
Short summary
Increasing deoxygenation and oxygen minimum zone expansion are consequences of global warming. Copepod species had different vertical distribution strategies and physiologies associated with oxygen profile variability (0–1000 m). Species (1) changed vertical distributions and maximum abundance depth, (2) shifted diapause depth, (3) changed diel vertical migration depths, or (4) changed epipelagic depth range in the aerobic mixed layer. Present-day variability helps predict future scenarios.
Cited articles
Alexander, E., Stock, A., Breiner, H.-W., Behnke, A., Bunge, J., Yakimov, M. M., and Stoeck, T.: Microbial eukaryotes in the hypersaline anoxic L'Atalante deep-sea basin, Environ. Microbiol., 11, 360–381, https://doi.org/10.1111/j.1462-2920.2008.01777.x, 2009.
Aller, R. C.: Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures, in: Nitrogen cycling in coastal marine environments, edited by: Blackburn, T. H. and Sørensen, J., Chichester, 301–338, 1988.
Altenbach, A. V., Bernhard, J. M., and Seckbach, J. (Eds.): Anoxia Evidence for Eukaryote Survival and Paleontological Strategies, available at: http://www.springerlink.com/content/978-94-007-1895-1/contents/?MUD=MP (last accessed: 16 April 2012), 2012.
Alve, E. and Bernhard, J.: Vertical migratory response of benthic foraminifera to controlled oxygen concentrations in an experimental mesocosm, Mar. Ecol. Prog. Ser., 116, 137–151, https://doi.org/10.3354/meps116137, 1995.
Barmawidjaja, D. M., Jorissen, F. J., Puskaric, S., and van der Zwaan, G. J.: Microhabitat selection by benthic Foraminifera in the northern Adriatic Sea, J. Foramini. Res., 22, 297–317, https://doi.org/10.2113/gsjfr.22.4.297, 1992.
Bernhard, J. M.: Postmortem Vital Staining in Benthic Foraminifera; Duration and Importance in Population and Distributional Studies, J. Foramini. Res., 18, 143–146, https://doi.org/10.2113/gsjfr.18.2.143, 1988.
Bernhard, J. M.: Microaerophilic and facultative anaerobic benthic foraminifera: a review of experimental and ultrastructural evidence, Rev. de Paleobiol, 15, 261–275, 1996.
Bernhard, J. M.: Distinguishing Live from Dead Foraminifera: Methods Review and Proper Applications, Micropaleontology, 46, 38–46, 2000.
Bernhard, J. M. and Alve, E.: Survival, ATP pool, and ultrastructural characterization of benthic foraminifera from Drammensfjord (Norway): response to anoxia, Mar. Micropaleon., 28, 5–17, https://doi.org/10.1016/0377-8398(95)00036-4, 1996.
Bernhard, J. M., Casciotti, K. L., McIlvin, M. R., Beaudoin, D. J., Visscher, P. T., and Edgcomb, V. P.: Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration, J. Geophys. Res., 117, G03002, https://doi.org/10.1029/2012JG001949, 2012.
Bernhard, J. M., Edgcomb, V. P., Casciotti, K. L., McIlvin, M. R., and Beaudoin, D. J.: Denitrification likely catalyzed by endobionts in an allogromiid foraminifer, The ISME Journal, 6, 951–960, https://doi.org/10.1038/ismej.2011.171, 2011.
Bernhard, J. M., Martin, J. B., and Rathburn, A. E.: Combined carbonate carbon isotopic and cellular ultrastructural studies of individual benthic foraminifera: 2. Toward an understanding of apparent disequilibrium in hydrocarbon seeps, Paleoceanography, 25, 12 pp., https://doi.org/10.1029/2010PA001930, 2010.
Bernhard, J. M., Newkirk, S. G., and Bowser, S. S.: Towards a Non-Terminal Viability Assay for Foraminiferan Protists, J. Eukaryotic Microbiol., 42, 357–367, https://doi.org/10.1111/j.1550-7408.1995.tb01594.x, 1995.
