Research article
30 Nov 2017
Research article | 30 Nov 2017
Species interactions can shift the response of a maerl bed community to ocean acidification and warming
Erwann Legrand et al.
Related subject area
Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates
Stacy Deppeler, Kai G. Schulz, Alyce Hancock, Penelope Pascoe, John McKinlay, and Andrew Davidson
Biogeosciences, 17, 4153–4171, https://doi.org/10.5194/bg-17-4153-2020,https://doi.org/10.5194/bg-17-4153-2020, 2020
Short summary
Dynamics of environmental conditions during the decline of a Cymodocea nodosa meadow
Mirjana Najdek, Marino Korlević, Paolo Paliaga, Marsej Markovski, Ingrid Ivančić, Ljiljana Iveša, Igor Felja, and Gerhard J. Herndl
Biogeosciences, 17, 3299–3315, https://doi.org/10.5194/bg-17-3299-2020,https://doi.org/10.5194/bg-17-3299-2020, 2020
Short summary
Megafauna community assessment of polymetallic-nodule fields with cameras: platform and methodology comparison
Timm Schoening, Autun Purser, Daniel Langenkämper, Inken Suck, James Taylor, Daphne Cuvelier, Lidia Lins, Erik Simon-Lledó, Yann Marcon, Daniel O. B. Jones, Tim Nattkemper, Kevin Köser, Martin Zurowietz, Jens Greinert, and Jose Gomes-Pereira
Biogeosciences, 17, 3115–3133, https://doi.org/10.5194/bg-17-3115-2020,https://doi.org/10.5194/bg-17-3115-2020, 2020
Short summary
Spatial and temporal variability in the response of phytoplankton and prokaryotes to B-vitamin amendments in an upwelling system
Vanessa Joglar, Antero Prieto, Esther Barber-Lluch, Marta Hernández-Ruiz, Emilio Fernández, and Eva Teira
Biogeosciences, 17, 2807–2823, https://doi.org/10.5194/bg-17-2807-2020,https://doi.org/10.5194/bg-17-2807-2020, 2020
Short summary
Biogeography and community structure of abyssal scavenging Amphipoda (Crustacea) in the Pacific Ocean
Tasnim Patel, Henri Robert, Cedric D'Udekem D'Acoz, Koen Martens, Ilse De Mesel, Steven Degraer, and Isa Schön
Biogeosciences, 17, 2731–2744, https://doi.org/10.5194/bg-17-2731-2020,https://doi.org/10.5194/bg-17-2731-2020, 2020
Short summary
Are seamounts refuge areas for fauna from polymetallic nodule fields?
Daphne Cuvelier, Pedro A. Ribeiro, Sofia P. Ramalho, Daniel Kersken, Pedro Martinez Arbizu, and Ana Colaço
Biogeosciences, 17, 2657–2680, https://doi.org/10.5194/bg-17-2657-2020,https://doi.org/10.5194/bg-17-2657-2020, 2020
Short summary
Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation
Magdalini Christodoulou, Timothy O'Hara, Andrew F. Hugall, Sahar Khodami, Clara F. Rodrigues, Ana Hilario, Annemiek Vink, and Pedro Martinez Arbizu
Biogeosciences, 17, 1845–1876, https://doi.org/10.5194/bg-17-1845-2020,https://doi.org/10.5194/bg-17-1845-2020, 2020
Short summary
Population dynamics of modern planktonic foraminifera in the western Barents Sea
Julie Meilland, Hélène Howa, Vivien Hulot, Isaline Demangel, Joëlle Salaün, and Thierry Garlan
Biogeosciences, 17, 1437–1450, https://doi.org/10.5194/bg-17-1437-2020,https://doi.org/10.5194/bg-17-1437-2020, 2020
Short summary
Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands)
Julien Richirt, Bettina Riedel, Aurélia Mouret, Magali Schweizer, Dewi Langlet, Dorina Seitaj, Filip J. R. Meysman, Caroline P. Slomp, and Frans J. Jorissen
Biogeosciences, 17, 1415–1435, https://doi.org/10.5194/bg-17-1415-2020,https://doi.org/10.5194/bg-17-1415-2020, 2020
Short summary
SiR-actin-labelled granules in foraminifera: patterns, dynamics, and hypotheses
Jan Goleń, Jarosław Tyszka, Ulf Bickmeyer, and Jelle Bijma
Biogeosciences, 17, 995–1011, https://doi.org/10.5194/bg-17-995-2020,https://doi.org/10.5194/bg-17-995-2020, 2020
Short summary
Dimensions of marine phytoplankton diversity
Stephanie Dutkiewicz, Pedro Cermeno, Oliver Jahn, Michael J. Follows, Anna E. Hickman, Darcy A. A. Taniguchi, and Ben A. Ward
Biogeosciences, 17, 609–634, https://doi.org/10.5194/bg-17-609-2020,https://doi.org/10.5194/bg-17-609-2020, 2020
Short summary
Flux variability of phyto- and zooplankton communities in the Mauritanian coastal upwelling between 2003 and 2008
