Articles | Volume 12, issue 4
https://doi.org/10.5194/bg-12-945-2015
https://doi.org/10.5194/bg-12-945-2015
Research article
 | 
17 Feb 2015
Research article |  | 17 Feb 2015

Influence of meteorology and anthropogenic pollution on chemical flux divergence of the NO–NO2–O3 triad above and within a natural grassland canopy

D. Plake, M. Sörgel, P. Stella, A. Held, and I. Trebs

Related authors

Particle flux-gradient relationships in the high Arctic: Emission and deposition patterns across three surface types
Theresa Mathes, Heather Guy, John Prytherch, Julia Kojoj, Ian Brooks, Sonja Murto, Paul Zieger, Birgit Wehner, Michael Tjernström, and Andreas Held
EGUsphere, https://doi.org/10.5194/egusphere-2025-183,https://doi.org/10.5194/egusphere-2025-183, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Performance evaluation of an online monitor based on X-ray fluorescence for detecting elemental concentrations in ambient particulate matter
Ivonne Trebs, Céline Lett, Andreas Krein, Erika Matsumoto Kawaguchi, and Jürgen Junk
Atmos. Meas. Tech., 17, 6791–6805, https://doi.org/10.5194/amt-17-6791-2024,https://doi.org/10.5194/amt-17-6791-2024, 2024
Short summary
The Turbulent Enhancement Ratio as a novel Approach for Characterizing Local Emission Sources in Complex Environments
Christian Lamprecht, Martin Graus, Marcus Striednig, Michael Stichaner, Werner Jud, Andreas Held, and Thomas Karl
EGUsphere, https://doi.org/10.5194/egusphere-2024-2939,https://doi.org/10.5194/egusphere-2024-2939, 2024
Short summary
Vertical concentrations gradients and transport of airborne microplastics in wind tunnel experiments
Eike Maximilian Esders, Christoph Georgi, Wolfgang Babel, Andreas Held, and Christoph Karl Thomas
Aerosol Research, 2, 235–243, https://doi.org/10.5194/ar-2-235-2024,https://doi.org/10.5194/ar-2-235-2024, 2024
Short summary
Development of a cascade impactor optimized for size-fractionated analysis of aerosol metal content by total reflection X-ray fluorescence spectroscopy (TXRF)
Claudio Crazzolara and Andreas Held
Atmos. Meas. Tech., 17, 2183–2194, https://doi.org/10.5194/amt-17-2183-2024,https://doi.org/10.5194/amt-17-2183-2024, 2024
Short summary

Related subject area

Biogeochemistry: Air - Land Exchange
Aggregation of ice-nucleating macromolecules from Betula pendula pollen determines ice nucleation efficiency
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
Biogeosciences, 22, 103–115, https://doi.org/10.5194/bg-22-103-2025,https://doi.org/10.5194/bg-22-103-2025, 2025
Short summary
Evaluating adsorption isotherm models for determining the partitioning of ammonium between soil and soil pore water in environmental soil samples
Matthew G. Davis, Kevin Yan, and Jennifer G. Murphy
Biogeosciences, 21, 5381–5392, https://doi.org/10.5194/bg-21-5381-2024,https://doi.org/10.5194/bg-21-5381-2024, 2024
Short summary
Similar freezing spectra of particles in plant canopies and in the air at a high-altitude site
Annika Einbock and Franz Conen
Biogeosciences, 21, 5219–5231, https://doi.org/10.5194/bg-21-5219-2024,https://doi.org/10.5194/bg-21-5219-2024, 2024
Short summary
Anticorrelation of net uptake of atmospheric CO2 by the world ocean and terrestrial biosphere in current carbon cycle models
Stephen E. Schwartz
Biogeosciences, 21, 5045–5057, https://doi.org/10.5194/bg-21-5045-2024,https://doi.org/10.5194/bg-21-5045-2024, 2024
Short summary
Impact of meteorological conditions on the biogenic volatile organic compound (BVOC) emission rate from eastern Mediterranean vegetation under drought
Qian Li, Gil Lerner, Einat Bar, Efraim Lewinsohn, and Eran Tas
Biogeosciences, 21, 4133–4147, https://doi.org/10.5194/bg-21-4133-2024,https://doi.org/10.5194/bg-21-4133-2024, 2024
Short summary

Cited articles

Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review, Atmos. Environ., 37, S197–S219, 2003.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Aylor, D. E., Wang, Y. S., and Miller, D. R.: Intermittent wind close to the ground within a grass canopy, Bound.-Lay. Meteorol., 66, 427–448, 1993.
Bakwin, P. S., Wofsy, S. C., Fan, S. M., Keller, M., Trumbore, S. E., and Dacosta, J. M.: Emission of nitric-oxide (NO) from tropical forest soils and exchange of NO between the forest canopy and atmospheric boundary-layers, J. Geophys. Res.-Atmos., 95, 16755–16764, 1990.
Baldocchi, D.: A multi-layer model for estimating sulfur-dioxide deposition to a deciduous oak forest canopy, Atmos. Environ., 22, 869–884, 1988.
Download
Short summary
Grasslands cover vast terrestrial areas and the main biomass is concentrated in the lowest part of the canopy. We found that measured transport times in the lowermost canopy layer are fastest during nighttime. During daytime, the reaction of NO with O3, as well as NO2 uptake by plants, was faster than transport. This suggests that grassland canopies of similar structure may exhibit a strong potential to retain soil emitted NO due to oxidation and subsequent uptake of NO2 by plants.
Share
Altmetrics
Final-revised paper
Preprint