Articles | Volume 15, issue 19
https://doi.org/10.5194/bg-15-5801-2018
https://doi.org/10.5194/bg-15-5801-2018
Research article
 | 
04 Oct 2018
Research article |  | 04 Oct 2018

Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation

Istem Fer, Ryan Kelly, Paul R. Moorcroft, Andrew D. Richardson, Elizabeth M. Cowdery, and Michael C. Dietze

Related authors

The influence of El Niño–Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario
Istem Fer, Britta Tietjen, Florian Jeltsch, and Christian Wolff
Biogeosciences, 14, 4355–4374, https://doi.org/10.5194/bg-14-4355-2017,https://doi.org/10.5194/bg-14-4355-2017, 2017
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024,https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024,https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
When and why microbial-explicit soil organic carbon models can be unstable
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024,https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024,https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Climate-based prediction of carbon fluxes from deadwood in Australia
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024,https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary

Cited articles

Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE T. Signal. Process., 50, 174–188, https://doi.org/10.1109/78.978374, 2002.
Aslanyan, G., Easther, R., and Price, L. C.: Learn-as-you-go acceleration of cosmological parameter estimates, J. Cosmol. Astropart. P., 2015, 005, 2015.
Bradford, J. B., Weishampel, P., Smith, M.-L., Kolka, R., Birdsey, R. A., Ollinger, S. V., and Ryan, M. G.: Carbon pools and fluxes in small temperate forest landscapes: Variability and implications for sampling design, Forest Ecol. Manag., 259, 1245–1254, https://doi.org/10.1016/j.foreco.2009.04.009, 2010.
Braswell, B. H., Sacks, W. J., Linder, E., and Schimel, D. S.: Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations, Global Change Biol., 11, 335–355, https://doi.org/10.1111/j.1365-2486.2005.00897.x, 2005.
Brynjarsdóttir, J. and O'Hagan, A.: Learning about physical parameters: the importance of model discrepancy, Inverse Problems, 30, 114007, 2014.
Download
Short summary
The computer models we use to understand and forecast the ecosystem changes have multiple components that determine their outcomes. Due to our limited observation capacities, these components bear uncertainties that in return affect our predictions. While there are techniques for reducing these uncertainties, they are not applicable to every model due to computational and statistical barriers. This research presents a method that lowers those barriers and allows us to improve model predictions.
Altmetrics
Final-revised paper
Preprint