Oscar E. Romero, Karl-Heinz Baumann, Karin A. F. Zonneveld, Barbara Donner, Jens Hefter, Bambaye Hamady, Vera Pospelova, and Gerhard Fischer
Biogeosciences, 17, 187–214, https://doi.org/10.5194/bg-17-187-2020,https://doi.org/10.5194/bg-17-187-2020, 2020
Short summary
Environmental factors influencing benthic communities in the oxygen minimum zones on the Angolan and Namibian margins
Ulrike Hanz, Claudia Wienberg, Dierk Hebbeln, Gerard Duineveld, Marc Lavaleye, Katriina Juva, Wolf-Christian Dullo, André Freiwald, Leonardo Tamborrino, Gert-Jan Reichart, Sascha Flögel, and Furu Mienis
Biogeosciences, 16, 4337–4356, https://doi.org/10.5194/bg-16-4337-2019,https://doi.org/10.5194/bg-16-4337-2019, 2019
Short summary
Vertical distribution of planktonic foraminifera in the Subtropical South Atlantic: depth hierarchy of controlling factors
Douglas Lessa, Raphaël Morard, Lukas Jonkers, Igor M. Venancio, Runa Reuter, Adrian Baumeister, Ana Luiza Albuquerque, and Michal Kucera
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-355,https://doi.org/10.5194/bg-2019-355, 2019
Revised manuscript accepted for BG
Short summary
Calcification and latitudinal distribution of extant coccolithophores across the Drake Passage during late austral summer 2016
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Miguel Ángel Fuertes, Hartmut Schulz, Yann Marcon, Nele Manon Vollmar, José-Abel Flores, and Frank Lamy
Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019,https://doi.org/10.5194/bg-16-3679-2019, 2019
Short summary
Distribution of free-living marine nematodes in the Clarion–Clipperton Zone: implications for future deep-sea mining scenarios
Freija Hauquier, Lara Macheriotou, Tania N. Bezerra, Great Egho, Pedro Martínez Arbizu, and Ann Vanreusel
Biogeosciences, 16, 3475–3489, https://doi.org/10.5194/bg-16-3475-2019,https://doi.org/10.5194/bg-16-3475-2019, 2019
Short summary
Characterizing photosymbiosis in modern planktonic foraminifera
Haruka Takagi, Katsunori Kimoto, Tetsuichi Fujiki, Hiroaki Saito, Christiane Schmidt, Michal Kucera, and Kazuyoshi Moriya
Biogeosciences, 16, 3377–3396, https://doi.org/10.5194/bg-16-3377-2019,https://doi.org/10.5194/bg-16-3377-2019, 2019
Short summary
Observations of deep-sea fishes and mobile scavengers from the abyssal DISCOL experimental mining area
Jeffrey C. Drazen, Astrid B. Leitner, Sage Morningstar, Yann Marcon, Jens Greinert, and Autun Purser
Biogeosciences, 16, 3133–3146, https://doi.org/10.5194/bg-16-3133-2019,https://doi.org/10.5194/bg-16-3133-2019, 2019
Short summary
Rates and drivers of Red Sea plankton community metabolism
Daffne C. López-Sandoval, Katherine Rowe, Paloma Carillo-de-Albonoz, Carlos M. Duarte, and Susana Agustí
Biogeosciences, 16, 2983–2995, https://doi.org/10.5194/bg-16-2983-2019,https://doi.org/10.5194/bg-16-2983-2019, 2019
Short summary
Responses of an abyssal meiobenthic community to short-term burial with crushed nodule particles in the south-east Pacific
Lisa Mevenkamp, Katja Guilini, Antje Boetius, Johan De Grave, Brecht Laforce, Dimitri Vandenberghe, Laszlo Vincze, and Ann Vanreusel
Biogeosciences, 16, 2329–2341, https://doi.org/10.5194/bg-16-2329-2019,https://doi.org/10.5194/bg-16-2329-2019, 2019
Short summary
A trait-based modelling approach to planktonic foraminifera ecology
Maria Grigoratou, Fanny M. Monteiro, Daniela N. Schmidt, Jamie D. Wilson, Ben A. Ward, and Andy Ridgwell
Biogeosciences, 16, 1469–1492, https://doi.org/10.5194/bg-16-1469-2019,https://doi.org/10.5194/bg-16-1469-2019, 2019
Short summary
Meso-zooplankton structure and functioning in the western tropical South Pacific along the 20th parallel south during the OUTPACE survey (February–April 2015)
François Carlotti, Marc Pagano, Loïc Guilloux, Katty Donoso, Valentina Valdés, Olivier Grosso, and Brian P. V. Hunt
Biogeosciences, 15, 7273–7297, https://doi.org/10.5194/bg-15-7273-2018,https://doi.org/10.5194/bg-15-7273-2018, 2018
Short summary
Factors influencing test porosity in planktonic foraminifera