Bernhard, J. M., Ostermann, D. R., Williams, D. S., and Blanks, J. K.: Comparison of two methods to identify live benthic foraminifera: A test between Rose Bengal and CellTracker Green with implications for stable isotope paleoreconstructions, Paleoceanography, 21, 8 pp., https://doi.org/200610.1029/2006PA001290, 2006.
Bernhard, J. M. and Reimers, C. E.: Benthic foraminiferal population fluctuations related to anoxia: Santa Barbara Basin, Biogeochemistry, 15, 127–149, https://doi.org/10.1007/BF00003221, 1991.
Bernhard, J. M. and Sen Gupta, B. K.: Foraminifera of oxygen-depleted environments, in Modern Foraminifera, Springer Netherlands, 201–216, available at: http://link.springer.com/chapter/10.1007/0-306-48104-9_12 (last accessed: 12 March 2013), 1999.
Blasnig, M., Riedel, B., Zuschin, M., Schiemer, L., and Stachowitsch, M.: Short-term post-mortality predation and scavenging and longer-term recovery after anoxia in the northern Adriatic Sea, Biogeosciences Discuss., 10, 4367–4401, https://doi.org/10.5194/bgd-10-4367-2013, 2013.
Boltovskoy, E. and Lena, H.: On the Decomposition of the Protoplasm and the Sinking Velocity of the Planktonic Foraminifers, Internationale Revue der gesamten Hydrobiologie und Hydrographie, 55, 797–804, https://doi.org/10.1002/iroh.19700550507, 1970.
Burdige, D. J.: Geochemistry of marine sediments, Princeton University Press., 2006.
Burgess, R.: An improved protocol for separating meiofauna from sediments using colloidal silica sols, Mar. Ecol. Prog. Ser., 214, 161–165, 2001.
Chambers, J. M. and Hastie, T.: Statistical models in S, Chapman & Hall London, available at: http://www.lavoisier.fr/livre/notice.asp?id=OKRW3SA2OKOOWW (last accessed: 12 March 2013), 1992.
Corliss, B. H. and Emerson, S.: Distribution of rose bengal stained deep-sea benthic foraminifera from the Nova Scotian continental margin and Gulf of Maine, Deep-Sea Res. Pt., 37, 381–400, https://doi.org/10.1016/0198-0149(90)90015-N, 1990.
De Troch, M., Roelofs, M., Riedel, B., and Grego, M.: Structural and functional responses of harpacticoid copepods to anoxia in the Northern Adriatic: an experimental approach, Biogeosci. Discuss., 10, 2479–2514, https://doi.org/10.5194/bgd-10-2479-2013, 2013.
Diaz, R. J. and Rosenberg, R.: Spreading dead zones and consequences for marine ecosystems, Science, 321, 926–929, 2008.
Duijnstee, I., Ernst, S., and Van der Zwaan, G.: Effect of anoxia on the vertical migration of benthic foraminifera, Mar. Ecol. Prog. Ser., 246, 85–94, 2003.
Duijnstee, I., de Lugt, I., Vonk Noordegraaf, H., and van der Zwaan, B.: Temporal variability of foraminiferal densities in the northern Adriatic Sea, Mar. Micropaleontol., 50, 125–148, https://doi.org/10.1016/S0377-8398(03)00069-0, 2004.
Duijnstee, I. A. P., de Nooijer, L. J., Ernst, S. R., and van der Zwaan, G. J.: Population dynamics of benthic shallow-water foraminifera: effects of a simulated marine snow event, Mar. Ecol.-Prog. Ser., 285, 29–42, 2005.
Ernst, S. and van der Zwaan, B.: Effects of experimentally induced raised levels of organic flux and oxygen depletion on a continental slope benthic foraminiferal community, Deep-Sea Res. Pt. I: Oceanographic Research Papers, 51, 1709–1739, https://doi.org/10.1016/j.dsr.2004.06.003, 2004.
