Articles | Volume 12, issue 12
https://doi.org/10.5194/bg-12-3861-2015
https://doi.org/10.5194/bg-12-3861-2015
Research article
 | 
25 Jun 2015
Research article |  | 25 Jun 2015

Effects of CO2-driven ocean acidification on early life stages of marine medaka (Oryzias melastigma)

J. Mu, F. Jin, J. Wang, N. Zheng, and Y. Cong

Related authors

An interrupting mechanism to prevent the formation of coastal hypoxiaby winds
Juan Yao, Juying Wang, Hongbin Liu, and Kedong Yin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-188,https://doi.org/10.5194/bg-2020-188, 2020
Preprint withdrawn
Short summary
Subsurface pH and carbonate saturation state of aragonite on the Chinese side of the North Yellow Sea: seasonal variations and controls
W.-D. Zhai, N. Zheng, C. Huo, Y. Xu, H.-D. Zhao, Y.-W. Li, K.-P. Zang, J.-Y. Wang, and X.-M. Xu
Biogeosciences, 11, 1103–1123, https://doi.org/10.5194/bg-11-1103-2014,https://doi.org/10.5194/bg-11-1103-2014, 2014

Related subject area

Biogeochemistry: Coastal Ocean
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024,https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Estimates of carbon sequestration potential in an expanding Arctic fjord (Hornsund, Svalbard) affected by dark plumes of glacial meltwater
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024,https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary
An assessment of ocean alkalinity enhancement using aqueous hydroxides: kinetics, efficiency, and precipitation thresholds
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024,https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Dissolved nitric oxide in the lower Elbe Estuary and the Port of Hamburg area
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024,https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Variable contribution of wastewater treatment plant effluents to downstream nitrous oxide concentrations and emissions
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024,https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary

Cited articles

Baumann, H., Talmage, S. C., and Gobler, C. J.: Reduced early life growth and survival in a fish in direct response to increased carbon dioxide, Nat. Clim. Change, 2, 38–41, 2012.
Berry, L., Taylor, A. R., Lucken, U., Ryan, K. P., and Brownlee, C.: Calcification and inorganic carbon acquisition in coccolithophores, Funct. Plant Biol., 29, 289–299, 2002.
Bignami, S., Sponaugle, S., and Cowen, R. K.: Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum, Glob. Change Biol., 19, 996-1006, 2013.
Branch, T. A., DeJoseph, B. M., Ray, L. J., and Wagner, C. A.: Impacts of ocean acidification on marine seafood, Trends in ecology and evolution, 28, 178–186, 2013.
Chambers, R. C., Candelmo, A. C., Habeck, E. A., Poach, M. E., Wieczorek, D., Cooper, K. R., Greenfield, C. E., and Phelan, B. A.: Effects of elevated CO2 in the early life stages of summer flounder, Paralichthys dentatus, and potential consequences of ocean acidification, Biogeosciences, 11, 1613–1626, https://doi.org/10.5194/bg-11-1613-2014, 2014.
Download
Altmetrics
Final-revised paper
Preprint