Janet E. Burke, Willem Renema, Michael J. Henehan, Leanne E. Elder, Catherine V. Davis, Amy E. Maas, Gavin L. Foster, Ralf Schiebel, and Pincelli M. Hull
Biogeosciences, 15, 6607–6619, https://doi.org/10.5194/bg-15-6607-2018,https://doi.org/10.5194/bg-15-6607-2018, 2018
Short summary
Geophysical and geochemical controls on the megafaunal community of a high Arctic cold seep
Arunima Sen, Emmelie K. L. Åström, Wei-Li Hong, Alexey Portnov, Malin Waage, Pavel Serov, Michael L. Carroll, and JoLynn Carroll
Biogeosciences, 15, 4533–4559, https://doi.org/10.5194/bg-15-4533-2018,https://doi.org/10.5194/bg-15-4533-2018, 2018
Short summary
Abyssal plain faunal carbon flows remain depressed 26 years after a simulated deep-sea mining disturbance
Tanja Stratmann, Lidia Lins, Autun Purser, Yann Marcon, Clara F. Rodrigues, Ascensão Ravara, Marina R. Cunha, Erik Simon-Lledó, Daniel O. B. Jones, Andrew K. Sweetman, Kevin Köser, and Dick van Oevelen
Biogeosciences, 15, 4131–4145, https://doi.org/10.5194/bg-15-4131-2018,https://doi.org/10.5194/bg-15-4131-2018, 2018
Short summary
Dimethyl sulfide dynamics in first-year sea ice melt ponds in the Canadian Arctic Archipelago
Margaux Gourdal, Martine Lizotte, Guillaume Massé, Michel Gosselin, Michel Poulin, Michael Scarratt, Joannie Charette, and Maurice Levasseur
Biogeosciences, 15, 3169–3188, https://doi.org/10.5194/bg-15-3169-2018,https://doi.org/10.5194/bg-15-3169-2018, 2018
Short summary
Aphotic N2 fixation along an oligotrophic to ultraoligotrophic transect in the western tropical South Pacific Ocean
Mar Benavides, Katyanne M. Shoemaker, Pia H. Moisander, Jutta Niggemann, Thorsten Dittmar, Solange Duhamel, Olivier Grosso, Mireille Pujo-Pay, Sandra Hélias-Nunige, Alain Fumenia, and Sophie Bonnet
Biogeosciences, 15, 3107–3119, https://doi.org/10.5194/bg-15-3107-2018,https://doi.org/10.5194/bg-15-3107-2018, 2018
Short summary
Functional trait responses to sediment deposition reduce macrofauna-mediated ecosystem functioning in an estuarine mudflat
Sebastiaan Mestdagh, Leila Bagaço, Ulrike Braeckman, Tom Ysebaert, Bart De Smet, Tom Moens, and Carl Van Colen
Biogeosciences, 15, 2587–2599, https://doi.org/10.5194/bg-15-2587-2018,https://doi.org/10.5194/bg-15-2587-2018, 2018
Short summary
Dynamics and controls of heterotrophic prokaryotic production in the western tropical South Pacific Ocean: links with diazotrophic and photosynthetic activity
France Van Wambeke, Audrey Gimenez, Solange Duhamel, Cécile Dupouy, Dominique Lefevre, Mireille Pujo-Pay, and Thierry Moutin
Biogeosciences, 15, 2669–2689, https://doi.org/10.5194/bg-15-2669-2018,https://doi.org/10.5194/bg-15-2669-2018, 2018
Short summary
Ocean acidification changes the structure of an Antarctic coastal protistan community
Alyce M. Hancock, Andrew T. Davidson, John McKinlay, Andrew McMinn, Kai G. Schulz, and Rick L. van den Enden
Biogeosciences, 15, 2393–2410, https://doi.org/10.5194/bg-15-2393-2018,https://doi.org/10.5194/bg-15-2393-2018, 2018
Short summary
Do pelagic grazers benefit from sea ice? Insights from the Antarctic sea ice proxy IPSO25
Katrin Schmidt, Thomas A. Brown, Simon T. Belt, Louise C. Ireland, Kyle W. R. Taylor, Sally E. Thorpe, Peter Ward, and Angus Atkinson
Biogeosciences, 15, 1987–2006, https://doi.org/10.5194/bg-15-1987-2018,https://doi.org/10.5194/bg-15-1987-2018, 2018
Short summary
Coccolithophore populations and their contribution to carbonate export during an annual cycle in the Australian sector of the Antarctic zone
Andrés S. Rigual Hernández, José A. Flores, Francisco J. Sierro, Miguel A. Fuertes, Lluïsa Cros, and Thomas W. Trull
Biogeosciences, 15, 1843–1862, https://doi.org/10.5194/bg-15-1843-2018,https://doi.org/10.5194/bg-15-1843-2018, 2018
Short summary
Cited articles
Alsterberg, C., Eklof, J. S., Gamfeldt, L., Havenhand, J. N., and Sundback, K.: Consumers mediate the effects of experimental ocean acidification and warming on primary producers, P. Natl. Acad. Sci. USA, 110, 8603–8608, https://doi.org/10.1073/pnas.1303797110, 2013.