Ernst, S., Bours, R., Duijnstee, I., and van der Zwaan, B.: Experimental effects of an organic matter pulse and oxygen depletion on a benthic foraminiferal shelf community, J. Foramini. Res., 35, 177–197, https://doi.org/10.2113/?35.3.177, 2005.
Ernst, S. R., Morvan, J., Geslin, E., Le Bihan, A., and Jorissen, F. J.: Benthic foraminiferal response to experimentally induced Erika oil pollution, Mar. Micropaleontol., 61, 76–93, https://doi.org/10.1016/j.marmicro.2006.05.005, 2006.
Fedra, K., Ölscher, E. M., Scherübel, C., Stachowitsch, M., and Wurzian, R. S.: On the ecology of a North Adriatic benthic community: Distribution, standing crop and composition of the macrobenthos, Mar. Biol., 38, 129–145, https://doi.org/10.1007/BF00390766, 1976.
Fenchel, T. and Finlay, B. J.: Ecology and evolution in anoxic worlds, Oxford University Press, Oxford, 1995.
Frias-Lopez, J., Thompson, A., Waldbauer, J., and Chisholm, S. W.: Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface waters, Environ. Microbiol., 11, 512–525, https://doi.org/10.1111/j.1462-2920.2008.01793.x, 2009.
Geslin, E., Risgaard-Petersen, N., Lombard, F., Metzger, E., Langlet, D., and Jorissen, F.: Oxygen respiration rates of benthic foraminifera as measured with oxygen microsensors, J. Experim. Mar. Biol. Ecol., 396, 108–114, https://doi.org/10.1016/j.jembe.2010.10.011, 2011.
Geslin, E., Barras, C., Langlet, D., Kim, J.-H., Bonnin, J., Metzger, E., and Jorissen, F. J.: Biological response of three benthic foraminiferal species to experimentally induced hypoxia, in Experimental Approaches in Foraminifera: Collection, Maintenance and Experiments, edited by: Bernhard, J. and Kitazato, H., Berlin, in press, 2014.
Giani, M., Djakovac, T., Degobbis, D., Cozzi, S., Solidoro, C., and Umani, S. F.: Recent changes in the marine ecosystems of the northern Adriatic Sea, Estuarine, Coast. Shelf Sci., 115, 1–13, https://doi.org/10.1016/j.ecss.2012.08.023, 2012.
Giere, O.: Meiobenthology. The microscopic fauna in aquatic sediments, edited by: Giere, O., Springer Verlag, Berlin, 328 pp., 1993.
Glud, R. N.: Oxygen dynamics of marine sediments, Mar. Biol. Res., 4, 243–289, https://doi.org/10.1080/17451000801888726, 2008.
Goineau, A., Fontanier, C., Jorissen, F. J., Lansard, B., Buscail, R., Mouret, A., Kerhervé, P., Zaragosi, S., Ernoult, E., Artéro, C., Anschutz, P., Metzger, E., and Rabouille, C.: Live (stained) benthic foraminifera from the Rhône prodelta (Gulf of Lion, NW Mediterranean): Environmental controls on a river-dominated shelf, J. Sea Res., 65, 58–75, https://doi.org/10.1016/j.seares.2010.07.007, 2011.
Gooday, A. J., Jorissen, F., Levin, L. A., Middelburg, J. J., Naqvi, S. W. A., Rabalais, N. N., Scranton, M., and Zhang, J.: Historical records of coastal eutrophication-induced hypoxia, Biogeosciences, 6, 1707–1745, https://doi.org/10.5194/bg-6-1707-2009, 2009.
Grego, M., Stachowitsch, M., De Troch, M., and Riedel, B.: CellTracker Green labelling vs. rose bengal staining: CTG wins by points in distinguishing living from dead anoxia-impacted copepods and nematodes, Biogeosciences, 10, 4565–4575, https://doi.org/10.5194/bg-10-4565-2013, 2013.
Hannah, F. and Rogerson, A.: The Temporal and Spatial Distribution of Foraminiferans in Marine Benthic Sediments of the Clyde Sea Area, Scotland, Estuarine, Coast. Shelf Sci., 44, 377–383, 1997.
