Articles | Volume 15, issue 9
https://doi.org/10.5194/bg-15-2803-2018
https://doi.org/10.5194/bg-15-2803-2018
Research article
 | 
09 May 2018
Research article |  | 09 May 2018

Ocean acidification increases the sensitivity of and variability in physiological responses of an intertidal limpet to thermal stress

Jie Wang, Bayden D. Russell, Meng-Wen Ding, and Yun-Wei Dong

Related subject area

Earth System Science/Response to Global Change: Climate Change
The biological and preformed carbon pumps in perpetually slower and warmer oceans
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024,https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
The Southern Ocean as the climate's freight train – driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences, 21, 3053–3073, https://doi.org/10.5194/bg-21-3053-2024,https://doi.org/10.5194/bg-21-3053-2024, 2024
Short summary
Mapping the future afforestation distribution of China constrained by a national afforestation plan and climate change
Shuaifeng Song, Xuezhen Zhang, and Xiaodong Yan
Biogeosciences, 21, 2839–2858, https://doi.org/10.5194/bg-21-2839-2024,https://doi.org/10.5194/bg-21-2839-2024, 2024
Short summary
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024,https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Coherency and time lag analyses between MODIS vegetation indices and climate across forests and grasslands in the European temperate zone
Kinga Kulesza and Agata Hościło
Biogeosciences, 21, 2509–2527, https://doi.org/10.5194/bg-21-2509-2024,https://doi.org/10.5194/bg-21-2509-2024, 2024
Short summary

Cited articles

Angilletta, M. J., Zelic, M. H., Adrian, G. J., Hurliman, A. M., and Smith, C. D.: Heat tolerance during embryonic development has not diverged among populations of a widespread species (Sceloporus undulatus), Conserv. Physiol., 1, cot018, https://doi.org/10.1093/conphys/cot018, 2013. 
Bao, B. and Ren, G. Y.: Climatological characteristics and long-term change of SST over the marginal seas of China, Cont. Shelf Res., 77, 96–106, https://doi.org/10.1016/j.csr.2014.01.013, 2014. 
Braby, C. E. and Somero, G. N.: Following the heart: temperature and salinity effects on heart rate in native and invasive species of blue mussels (genus Mytilus), J. Exp. Biol., 209, 2554–2566, https://doi.org/10.1242/jeb.02259, 2006. 
Byrne, M.: Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean, Oceanogr. Mar. Biol., 49, 1–42, https://doi.org/10.1201/b11009-2, 2011. 
Byrne, M. and Przeslawski, R.: Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories, Integr. Comp. Biol., 53, 582–596, https://doi.org/10.1093/icb/ict049, 2013. 
Download
Short summary
To understand ecological impacts of CO2-induced ocean acidification and temperature rise, a key question is if organisms become more vulnerable under multiple stressors. Here we tested heart rate and gene expression levels of a limpet under varying pCO2 and temperature. Results showed that while many individuals are more vulnerable to heat stress under high CO2 and increased temperature, some animals have the ability to alter their physiology to help them survive under future conditions.
Altmetrics
Final-revised paper
Preprint