Amado-Filho, G. M., Maneveldt, G. W., Pereira, G. H., Manso, R. C. C., Bahia, R. G., Barros-Barreto, M. B., and Guimaraes, S.: Seaweed diversity associated with a Brazilian tropical rhodolith bed, Cienc. Mar., 36, 371–391, 2010.
Andersson, A. J., Kuffner, I. B., Mackenzie, F. T., Jokiel, P. L., Rodgers, K. S., and Tan, A.: Net Loss of CaCO
3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence, Biogeosciences, 6, 1811–1823, https://doi.org/10.5194/bg-6-1811-2009, 2009.
Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S., and Hoegh-Guldberg, O.: Ocean acidification causes bleaching and productivity loss in coral reef builders, P. Natl. Acad. Sci. USA, 105, 17442–17446, https://doi.org/10.1073/pnas.0804478105, 2008.
Asnaghi, V., Chiantore, M., Mangialajo, L., Gazeau, F., Francour, P., Alliouane, S., and Gattuso, J. P.: Cascading effects of ocean acidification in a rocky subtidal community, Plos One, 8, e61978, https://doi.org/10.1371/journal.pone.0061978, 2013.
Auster, P. J., Estes, J. A., and Coleman, F. C.: Species interactions in marine communities: the invisible fabric of nature, Bull. Mar. Sci., 89, 3–9, https://doi.org/10.5343/bms.2012.1051, 2013.
Baggini, C., Salomidi, M., Voutsinas, E., Bray, L., Krasakopoulou, E., and Hall-Spencer, J. M.: Seasonality affects macroalgal community response to increases in
pCO
2, Plos One, 9, e106520, https://doi.org/10.1371/journal.pone.0106520, 2014.
Ballesteros, E.: Mediterranean coralligenous assemblages: A synthesis of present knowledge, in: Oceanography and Marine Biology – an Annual Review, edited by: Gibson, R. N., Atkinson, R. J. A., and Gordon, J. D. M., Crc Press-Taylor & Francis Group, Boca Raton, 123–195, 2006.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Seferian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Brockington, S. and Peck, L. S.: Seasonality of respiration and ammonium excretion in the Antarctic echinoid
Sterechinus neumayeri, Mar. Ecol. Prog. Ser., 219, 159–168, https://doi.org/10.3354/meps219159, 2001.
Campbell, J. E., Craft, J. D., Muehllehner, N., Langdon, C., and Paul, V. J.: Responses of calcifying algae (Halimeda spp.) to ocean acidification: implications for herbivores, Mar. Ecol. Prog. Ser., 514, 43–56, https://doi.org/10.3354/meps10981, 2014.
Carr, L. A. and Bruno, J. F.: Warming increases the top-down effects and metabolism of a subtidal herbivore, PeerJ, 1, e109, https://doi.org/10.7717/peerj.109, 2013.
Cook, C. M., Lanaras, T., and Colman, B.: Evidence for bicarbonate transport in species of red and brown macrophytic marine-algae, J. Exp. Bot., 37, 977–984, https://doi.org/10.1093/jxb/37.7.977, 1986.
Cornwall, C. E., Hepburn, C. D., McGraw, C. M., Currie, K. I., Pilditch, C. A., Hunter, K. A., Boyd, P. W., and Hurd, C. L.: Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification, Proc. Roy. Soc. B, 280, 20132201, https://doi.org/10.1098/rspb.2013.2201, 2013.
D'Antonio, C.: Epiphytes on the rocky intertidal red alga Rhodomela latrix (Turner) C. Agardh: Negative effects on the host and food for herbivores, J. Exp. Mar. Biol. Ecol., 86, 197–218, https://doi.org/10.1016/0022-0981(85)90103-0, 1985.
Davies, S. P.: Physiological ecology of Patella, I. The effect of body size and temperature on metabolic rate, J. Mar. Biol. Assoc. UK, 46, 647–658, https://doi.org/10.1017/S0025315400033397, 1966.
Del Monaco, C., Hay, M. E., Gartrell, P., Mumby, P. J., and Diaz-Pulido, G.: Effects of ocean acidification on the potency of macroalgal allelopathy to a common coral, Sci. Rep., 7, 41053, https://doi.org/10.1038/srep41053, 2017.
Diaz-Pulido, G., Anthony, K. R. N., Kline, D. I., Dove, S., and Hoegh-Guldberg, O.: Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae, J. Phycol., 48, 32–39, https://doi.org/10.1111/j.1529-8817.2011.01084.x, 2012.
Diaz-Pulido, G., Nash, M. C., Anthony, K. R. N., Bender, D., Opdyke, B. N., Reyes-Nivia, C., and Troitzsch, U.: Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs, Nat. Commun., 5, 3310, https://doi.org/10.1038/ncomms4310, 2014.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO
2 measurements. In: PICES special publication, North Pacific Marine Science Organization, Sidney, British Columbia, 3, 191 pp., 2007.