Heinz, P., Kitazato, H., Schmiedl, G., and Hemleben, C.: Response of Deep-Sea Benthic Foraminifera from the Mediterranean Sea to Simulated Phytoplankton Pulses Under Laboratory Conditions, J. Foramini. Res., 31, 210–227, https://doi.org/10.2113/31.3.210, 2001.
Helly, J. J. and Levin, L. A.: Global distribution of naturally occurring marine hypoxia on continental margins, Deep-Sea Res. Pt. I, 51, 1159–1168, https://doi.org/10.1016/j.dsr.2004.03.009, 2004.
Hofmann, A. F., Peltzer, E. T., Walz, P. M., and Brewer, P. G.: Hypoxia by degrees: Establishing definitions for a changing ocean, Deep-Sea Res. Pt. I, 58, 1212–1226, https://doi.org/10.1016/j.dsr.2011.09.004, 2011.
Høgslund, S., Revsbech, N. P., Cedhagen, T., Nielsen, L. P., and Gallardo, V. A.: Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the oxygen minimum zone off Chile, J. Experim. Mar. Biology Ecol., 359, 85–91, 2008.
Hohenegger, J., Piller, W., and Baal, C.: Reasons for Spatial Microdistributions of Foraminifers in an Intertidal Pool (Northern Adriatic Sea), Mar. Ecol., 10, 43–78, https://doi.org/10.1111/j.1439-0485.1989.tb00065.x, 1989.
Hohenegger, J., Piller, W. E., and Baal, C.: Horizontal and vertical spatial microdistribution of foraminifers in the shallow subtidal Gulf of Trieste, northern Adriatic Sea, J. Foramini. Res., 23, 79–101, https://doi.org/10.2113/gsjfr.23.2.79, 1993.
Horton, B. P. and Murray, J. W.: The roles of elevation and salinity as primary controls on living foraminiferal distributions: Cowpen Marsh, Tees Estuary, UK, Mar. Micropaleontol., 6, 169–186, https://doi.org/10.1016/j.marmicro.2006.11.006, 2007.
Jorissen, F. J., Barmawidjaja, D. M., Puskaric, S., and van der Zwaan, G. J.: Vertical distribution of benthic foraminifera in the northern Adriatic Sea: The relation with the organic flux, Mar. Micropaleontol., 19, 131–146, https://doi.org/10.1016/0377-8398(92)90025-F, 1992.
Jorissen, F. J.: Benthic foraminiferal microhabitats below the sediment-water interface, in Modern Foraminifera, Springer Netherlands, available at: http://link.springer.com/chapter/10.1007/0-306-48104-9_10 (last accessed: 12 March 2013), 161–179, 1999.
Josefson, A. B. and Widbom, B.: Differential response of benthic macrofauna and meiofauna to hypoxia in the Gullmar Fjord basin, Mar. Biol., 100, 31–40, https://doi.org/10.1007/BF00392952, 1988.
Koho, K. A., Piña-Ochoa, E., Geslin, E., and Risgaard-Petersen, N.: Vertical migration, nitrate uptake and denitrification: survival mechanisms of foraminifers (Globobulimina turgida) under low oxygen conditions, FEMS Microbiol. Ecol., 75, 273–283, https://doi.org/10.1111/j.1574-6941.2010.01010.x, 2011.
Koron, N., Ogrinc, N., Metzger, E., Riedel, B., and Faganeli, J.: Diagenesis and benthic fluxes of nutrients and metals during experimentally induced anoxia in the Gulf of Trieste (northern Adriatic Sea), Biogeosciences Discuss., 10, 11729–11755, 2013.
Langezaal, A. M., van Bergen, P. F., and van der Zwaan, G. J.: The recovery of benthic foraminifera and bacteria after disturbance: experimental evidence, J. Experim. Mar. Biol. Ecol., 312, 137–170, 2004.
