Articles | Volume 11, issue 24
https://doi.org/10.5194/bg-11-7305-2014
https://doi.org/10.5194/bg-11-7305-2014
Research article
 | 
19 Dec 2014
Research article |  | 19 Dec 2014

Biomass burning fuel consumption rates: a field measurement database

T. T. van Leeuwen, G. R. van der Werf, A. A. Hoffmann, R. G. Detmers, G. Rücker, N. H. F. French, S. Archibald, J. A. Carvalho Jr., G. D. Cook, W. J. de Groot, C. Hély, E. S. Kasischke, S. Kloster, J. L. McCarty, M. L. Pettinari, P. Savadogo, E. C. Alvarado, L. Boschetti, S. Manuri, C. P. Meyer, F. Siegert, L. A. Trollope, and W. S. W. Trollope

Related authors

Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 2: Carbon emissions and the role of fires in the global carbon balance
C. Yue, P. Ciais, P. Cadule, K. Thonicke, and T. T. van Leeuwen
Geosci. Model Dev., 8, 1321–1338, https://doi.org/10.5194/gmd-8-1321-2015,https://doi.org/10.5194/gmd-8-1321-2015, 2015
Short summary
What could have caused pre-industrial biomass burning emissions to exceed current rates?
G. R. van der Werf, W. Peters, T. T. van Leeuwen, and L. Giglio
Clim. Past, 9, 289–306, https://doi.org/10.5194/cp-9-289-2013,https://doi.org/10.5194/cp-9-289-2013, 2013

Related subject area

Biogeochemistry: Modelling, Terrestrial
Integration of tree hydraulic processes and functional impairment to capture the drought resilience of a semiarid pine forest
Daniel Nadal-Sala, Rüdiger Grote, David Kraus, Uri Hochberg, Tamir Klein, Yael Wagner, Fedor Tatarinov, Dan Yakir, and Nadine K. Ruehr
Biogeosciences, 21, 2973–2994, https://doi.org/10.5194/bg-21-2973-2024,https://doi.org/10.5194/bg-21-2973-2024, 2024
Short summary
The effect of temperature on photosystem II efficiency across plant functional types and climate
Patrick Neri, Lianhong Gu, and Yang Song
Biogeosciences, 21, 2731–2758, https://doi.org/10.5194/bg-21-2731-2024,https://doi.org/10.5194/bg-21-2731-2024, 2024
Short summary
Modeling microbial carbon fluxes and stocks in global soils from 1901 to 2016
Liyuan He, Jorge L. Mazza Rodrigues, Melanie A. Mayes, Chun-Ta Lai, David A. Lipson, and Xiaofeng Xu
Biogeosciences, 21, 2313–2333, https://doi.org/10.5194/bg-21-2313-2024,https://doi.org/10.5194/bg-21-2313-2024, 2024
Short summary
Elevated atmospheric CO2 concentration and vegetation structural changes contributed to gross primary productivity increase more than climate and forest cover changes in subtropical forests of China
Tao Chen, Félicien Meunier, Marc Peaucelle, Guoping Tang, Ye Yuan, and Hans Verbeeck
Biogeosciences, 21, 2253–2272, https://doi.org/10.5194/bg-21-2253-2024,https://doi.org/10.5194/bg-21-2253-2024, 2024
Short summary
Non-steady-state stomatal conductance modeling and its implications: from leaf to ecosystem
Ke Liu, Yujie Wang, Troy S. Magney, and Christian Frankenberg
Biogeosciences, 21, 1501–1516, https://doi.org/10.5194/bg-21-1501-2024,https://doi.org/10.5194/bg-21-1501-2024, 2024
Short summary

Cited articles

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys, 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Amiro, B. D., Todd, J. B., Wotton, B. M., Logan, K. A., Flannigan, M. D., Stocks, B. J., Mason, J. A., Martell, D. L., and Hirsch, K. G.: Direct carbon emissions from Canadian forest fires, 1959–1999, Can. J. For. Res., 31, 512–525, 2001.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001.
Araújo, T., Carvalho Jr., J., and Higuchi, N.: A tropical rainforest clearing experiment by biomass burning in the state of Pará, Brazil, Atmos. Environ., 33, 1991–1998, 1999.
Archibald, S., Scholes, R. J., Roy, D. P., Roberts, G., and Boschetti, L.: Southern African fire regimes as revealed by remote sensing, Int. J. Wildland Fire, 19, 861–878, 2010.
Download
Altmetrics
Final-revised paper
Preprint