Duarte, C., Lopez, J., Benitez, S., Manriquez, P. H., Navarro, J. M., Bonta, C. C., Torres, R., and Quijón, P.: Ocean acidification induces changes in algal palatability and herbivore feeding behavior and performance, Oecologia, 180, 453–462, https://doi.org/10.1007/s00442-015-3459-3, 2015.
Dupont, S., Ortega-Martinez, O., and Thorndyke, M.: Impact of near-future ocean acidification on echinoderms, Ecotoxicology, 19, 449–462, https://doi.org/10.1007/s10646-010-0463-6, 2010.
Dutertre, M., Grall, J., Ehrhold, A., and Hamon, D.: Environmental factors affecting maerl bed structure in Brittany (France), Eur. J. Phycol., 50, 371–383, https://doi.org/10.1080/09670262.2015.1063698, 2015.
Foster, M. S., McConnico, L. M., Lundsten, L., Wadsworth, T., Kimball, T., Brooks, L. B., Medina-Lopez, M., Riosmena-Rodriguez, R., Hernandez-Carmona, G., Vasquez-Elizondo, R. M., Johnson, S., and Steller, D. L.: Diversity and natural history of a
Lithothamnion muelleri-Sargassum horridum community in the Gulf of California, Cienc. Mar., 33, 367–384, 2007.
Garilli, V., Rodolfo-Metalpa, R., Scuderi, D., Brusca, L., Parrinello, D., Rastrick, S. P. S., Foggo, A., Twitchett, R. J., Hall-Spencer, J. M., and Milazzo, M.: Physiological advantages of dwarfing in surviving extinctions in high-CO
2 oceans, Nature Climate Change, 5, 678–682, 2015.
Garrabou, J. and Ballesteros, E.: Growth of
Mesophyllum alternans and
Lithophyllum frondosum (Corallinales, Rhodophyta) in the northwestern Mediterranean, Eur. J. Phycol., 35, 1–10, 2000.
Gazeau, F., Parker, L. M., Comeau, S., Gattuso, J. P., O'Connor, W. A., Martin, S., Pörtner, H. O., and Ross, P. M.: Impacts of ocean acidification on marine shelled molluscs, Mar. Biol., 160, 2207–2245, https://doi.org/10.1007/s00227-013-2219-3, 2013.
Gazeau, F., Urbini, L., Cox, T. E., Alliouane, S., and Gattuso, J. P.: Comparison of the alkalinity and calcium anomaly techniques to estimate rates of net calcification, Mar. Ecol. Prog. Ser., 527, 1–12, https://doi.org/10.3354/meps11287, 2015.
Godbold, J. A. and Solan, M.: Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions, Philos. T. Roy. Soc. B, 368, 20130186, https://doi.org/10.1098/rstb.2013.0186, 2013.
Grall, J. and Hall-Spencer, J. M.: Problems facing maerl conservation in Brittany, Aquat. Conserv.-Mar. Freshw. Ecosyst., 13, S55–S64, https://doi.org/10.1002/aqc.568, 2003.
Grall, J., Le Loc'h, F., Guyonnet, B., and Riera, P.: Community structure and food web based on stable isotopes (
δ15N and
δ13C) analysis of a North Eastern Atlantic maerl bed, J. Exp. Mar. Biol. Ecol., 338, 1–15, https://doi.org/10.1016/j.jembe.2006.06.013, 2006.
Guillou, M., Grall, J., and Connan, S.: Can low sea urchin densities control macro-epiphytic biomass in a north-east Atlantic maerl bed ecosystem (Bay of Brest, Brittany, France)?, J. Mar. Biol. Assoc. UK, 82, 867–876, https://doi.org/10.1017/s0025315402006276, 2002.
Gutowska, M. A., Melzner, F., Langenbuch, M., Bock, C., Claireaux, G., and Pörtner, H.-O.: Acid-base regulatory ability of the cephalopod (
Sepia officinalis) in response to environmental hypercapnia, J. Comp. Physiol. B, 180, 323–335, 2010.
Hale, R., Calosi, P., McNeill, L., Mieszkowska, N., and Widdicombe, S.: Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities, Oikos, 120, 661–674, https://doi.org/10.1111/j.1600-0706.2010.19469.x, 2011.
Hansson, L.-A., Nicolle, A., Graneli, W., Hallgren, P., Kritzberg, E., Persson, A., Bjork, J., Nilsson, P. A., and Bronmark, C.: Food-chain length alters community responses to global change in aquatic systems, Nature Climate Change, 3, 228–233, 2012.
Harley, C. D. G., Anderson, K. M., Demes, K. W., Jorve, J. P., Kordas, R. L., Coyle, T. A., and Graham, M. H.: Effects of climate change on global seaweed communities, J. Phycol., 48, 1064–1078, https://doi.org/10.1111/j.1529-8817.2012.01224.x, 2012.
Hily, C., Potin, P., and Floch, J. Y.: Structure of subtidal algal assemblages on soft-bottom sediments: fauna/flora interactions and role of disturbances in the Bay of Brest, France, Mar. Ecol. Prog. Ser., 85, 115–130, https://doi.org/10.3354/meps085115, 1992.