Langlet, D., Baal, C., Geslin, E., Metzger, E., Zuschin, M., Riedel, B., Risgaard-Petersen, N., Stachowitsch, M., and Jorissen, F. J.: Foraminiferal species responses to in situ experimentally induced anoxia in the Adriatic Sea, Biogeosciences Discuss., 10, 12065–12114, 2013.
Lecroq, B., Lejzerowicz, F., Bachar, D., Christen, R., Esling, P., Baerlocher, L., Osteras, M., Farinelli, L., and Pawlowski, J.: Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments, Proc. Natl. Ac. Sci., 108, 13177–13182, 2011.
Leiter, C. and Altenbach, A. V.: Benthic Foraminifera from the Diatomaceous Mud Belt Off Namibia: Characteristic Species for Severe Anoxia, Palaeontologia Electronica, 13, 19 pp., 2010.
Lejzerowicz, F., Voltsky, I., and Pawlowski, J.: Identifying active foraminifera in the Sea of Japan using metatranscriptomic approach, Deep-Sea Res. Pt. II, 86/87, 214–220, 2013.
Levin, L.: Oxygen minimum zone benthos: adaptation and community response to hypoxia, 2003.
Levin, L. A., Ekau, W., Gooday, A. J., Jorissen, F., Middelburg, J. J., Naqvi, S. W. A., Neira, C., Rabalais, N. N., and Zhang, J.: Effects of natural and human-induced hypoxia on coastal benthos, Biogeosciences, 6, 2063–2098, https://doi.org/10.5194/bg-6-2063-2009, 2009.
Logares, R., Audic, S., Santini, S., Pernice, M. C., de Vargas, C., and Massana, R.: Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing, ISME J, 6, 1823–1833, https://doi.org/10.1038/ismej.2012.36, 2012.
Loubere, P., Jacobsen, B., Klitgaard Kristensen, D., Husum, K., Jernas, P., and Richaud, M.: The structure of benthic environments and the paleochemical record of foraminifera, Deep-Sea Res. Pt. I, 58, 535–545, https://doi.org/10.1016/j.dsr.2011.02.011, 2011.
McIntyre, A. D. and Warwick, R. M.: Meiofauna techniques, in Methods for the Study of Marine Benthos, edited by: Holme, N. A. and McIntyre, A. D., Oxford, 217–244, 1984.
Metzger, E., Langlet, D., Viollier, E., Koron, N., Riedel, B., Stachowitsch, M., Faganeli, J., Tharaud, M., Geslin, E., and Jorissen, F.: Artificially induced migration of redox layers in a coastal sediment from the Northern Adriatic, Biogeosciences Discuss., 10, 12029–12063, https://doi.org/10.5194/bgd-10-12029-2013, 2013.
Middelburg, J. J. and Levin, L. A.: Coastal hypoxia and sediment biogeochemistry, Biogeosciences, 6, 1273–1293, https://doi.org/10.5194/bg-6-1273-2009, 2009.
Moodley, L., Zwaan, G. J. van der, Herman, P. M. J., Kempers, L., and Breugel, P. van: Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina), Mar. Ecol. Prog. Ser., 158, 151–163, https://doi.org/10.3354/meps158151, 1997.
Moodley, L., Schaub, B. E. M., van der Zwaan, G. J., and Herman, P. M. J.: Tolerance of benthic foraminifera (Protista: Sarcodina) to hydrogen sulphide, Mar. Ecol. Prog. Ser., 169, 77–86, https://doi.org/10.3354/meps169077, 1998.
Murray, J. W.: Population dynamics of benthic foraminifera; results from the Exe Estuary, England, J. Foramini. Res., 13, 1–12, https://doi.org/10.2113/gsjfr.13.1.1, 1983.
Murray, J. W.: Ecology And Applications of Benthic Foraminifera, Cambridge University Press, 2006.
Murray, J. W. and Bowser, S. S.: Mortality, Protoplasm Decay Rate, and Reliability of Staining Techniques to Recognize "living" Foraminifera: A Review, J. Foramini. Res., 30, 66–70, https://doi.org/10.2113/0300066, 2000.
