Articles | Volume 15, issue 14
https://doi.org/10.5194/bg-15-4447-2018
https://doi.org/10.5194/bg-15-4447-2018
Research article
 | 
20 Jul 2018
Research article |  | 20 Jul 2018

Fungi regulate the response of the N2O production process to warming and grazing in a Tibetan grassland

Lei Zhong, Shiping Wang, Xingliang Xu, Yanfen Wang, Yichao Rui, Xiaoqi Zhou, Qinhua Shen, Jinzhi Wang, Lili Jiang, Caiyun Luo, Tianbao Gu, Wenchao Ma, and Guanyi Chen

Related subject area

Biogeochemistry: Soils
Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024,https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Technical note: An open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water
Sahiti Bulusu, Cristina Prieto García, Helen E. Dahlke, and Elad Levintal
Biogeosciences, 21, 3007–3013, https://doi.org/10.5194/bg-21-3007-2024,https://doi.org/10.5194/bg-21-3007-2024, 2024
Short summary
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grassland
Violeta Mendoza-Martinez, Scott L. Collins, and Jennie R. McLaren
Biogeosciences, 21, 2655–2667, https://doi.org/10.5194/bg-21-2655-2024,https://doi.org/10.5194/bg-21-2655-2024, 2024
Short summary
Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh
Sean Fettrow, Andrew Wozniak, Holly A. Michael, and Angelia L. Seyfferth
Biogeosciences, 21, 2367–2384, https://doi.org/10.5194/bg-21-2367-2024,https://doi.org/10.5194/bg-21-2367-2024, 2024
Short summary
Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024,https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary

Cited articles

Bai, Y., Jianguo, W. U., Clark, C. M., Naeem, S., Pan, Q., Huang, J., Zhang, L., and Han, X.: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands, Glob. Change Biol., 16, 358–372, https://doi.org/10.1111/j.1365-2486.2009.01950.x, 2010. 
Borneman, J. and Hartin, R. J.: PCR primers that amplify fungal rRNA genes from environmental samples, Appl. Environ. Microb., 66, 4356–4360, https://doi.org/10.1128/AEM.66.10.4356-4360, 2000. 
Cabello, P., Roldán, M. D., and Moreno-Vivián, C.: Nitrate reduction and the nitrogen cycle in archaea, Microbiology, 150, 3527–3546, 2004. 
Castaldi, S. and Smith, K. A.: Effect of cycloheximide on N2O and NO3- production in a forest and an agricultural soil, Biol. Fert. Soils, 27, 27–34, 1998. 
Che, R., Deng, Y., Wang, W., Rui, Y., Zhang, J., Tahmasbian, I., Tang, L., Wang, S., Wang Y., Xu, Z., and Cui, X.: Long-term warming rather than grazing significantly changed total and active soil procaryotic community structures, Geoderma, 316, 1–10, 2018. 
Download
Short summary
Soil fungi could be the main source of N2O production potential in the Tibetan alpine grasslands. Warming and winter grazing may not affect the potential for soil N2O production potential, but climate warming can alter biotic pathways responsible for N2O production. These findings indicate that characterizing how fungal nitrification–denitrification contributes to N2O production, as well as how it responds to environmental and land use changes, can advance our understanding of N cycling.
Altmetrics
Final-revised paper
Preprint