Hofmann, L. C. and Bischof, K.: Ocean acidification effects on calcifying macroalgae, Aquat. Biol., 22, 261–279, https://doi.org/10.3354/ab00581, 2014.
Innes, A. J. and Houlihan, D. F.: Aquatic and aerial oxygen consumption of cool temperate gastropods: A comparison with some mediterranean species, Comp. Biochem. Phys. A, 82, 105–109, https://doi.org/10.1016/0300-9629(85)90712-1, 1985.
Jellison, B. M., Ninokawa, A. T., Hill, T. M., Sanford, E., and Gaylord, B.: Ocean acidification alters the response of intertidal snails to a key sea star predator, P. R. Soc. Lond. B Bio., 283, 20160890, https://doi.org/10.1098/rspb.2016.0890, 2016.
Johnson, M. D. and Carpenter, R. C.: Ocean acidification and warming decrease calcification in the crustose coralline alga
Hydrolithon onkodes and increase susceptibility to grazing, J. Exp. Mar. Biol. Ecol., 434, 94–101, https://doi.org/10.1016/j.jembe.2012.08.005, 2012.
Jokiel, P. L., Rodgers, K. S., Kuffner, I. B., Andersson, A. J., Cox, E. F., and Mackenzie, F. T.: Ocean acidification and calcifying reef organisms: a mesocosm investigation, Coral Reefs, 27, 473–483, https://doi.org/10.1007/s00338-008-0380-9, 2008.
Keats, D. W., Knight, M. A., and Pueschel, C. M.: Antifouling effects of epithallial shedding in three crustose coralline algae (Rhodophyta, Coralinales) on a coral reef, J. Exp. Mar. Biol. Ecol., 213, 281–293, 1997.
Koch, M., Bowes, G., Ross, C., and Zhang, X. H.: Climate change and ocean acidification effects on seagrasses and marine macroalgae, Glob. Change Biol., 19, 103–132, https://doi.org/10.1111/j.1365-2486.2012.02791.x, 2013.
Kordas, R. L., Harley, C. D. G., and O'Connor, M. I.: Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems, J. Exp. Mar. Biol. Ecol., 400, 218–226, https://doi.org/10.1016/j.jembe.2011.02.029, 2011.
Kram, S. L., Price, N. N., Donham, E. M., Johnson, M. D., Kelly, E. L. A., Hamilton, S. L., and Smith, J. E.: Variable responses of temperate calcified and fleshy macroalgae to elevated
pCO
2 and warming, Ices J. Mar. Sci., 73, 693–703, https://doi.org/10.1093/icesjms/fsv168, 2016.
Kroeker, K. J., Micheli, F., and Gambi, M. C.: Ocean acidification causes ecosystem shifts via altered competitive interactions, Nature Climate Change, 3, 156–159, https://doi.org/10.1038/nclimate1680, 2012.
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J. P.: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, Glob. Change Biol., 19, 1884–1896, https://doi.org/10.1111/gcb.12179, 2013.
Kübler, J. E. and Dudgeon, S. R.: Predicting effects of ocean acidification and warming on algae lacking carbon concentrating mechanisms, Plos One, 10, e0132806, https://doi.org/10.1371/journal.pone.0132806, 2015.
Kuffner, I. B., Andersson, A. J., Jokiel, P. L., Rodgers, K. S., and Mackenzie, F. T.: Decreased abundance of crustose coralline algae due to ocean acidification, Nat. Geosci., 1, 114–117, https://doi.org/10.1038/ngeo100, 2008.
Lawrence, J. M.: Sea Urchins: Biology and Ecology, 3rd Edition, Sea Urchins: Biology and Ecology, 3rd Edn., Elsevier Academic Press Inc, San Diego, California, USA, 531 pp., 2013.
Martin, S. and Gattuso, J. P.: Response of Mediterranean coralline algae to ocean acidification and elevated temperature, Glob. Change Biol., 15, 2089–2100, https://doi.org/10.1111/j.1365-2486.2009.01874.x, 2009.
Martin, S. and Hall-Spencer, J. M.: Effects of ocean warming and acidification on rhodolith/maërl beds, in: Rhodolith/maërl beds: a global perspective, edited by: Riosmena-Rodríguez, R., Nelson, W., and Aguirre, J., Coastal Research Library, Springer International Publishing, Cham, Vol. 15, 55–85, 2016.
Martin, S., Castets, M. D., and Clavier, J.: Primary production, respiration and calcification of the temperate free-living coralline alga
Lithothamnion corallioides, Aquat. Bot., 85, 121–128, https://doi.org/10.1016/j.aquabot.2006.02.005, 2006a.
Martin, S., Thouzeau, G., Chauvaud, L., Jean, F., Guerin, L., and Clavier, J.: Respiration, calcification, and excretion of the invasive slipper limpet,
Crepidula fornicata L.: Implications for carbon, carbonate, and nitrogen fluxes in affected areas, Limnol. Oceanogr., 51, 1996–2007, 2006b.