Nomaki, H., Heinz, P., Hemleben, C., and Kitazato, H.: Behavior and Response of Deep-Sea Benthic Foraminifera to Freshly Supplied Organic Matter: A Laboratory Feeding Experiment in Microcosm Environments, J. Foramini. Res., 35, 103–113, https://doi.org/10.2113/35.2.103, 2005.
Orsi, W., Biddle, J. F., and Edgcomb, V.: Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces, PLoS ONE, 8, e56335, https://doi.org/10.1371/journal.pone.0056335, 2013.
Ott, J.: The Adriatic benthos: problems and perspectives, in: Marine eutrophication and population dynamics, edited by: G. Colombo, I. Ferrari, V. Ceccherelli, and R. Rossi, Olsen & Olsen, Fredensborg, Denmark, 367–378, 1992.
Pawlowski, J. and Lecroq, B.: Short rDNA barcodes for species identification in foraminifera, J. Eukaryot. Microbiol., 57, 197–205, https://doi.org/10.1111/j.1550-7408.2009.00468.x, 2010.
Pawlowski, J., Fontaine, D., da Silva, A. A., and Guiard, J.: Novel lineages of Southern Ocean deep-sea foraminifera revealed by environmental DNA sequencing, Deep-Sea Res. Pt. II, 58, 1996–2003, https://doi.org/10.1016/j.dsr2.2011.01.009, 2011.
Phipps, M., Jorissen, F., Pusceddu, A., Bianchelli, S., and De Stigter, H.: Live Benthic Foraminiferal Faunas Along a Bathymetrical Transect (282–4987 M) on the Portuguese Margin (ne Atlantic), Journal of Foraminiferal Research, 42, 66–81, https://doi.org/10.2113/gsjfr.42.1.66, 2012.
Piña-Ochoa, E., Høgslund, S., Geslin, E., Cedhagen, T., Revsbech, N. P., Nielsen, L. P., Schweizer, M., Jorissen, F., Rysgaard, S., and Risgaard-Petersen, N.: Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida, Proc. Natl. Ac. Sci. USA, 107, 1148–1153, 2010a.
Piña-Ochoa, E., Koho, K., Geslin, E., and Risgaard-Petersen, N.: Survival and life strategy of the foraminiferan Globobulimina turgida through nitrate storage and denitrification, Mar. Ecol. Prog. Ser., 417, 39–49, https://doi.org/10.3354/meps08805, 2010b.
Pucci, F., Geslin, E., Barras, C., Morigi, C., Sabbatini, A., Negri, A., and Jorissen, F.: Survival of benthic foraminifera under hypoxic conditions: Results of an experimental study using the CellTracker Green method, Mar. Pollut. Bull., 59, 336–351, 2009.
Rabalais, N. N., Díaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., and Zhang, J.: Dynamics and distribution of natural and human-caused hypoxia, Biogeosciences, 7, 585–619, https://doi.org/10.5194/bg-7-585-2010, 2010.
Riedel, B., Zuschin, M., Haselmair, A., and Stachowitsch, M.: Oxygen depletion under glass: Behavioural responses of benthic macrofauna to induced anoxia in the Northern Adriatic, J. Experim. Mar. Biol. Ecol., 367, 17–27, https://doi.org/10.1016/j.jembe.2008.08.007, 2008.
Riedel, B., Zuschin, M., and Stachowitsch, M.: Tolerance of benthic macrofauna to hypoxia and anoxia in shallow coastal seas: a realistic scenario, Mar. Ecol. Prog. Ser., 458, 39–52, https://doi.org/10.3354/meps09724, 2012.
Riedel, B., Pados, T., Pretterebner, K., Schiemer, L., Steckbauer, A., Haselmair, A., Zuschin, M., and Stachowitsch, M.: Effect of hypoxia and anoxia on invertebrate behaviour: ecological perspectives from species to community level, Biogeosciences Discuss., 10, 14333–14438, https://doi.org/10.5194/bgd-10-14333-2013, 2013.
