Articles | Volume 15, issue 19
https://doi.org/10.5194/bg-15-5801-2018
https://doi.org/10.5194/bg-15-5801-2018
Research article
 | 
04 Oct 2018
Research article |  | 04 Oct 2018

Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation

Istem Fer, Ryan Kelly, Paul R. Moorcroft, Andrew D. Richardson, Elizabeth M. Cowdery, and Michael C. Dietze

Related authors

The influence of El Niño–Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario
Istem Fer, Britta Tietjen, Florian Jeltsch, and Christian Wolff
Biogeosciences, 14, 4355–4374, https://doi.org/10.5194/bg-14-4355-2017,https://doi.org/10.5194/bg-14-4355-2017, 2017
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
Future methane fluxes of peatlands are controlled by management practices and fluctuations in hydrological conditions due to climatic variability
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024,https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary
Understanding and simulating cropland and non-cropland burning in Europe using the BASE (Burnt Area Simulator for Europe) model
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024,https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Representation of the terrestrial carbon cycle in CMIP6
Bettina K. Gier, Manuel Schlund, Pierre Friedlingstein, Chris D. Jones, Colin Jones, Sönke Zaehle, and Veronika Eyring
Biogeosciences, 21, 5321–5360, https://doi.org/10.5194/bg-21-5321-2024,https://doi.org/10.5194/bg-21-5321-2024, 2024
Short summary
Does dynamically modeled leaf area improve predictions of land surface water and carbon fluxes? Insights into dynamic vegetation modules
Sven Armin Westermann, Anke Hildebrandt, Souhail Bousetta, and Stephan Thober
Biogeosciences, 21, 5277–5303, https://doi.org/10.5194/bg-21-5277-2024,https://doi.org/10.5194/bg-21-5277-2024, 2024
Short summary
Observational benchmarks inform representation of soil organic carbon dynamics in land surface models
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences, 21, 5173–5183, https://doi.org/10.5194/bg-21-5173-2024,https://doi.org/10.5194/bg-21-5173-2024, 2024
Short summary

Cited articles

Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE T. Signal. Process., 50, 174–188, https://doi.org/10.1109/78.978374, 2002.
Aslanyan, G., Easther, R., and Price, L. C.: Learn-as-you-go acceleration of cosmological parameter estimates, J. Cosmol. Astropart. P., 2015, 005, 2015.
Bradford, J. B., Weishampel, P., Smith, M.-L., Kolka, R., Birdsey, R. A., Ollinger, S. V., and Ryan, M. G.: Carbon pools and fluxes in small temperate forest landscapes: Variability and implications for sampling design, Forest Ecol. Manag., 259, 1245–1254, https://doi.org/10.1016/j.foreco.2009.04.009, 2010.
Braswell, B. H., Sacks, W. J., Linder, E., and Schimel, D. S.: Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations, Global Change Biol., 11, 335–355, https://doi.org/10.1111/j.1365-2486.2005.00897.x, 2005.
Brynjarsdóttir, J. and O'Hagan, A.: Learning about physical parameters: the importance of model discrepancy, Inverse Problems, 30, 114007, 2014.
Download
Short summary
The computer models we use to understand and forecast the ecosystem changes have multiple components that determine their outcomes. Due to our limited observation capacities, these components bear uncertainties that in return affect our predictions. While there are techniques for reducing these uncertainties, they are not applicable to every model due to computational and statistical barriers. This research presents a method that lowers those barriers and allows us to improve model predictions.
Altmetrics
Final-revised paper
Preprint