Martin, S., Clavier, J., Chauvaud, L., and Thouzeau, G.: Community metabolism in temperate maerl beds, I. Carbon and carbonate fluxes, Mar. Ecol. Prog. Ser., 335, 19–29, https://doi.org/10.3354/meps335019, 2007.
Martin, S., Cohu, S., Vignot, C., Zimmerman, G., and Gattuso, J. P.: One-year experiment on the physiological response of the Mediterranean crustose coralline alga,
Lithophyllum cabiochae, to elevated
pCO
2 and temperature, Ecol. Evolut., 3, 676–693, https://doi.org/10.1002/ece3.475, 2013.
McCoy, S. J. and Kamenos, N. A.: Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change, J. Phycol., 51, 6–24, https://doi.org/10.1111/jpy.12262, 2015.
Morse, J. W., Andersson, A. J., and Mackenzie, F. T.: Initial responses of carbonate-rich shelf sediments to rising atmospheric
pCO
2 and “ocean acidification”: Role of high Mg-calcites, Geochim. Cosmochim. Ac., 70, 5814–5830, https://doi.org/10.1016/j.gca.2006.08.017, 2006.
Navarro, J. M., Torres, R., Acuña, K., Duarte, C., Manriquez, P. H., Lardies, M., Lagos, N. A., Vargas, C., and Aguilera, V.: Impact of medium-term exposure to elevated
pCO
2 levels on the physiological energetics of the mussel
Mytilus chilensis, Chemosphere, 90, 1242–1248, https://doi.org/10.1016/j.chemosphere.2012.09.063, 2013.
Noisette, F., Bordeyne, F., Davoult, D., and Martin, S.: Assessing the physiological responses of the gastropod
Crepidula fornicata to predicted ocean acidification and warming, Limnol. Oceanogr., 61, 430–444, https://doi.org/10.1002/lno.10225, 2016.
O'Connor, M. I., Gilbert, B., and Brown, C. J.: Theoretical predictions for how temperature affects the dynamics of interacting herbivores and plants, Am. Nat., 178, 626–638, https://doi.org/10.1086/662171, 2011.
O'Leary, J. K. and McClanahan, T. R.: Trophic cascades result in large-scale coralline algae loss through differential grazer effects, Ecology, 91, 3584–3597, https://doi.org/10.1890/09-2059.1, 2010.
Olabarria, C., Arenas, F., Viejo, R. M., Gestoso, I., Vaz-Pinto, F., Incera, M., Rubal, M., Cacabelos, E., Veiga, P., and Sobrino, C.: Response of macroalgal assemblages from rockpools to climate change: effects of persistent increase in temperature and CO
2, Oikos, 122, 1065–1079, https://doi.org/10.1111/j.1600-0706.2012.20825.x, 2013.
Ordoñez, A., Doropoulos, C., and Diaz-Pulido, G.: Effects of ocean acidification on population dynamics and community structure of crustose coralline algae, Biol. Bull., 226, 255–268, https://doi.org/10.1086/BBLv226n3p255, 2014.
Pajusalu, L., Martin, G., and Pollumae, A.: Results of laboratory and field experiments of the direct effect of increasing CO
2 on net primary production of macroalgal species in brackish-water ecosystems, P. Est. Acad. Sci., 62, 148–154, https://doi.org/10.3176/proc.2013.2.09, 2013.
Pansch, C., Schaub, I., Havenhand, J., and Wahl, M.: Habitat traits and food availability determine the response of marine invertebrates to ocean acidification, Glob. Change Biol., 20, 265–277, https://doi.org/10.1111/gcb.12478, 2014.
Parker, L. M., Ross, P. M., O'Connor, W. A., Pörtner, H.-O., Scanes, E., and Wright, J. M.: Predicting the response of molluscs to the impact of ocean acidification, Biology, 2, 651–692, 2013.
Peña, V. and Barbara, I.: Seasonal patterns in the maerl community of shallow European Atlantic beds and their use as a baseline for monitoring studies, Eur. J. Phycol., 45, 327–342, https://doi.org/10.1080/09670261003586938, 2010.
Peña, V., Bárbara, I., Grall, J., Maggs, C. A., and Hall-Spencer, J. M.: The diversity of seaweeds on maerl in the NE Atlantic, Mar. Biodivers., 44, 533–551, https://doi.org/10.1007/s12526-014-0214-7, 2014.
Poore, A. G. B., Graba-Landry, A., Favret, M., Brennand, H. S., Byrne, M., and Dworjanyn, S. A.: Direct and indirect effects of ocean acidification and warming on a marine plant-herbivore interaction, Oecologia, 173, 1113–1124, https://doi.org/10.1007/s00442-013-2683-y, 2013.
Poore, A. G. B., Graham, S. E., Byrne, M., and Dworjanyn, S. A.: Effects of ocean warming and lowered pH on algal growth and palatability to a grazing gastropod, Mar. Biol., 163, 1–11, https://doi.org/10.1007/s00227-016-2878-y, 2016.
Potin, P., Floch, J. Y., Augris, C., and Cabioch, J.: Annual growth rate of the calcareous red alga
Lithothamnion corallioides (Corallinales, Rhodophyta) in the bay of Brest, France, Hydrobiologia, 204, 263–267, https://doi.org/10.1007/bf00040243, 1990.
