Articles | Volume 10, issue 11
https://doi.org/10.5194/bg-10-7703-2013
https://doi.org/10.5194/bg-10-7703-2013
Research article
 | 
28 Nov 2013
Research article |  | 28 Nov 2013

Modelling changes in nitrogen cycling to sustain increases in forest productivity under elevated atmospheric CO2 and contrasting site conditions

R. F. Grant

Related authors

Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020,https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Modelling nitrification inhibitor effects on N2O emissions after fall- and spring-applied slurry by reducing nitrifier NH4+ oxidation rate
Robert F. Grant, Sisi Lin, and Guillermo Hernandez-Ramirez
Biogeosciences, 17, 2021–2039, https://doi.org/10.5194/bg-17-2021-2020,https://doi.org/10.5194/bg-17-2021-2020, 2020
Short summary
Large carbon cycle sensitivities to climate across a permafrost thaw gradient in subarctic Sweden
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, Virginia I. Rich, and Scott R. Saleska
The Cryosphere, 13, 647–663, https://doi.org/10.5194/tc-13-647-2019,https://doi.org/10.5194/tc-13-647-2019, 2019
Short summary
Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange
Mohammad Mezbahuddin, Robert F. Grant, and Lawrence B. Flanagan
Biogeosciences, 14, 5507–5531, https://doi.org/10.5194/bg-14-5507-2017,https://doi.org/10.5194/bg-14-5507-2017, 2017
Ecological controls on N2O emission in surface litter and near-surface soil of a managed grassland: modelling and measurements
Robert F. Grant, Albrecht Neftel, and Pierluigi Calanca
Biogeosciences, 13, 3549–3571, https://doi.org/10.5194/bg-13-3549-2016,https://doi.org/10.5194/bg-13-3549-2016, 2016
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024,https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024,https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
When and why microbial-explicit soil organic carbon models can be unstable
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024,https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024,https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Climate-based prediction of carbon fluxes from deadwood in Australia
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024,https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary

Cited articles

Barnes, B. V., Zak, D. R., Denton, S. R., and Spurr, S. H.: Forest Ecology (4th ed.), Wiley and Sons, N. Y., 1998.
Crow, S. E., Lajtha, K., Bowden, R. D., Yano, Y., Brant, J. B., Caldwell, B. A., and Sulzman, E. W.: Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest, Forest Ecol. Manage. 258, 2224–2232, 2009.
Dickson, R. E., Lewin, K. F., Isebrands, J. G., Coleman, M. D., Heilman, W. E., Riemenschneider, D. E., Sober, J., Host, G. E., Zak, D. R., Hendrey, G. R., Pregitzer, K. S., and Karnosky, D. S.: Forest atmosphere carbon transfer and storage (FACTS-II) the aspen free-air CO2 and O3 enrichment (FACE) project: an overview, USDA Forest Service General Technical Report NC-214 St. Paul, Minnesota, USA, 2000.
Finzi, A. C., Allen, A. S., DeLucia, E. H., Ellsworth, D. S., and Schlesinger, W. H.: Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichment, Ecology, 82, 470–484, 2001.
Download
Altmetrics
Final-revised paper
Preprint