Articles | Volume 16, issue 20
https://doi.org/10.5194/bg-16-4051-2019
https://doi.org/10.5194/bg-16-4051-2019
Research article
 | 
18 Oct 2019
Research article |  | 18 Oct 2019

Insights from mercury stable isotopes on terrestrial–atmosphere exchange of Hg(0) in the Arctic tundra

Martin Jiskra, Jeroen E. Sonke, Yannick Agnan, Detlev Helmig, and Daniel Obrist

Related authors

Physiological and climate controls on foliar mercury uptake by European tree species
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022,https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
A bottom-up quantification of foliar mercury uptake fluxes across Europe
Lena Wohlgemuth, Stefan Osterwalder, Carl Joseph, Ansgar Kahmen, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 17, 6441–6456, https://doi.org/10.5194/bg-17-6441-2020,https://doi.org/10.5194/bg-17-6441-2020, 2020
Short summary
A revised pan-Arctic permafrost soil Hg pool based on Western Siberian peat Hg and carbon observations
Artem G. Lim, Martin Jiskra, Jeroen E. Sonke, Sergey V. Loiko, Natalia Kosykh, and Oleg S. Pokrovsky
Biogeosciences, 17, 3083–3097, https://doi.org/10.5194/bg-17-3083-2020,https://doi.org/10.5194/bg-17-3083-2020, 2020
Short summary
Eddy covariance flux measurements of gaseous elemental mercury over a grassland
Stefan Osterwalder, Werner Eugster, Iris Feigenwinter, and Martin Jiskra
Atmos. Meas. Tech., 13, 2057–2074, https://doi.org/10.5194/amt-13-2057-2020,https://doi.org/10.5194/amt-13-2057-2020, 2020
Short summary

Related subject area

Biogeochemistry: Air - Land Exchange
Monitoring cropland daily carbon dioxide exchange at field scales with Sentinel-2 satellite imagery
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024,https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Compound soil and atmospheric drought (CSAD) events and CO2 fluxes of a mixed deciduous forest: the occurrence, impact, and temporal contribution of main drivers
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024,https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
The influence of plant water stress on vegetation–atmosphere exchanges: implications for ozone modelling
Tamara Emmerichs, Yen-Sen Lu, and Domenico Taraborrelli
Biogeosciences, 21, 3251–3269, https://doi.org/10.5194/bg-21-3251-2024,https://doi.org/10.5194/bg-21-3251-2024, 2024
Short summary
High interspecific variability in ice nucleation activity suggests pollen ice nucleators are incidental
Nina L. H. Kinney, Charles A. Hepburn, Matthew I. Gibson, Daniel Ballesteros, and Thomas F. Whale
Biogeosciences, 21, 3201–3214, https://doi.org/10.5194/bg-21-3201-2024,https://doi.org/10.5194/bg-21-3201-2024, 2024
Short summary
Using automated machine learning for the upscaling of gross primary productivity
Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan
Biogeosciences, 21, 2447–2472, https://doi.org/10.5194/bg-21-2447-2024,https://doi.org/10.5194/bg-21-2447-2024, 2024
Short summary

Cited articles

Agnan, Y., Le Dantec, T., Moore, C. W., Edwards, G. C., and Obrist, D.: New Constraints on Terrestrial Surface-Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database, Environ. Sci. Technol., 50, 507–524, https://doi.org/10.1021/acs.est.5b04013, 2016. 
Agnan, Y., Douglas, T. A., Helmig, D., Hueber, J., and Obrist, D.: Mercury in the Arctic tundra snowpack: temporal and spatial concentration patterns and trace gas exchanges, The Cryosphere, 12, 1939–1956, https://doi.org/10.5194/tc-12-1939-2018, 2018. 
Bash, J. O. and Miller, D. R.: Growing season total gaseous mercury (TGM) flux measurements over an Acer rubrum L. stand, Atmos. Environ., 43, 5953–5961, https://doi.org/10.1016/j.atmosenv.2009.08.008, 2009. 
Bergquist, B. A. and Blum, J. D.: Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems, Science, 318, 417–420, https://doi.org/10.1126/science.1148050, 2007. 
Blum, J. and Bergquist, B.: Reporting of variations in the natural isotopic composition of mercury, Anal. Bioanal. Chem., 388, 353–359, https://doi.org/10.1007/s00216-007-1236-9, 2007. 
Download
Short summary
The tundra plays a pivotal role in Arctic mercury cycling by storing atmospheric mercury deposition and shuttling it to the Arctic Ocean. We used the isotopic fingerprint of mercury to investigate the processes controlling atmospheric mercury deposition. We found that the uptake of atmospheric mercury by vegetation was the major deposition source. Direct deposition to snow or soils only played a minor role. These results improve our understanding of Arctic mercury cycling.
Altmetrics
Final-revised paper
Preprint