Ragazzola, F., Foster, L. C., Form, A., Anderson, P. S. L., Hansteen, T. H., and Fietzke, J.: Ocean acidification weakens the structural integrity of coralline algae, Glob. Change Biol., 18, 2804–2812, https://doi.org/10.1111/j.1365-2486.2012.02756.x, 2012.
Ramajo, L., Perez-Leon, E., Hendriks, I. E., Marba, N., Krause-Jensen, D., Sejr, M. K., Blicher, M. E., Lagos, N. A., Olsen, Y. S., and Duarte, C. M.: Food supply confers calcifiers resistance to ocean acidification, Sci. Rep., 6, 19374, https://doi.org/10.1038/srep19374, 2016.
Reyes-Nivia, C., Diaz-Pulido, G., Kline, D., Ove Hoegh, G., and Dove, S.: Ocean acidification and warming scenarios increase microbioerosion of coral skeletons, Glob. Change Biol., 19, 1919–1929, https://doi.org/10.1111/gcb.12158, 2013.
Reyes-Nivia, C., Diaz-Pulido, G., and Dove, S.: Relative roles of endolithic algae and carbonate chemistry variability in the skeletal dissolution of crustose coralline algae, Biogeosciences, 11, 4615–4626, https://doi.org/10.5194/bg-11-4615-2014, 2014.
Reynaud, S., Leclercq, N., Romaine-Lioud, S., Ferrier-Pages, C., Jaubert, J., and Gattuso, J. P.: Interacting effects of CO
2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral, Glob. Change Biol., 9, 1660–1668, https://doi.org/10.1046/j.1529-8817.2003.00678.x, 2003.
Ries, J. B., Cohen, A. L., and McCorkle, D. C.: Marine calcifiers exhibit mixed responses to CO
2-induced ocean acidification, Geology, 37, 1131–1134, https://doi.org/10.1130/g30210a.1, 2009.
Ritchie, R. J.: Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents, Photosynthetica, 46, 115–126, https://doi.org/10.1007/s11099-008-0019-7, 2008.
Rodolfo-Metalpa, R., Martin, S., Ferrier-Pagès, C., and Gattuso, J.-P.: Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to
pCO
2 and temperature levels projected for the year 2100 AD, Biogeosciences, 7, 289–300, https://doi.org/10.5194/bg-7-289-2010, 2010.
Sampaio, E., Rodil, I. F., Vaz-Pinto, F., Fernández, A., and Arenas, F.: Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients, Mar. Environ. Res., 125, 25–33, https://doi.org/10.1016/j.marenvres.2017.01.001, 2017.
Semesi, I. S., Kangwe, J., and Bjork, M.: Alterations in seawater pH and CO
2 affect calcification and photosynthesis in the tropical coralline alga,
Hydrolithon sp (Rhodophyta), Estuar. Coast. Shelf S., 84, 337–341, https://doi.org/10.1016/j.ecss.2009.03.038, 2009.
Short, J., Kendrick, G. A., Falter, J., and McCulloch, M. T.: Interactions between filamentous turf algae and coralline algae are modified under ocean acidification, J. Exp. Mar. Biol. Ecol., 456, 70–77, https://doi.org/10.1016/j.jembe.2014.03.014, 2014.
Short, J. A., Pedersen, O., and Kendrick, G. A.: Turf algal epiphytes metabolically induce local pH increase, with implications for underlying coralline algae under ocean acidification, Estuar. Coast. Shelf S., 164, 463–470, https://doi.org/10.1016/j.ecss.2015.08.006, 2015.
Smith, S. V. and Key, G. S.: Carbon-dioxide and metabolism in marine environments, Limnol. Oceanogr., 20, 493–495, https://doi.org/10.4319/lo.1975.20.3.0493, 1975.
Solorzano, L.: Determination of ammonia in natural waters by the phenolhypochlorite method, Limnol. Oceanogr., 14, 799–801, 1969.
Thomas, C. W., Crear, B. J., and Hart, P. R.: The effect of temperature on survival, growth, feeding and metabolic activity of the southern rock lobster,
Jasus edwardsii, Aquaculture, 185, 73–84, https://doi.org/10.1016/S0044-8486(99)00341-5, 2000.
Thomsen, J., Casties, I., Pansch, C., Kortzinger, A., and Melzner, F.: Food availability outweighs ocean acidification effects in juvenile
Mytilus edulis: laboratory and field experiments, Glob. Change Biol., 19, 1017–1027, 2013.
Widdicombe, S. and Spicer, J. I.: Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us?, J. Exp. Mar. Biol. Ecol., 366, 187–197, https://doi.org/10.1016/j.jembe.2008.07.024, 2008.
Yang, Y., Hansson, L., and Gattuso, J. P.: Data compilation on the biological response to ocean acidification: an update, Earth Syst. Sci. Data, 8, 79–87, https://doi.org/10.5194/essd-8-79-2016, 2016.