Articles | Volume 15, issue 13
Biogeosciences, 15, 4131–4145, 2018
https://doi.org/10.5194/bg-15-4131-2018

Special issue: Assessing environmental impacts of deep-sea mining...

Biogeosciences, 15, 4131–4145, 2018
https://doi.org/10.5194/bg-15-4131-2018

Research article 06 Jul 2018

Research article | 06 Jul 2018

Abyssal plain faunal carbon flows remain depressed 26 years after a simulated deep-sea mining disturbance

Tanja Stratmann et al.

Related authors

Modeling silicate–nitrate–ammonium co-limitation of algal growth and the importance of bacterial remineralization based on an experimental Arctic coastal spring bloom culture study
Tobias R. Vonnahme, Martial Leroy, Silke Thoms, Dick van Oevelen, H. Rodger Harvey, Svein Kristiansen, Rolf Gradinger, Ulrike Dietrich, and Christoph Völker
Biogeosciences, 18, 1719–1747, https://doi.org/10.5194/bg-18-1719-2021,https://doi.org/10.5194/bg-18-1719-2021, 2021
Short summary
Seabed video and still images from the northern Weddell Sea and the western flanks of the Powell Basin
Autun Purser, Simon Dreutter, Huw Griffiths, Laura Hehemann, Kerstin Jerosch, Axel Nordhausen, Dieter Piepenburg, Claudio Richter, Henning Schröder, and Boris Dorschel
Earth Syst. Sci. Data, 13, 609–615, https://doi.org/10.5194/essd-13-609-2021,https://doi.org/10.5194/essd-13-609-2021, 2021
Short summary
Megafauna community assessment of polymetallic-nodule fields with cameras: platform and methodology comparison
Timm Schoening, Autun Purser, Daniel Langenkämper, Inken Suck, James Taylor, Daphne Cuvelier, Lidia Lins, Erik Simon-Lledó, Yann Marcon, Daniel O. B. Jones, Tim Nattkemper, Kevin Köser, Martin Zurowietz, Jens Greinert, and Jose Gomes-Pereira
Biogeosciences, 17, 3115–3133, https://doi.org/10.5194/bg-17-3115-2020,https://doi.org/10.5194/bg-17-3115-2020, 2020
Short summary
Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation
Magdalini Christodoulou, Timothy O'Hara, Andrew F. Hugall, Sahar Khodami, Clara F. Rodrigues, Ana Hilario, Annemiek Vink, and Pedro Martinez Arbizu
Biogeosciences, 17, 1845–1876, https://doi.org/10.5194/bg-17-1845-2020,https://doi.org/10.5194/bg-17-1845-2020, 2020
Short summary
Scars in the abyss: reconstructing sequence, location and temporal change of the 78 plough tracks of the 1989 DISCOL deep-sea disturbance experiment in the Peru Basin
Florian Gausepohl, Anne Hennke, Timm Schoening, Kevin Köser, and Jens Greinert
Biogeosciences, 17, 1463–1493, https://doi.org/10.5194/bg-17-1463-2020,https://doi.org/10.5194/bg-17-1463-2020, 2020
Short summary

Related subject area

Biodiversity and Ecosystem Function: Marine
The effect of the salinity, light regime and food source on carbon and nitrogen uptake in a benthic foraminifer
Michael Lintner, Bianca Lintner, Wolfgang Wanek, Nina Keul, and Petra Heinz
Biogeosciences, 18, 1395–1406, https://doi.org/10.5194/bg-18-1395-2021,https://doi.org/10.5194/bg-18-1395-2021, 2021
Short summary
Changes in population depth distribution and oxygen stratification are involved in the current low condition of the eastern Baltic Sea cod (Gadus morhua)
Michele Casini, Martin Hansson, Alessandro Orio, and Karin Limburg
Biogeosciences, 18, 1321–1331, https://doi.org/10.5194/bg-18-1321-2021,https://doi.org/10.5194/bg-18-1321-2021, 2021
Short summary
Effects of spatial variability on the exposure of fish to hypoxia: a modeling analysis for the Gulf of Mexico
Elizabeth D. LaBone, Kenneth A. Rose, Dubravko Justic, Haosheng Huang, and Lixia Wang
Biogeosciences, 18, 487–507, https://doi.org/10.5194/bg-18-487-2021,https://doi.org/10.5194/bg-18-487-2021, 2021
Short summary
Plant genotype determines biomass response to flooding frequency in tidal wetlands
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021,https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Factors controlling the competition between Phaeocystis and diatoms in the Southern Ocean and implications for carbon export fluxes
Cara Nissen and Meike Vogt
Biogeosciences, 18, 251–283, https://doi.org/10.5194/bg-18-251-2021,https://doi.org/10.5194/bg-18-251-2021, 2021
Short summary

Cited articles

Amon, D. J., Hilário, A., Martínez Arbizu, P., and Smith, C. R.: Observations of organic falls from the abyssal Clarion-Clipperton Zone in the tropical eastern Pacific Ocean, Mar. Biodivers., 47, 311–321, https://doi.org/10.1007/s12526-016-0572-4, 2017. 
Bailey, D. M., Ruhl, H. A., and Smith, K. L.: Long-term change in benthopelagic fish abundance in the abyssal northeast Pacific Ocean, Ecology, 87, 549–555, https://doi.org/10.1890/04-1832, 2006. 
Bluhm, H.: Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the seafloor, Deep-Sea Res. Pt. II, 48, 3841–3868, https://doi.org/10.1016/S0967-0645(01)00070-4, 2001. 
Bluhm, H. and Gebruk, A. V.: Holothuroidea (Echinodermata) of the Peru Basin – ecological and taxonomic remarks based on underwater images, Mar. Ecol., 20, 167–195, https://doi.org/10.1046/j.1439-0485.1999.00072.x, 1999. 
Boetius, A.: RV SONNE SO242/2. Cruise Report/Fahrtbericht, DISCOL revisited, Guayaquil: 28 August 2015 – Guayaquil: 1 October 2015, SO242/2: JPI Oceans Ecological Aspects of Deep-Sea Mining, Bremen, 2015. 
Download
Short summary
Extraction of polymetallic nodules will have negative impacts on the deep-sea ecosystem, but it is not known whether the ecosystem is able to recover from them. Therefore, in 1989 a sediment disturbance experiment was conducted in the Peru Basin to mimic deep-sea mining. Subsequently, the experimental site was re-visited 5 times to monitor the recovery of fauna. We developed food-web models for all 5 time steps and found that, even after 26 years, carbon flow in the system differs significantly.
Altmetrics
Final-revised paper
Preprint