Articles | Volume 15, issue 5
https://doi.org/10.5194/bg-15-1627-2018
https://doi.org/10.5194/bg-15-1627-2018
Research article
 | 
16 Mar 2018
Research article |  | 16 Mar 2018

Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

Ting Liu, Liang Wang, Xiaojuan Feng, Jinbo Zhang, Tian Ma, Xin Wang, and Zongguang Liu

Related authors

Spatial–temporal variations in riverine carbon strongly influenced by local hydrological events in an alpine catchment
Xin Wang, Ting Liu, Liang Wang, Zongguang Liu, Erxiong Zhu, Simin Wang, Yue Cai, Shanshan Zhu, and Xiaojuan Feng
Biogeosciences, 18, 3015–3028, https://doi.org/10.5194/bg-18-3015-2021,https://doi.org/10.5194/bg-18-3015-2021, 2021
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
Global and regional hydrological impacts of global forest expansion
James A. King, James Weber, Peter Lawrence, Stephanie Roe, Abigail L. S. Swann, and Maria Val Martin
Biogeosciences, 21, 3883–3902, https://doi.org/10.5194/bg-21-3883-2024,https://doi.org/10.5194/bg-21-3883-2024, 2024
Short summary
The biological and preformed carbon pumps in perpetually slower and warmer oceans
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024,https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
The Southern Ocean as the climate's freight train – driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences, 21, 3053–3073, https://doi.org/10.5194/bg-21-3053-2024,https://doi.org/10.5194/bg-21-3053-2024, 2024
Short summary
Mapping the future afforestation distribution of China constrained by a national afforestation plan and climate change
Shuaifeng Song, Xuezhen Zhang, and Xiaodong Yan
Biogeosciences, 21, 2839–2858, https://doi.org/10.5194/bg-21-2839-2024,https://doi.org/10.5194/bg-21-2839-2024, 2024
Short summary
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024,https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary

Cited articles

Ahmad, W., Singh, B., Dijkstra, F. A., and Dalal, R. C.: Inorganic and organic carbon dynamics in a limed acid soil are mediated by plants, Soil Biol. Biochem., 57, 549–555, 2013.
Artiola, J. F. and Walworth, J. L.: Irrigation water quality effects on soil carbon fractionation and organic carbon dissolution and leaching in a semiarid calcareous soil, Soil Sci., 174, 356–371, 2009.
Aslam, S., Iqbal, A., Deschamps, M., Recous, S., Garnier, P., and Benoit, P.: Effect of rainfall regimes and mulch decomposition on the dissipation and leaching of S-metolachlor and glyphosate: a soil column experiment, Pest Manag. Sci., 71, 278–291, 2015.
Bai, Y., Wu, J., Xing, Q., Pan, Q., Huang, J., Yang, D., and Han, X.: Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau, Ecology, 89, 2140–2153, 2008.
Barré, P., Fernandez-Ugalde, O., Virto, I., Velde, B., and Chenu, C.: Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: incomplete knowledge and exciting prospects, Geoderma, 235, 382–395, 2014.
Download
Short summary
Compared to the respiration process, few studies have examined soil carbon leaching possibly enhanced by extreme precipitation events (EPEs). We show that soil carbon leaching was much higher than CO2 loss through respiration under EPEs in grassland soils through incubation experiments. The soil carbon leaching process should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems, especially considering the projected increase in EPEs with climate change.
Altmetrics
Final-revised paper
Preprint