Risgaard-Petersen, N., Langezaal, A. M., Ingvardsen, S., Schmid, M. C., Jetten, M. S. M., Op Den Camp, H. J. M., Derksen, J. W. M., Piña-Ochoa, E., Eriksson, S. P., Nielsen, L. P., Revsbech, N. P., Cedhagen, T., and Van Der Zwaan, G. J.: Evidence for complete denitrification in a benthic foraminifer, Nature, 443, 93–96, 2006.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber, C. F.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75, 7537–7541, https://doi.org/10.1128/AEM.01541-09, 2009.
Sørensen, K. B. and Teske, A.: Stratified Communities of Active Archaea in Deep Marine Subsurface Sediments, Appl. Environ. Microbiol., 72, 4596–4603, https://doi.org/10.1128/AEM.00562-06, 2006.
Stachowitsch, M.: Mass Mortality in the Gulf of Trieste: The Course of Community Destruction, Mar. Ecol., 5, 243–264, https://doi.org/10.1111/j.1439-0485.1984.tb00124.x, 1984.
Stachowitsch, M.: Anoxia in the Northern Adriatic Sea: rapid death, slow recovery, Geological Society, London, Special Publications, 58(1), 119–129, https://doi.org/10.1144/GSL.SP.1991.058.01.09, 1991.
Stachowitsch, M., Riedel, B., and Zuschin, M.: The Return of Shallow Shelf Seas as Extreme Environments: Anoxia and Macrofauna Reactions in the Northern Adriatic Sea, in Anoxia, edited by A. V. Altenbach, J. M. Bernhard, and J. Seckbach, Springer Netherlands, 353–368, available from: http://link.springer.com/chapter/10.1007/978-94-007-1896-8_19 (last accessed: 20 February 2013), 2012.
Stachowitsch, M., Riedel, B., Zuschin, M., and Machan, R.: Oxygen depletion and benthic mortalities: The first in situ experimental approach to documenting an elusive phenomenon, Limnol. Oceanogr., 5, 344–352, 2007.
Stock, A., Breiner, H.-W., Pachiadaki, M., Edgcomb, V., Filker, S., La Cono, V., Yakimov, M. M., and Stoeck, T.: Microbial eukaryote life in the new hypersaline deep-sea basin Thetis, Extremophiles, 16, 21–34, https://doi.org/10.1007/s00792-011-0401-4, 2012.
Stoeck, T., Zuendorf, A., Breiner, H.-W., and Behnke, A.: A molecular approach to identify active microbes in environmental eukaryote clone libraries, Microb. Ecol., 53, 328–339, https://doi.org/10.1007/s00248-006-9166-1, 2007.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding Oxygen-Minimum Zones in the Tropical Oceans, Science, 320, 655–658, https://doi.org/10.1126/science.1153847, 2008.
Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C.: Ocean oxygen minima expansions and their biological impacts, Deep-Sea Res. Pt. I, 57, 587–595, 2010.
Takishita, K., Kakizoe, N., Yoshida, T., and Maruyama, T.: Molecular evidence that phylogenetically diverged ciliates are active in microbial mats of deep-sea cold-seep sediment, J. Eukaryot. Microbiol., 57, 76–86, https://doi.org/10.1111/j.1550-7408.2009.00457.x, 2010.
Tyson, R. V. and Pearson, T. H.: Modern and ancient continental shelf anoxia: an overview, Geological Society, London, Special Publications, 58, 1–24, 1991.
Walton, W. R.: Techniques for recognition of living foraminifera, in Contributions from the Cushman Foundation for Foraminiferal Research, Scripps Institution of Oceanography, 3, 56–60, 1952.
Wieser, W. and Kanwisher, J.: Ecological and physiological studies on marine nematodes from a small salt marsh near Woods Hole, Massachusetts, Limnol. Oceanogr., 6, 262–270, 1961.
Special issue
Altmetrics
Final-revised paper
Preprint