Articles | Volume 16, issue 2
https://doi.org/10.5194/bg-16-467-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-467-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A simple time-stepping scheme to simulate leaf area index, phenology, and gross primary production across deciduous broadleaf forests in the eastern United States
Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun
Yat-sen University, Guangzhou 510275, China
Yongjiu Dai
CORRESPONDING AUTHOR
School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
510275, China
Xiaoping Liu
Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun
Yat-sen University, Guangzhou 510275, China
Related authors
Q. Xin, P. Gong, and W. Li
Biogeosciences, 12, 3447–3467, https://doi.org/10.5194/bg-12-3447-2015, https://doi.org/10.5194/bg-12-3447-2015, 2015
Short summary
Short summary
We advance the Geometric Optical Radiative Transfer model and derive analytical solutions to radiation absorption by sunlit/shaded leaves. We link the radiative transfer process with the biochemical diffusion process to model canopy photosynthesis. Modeled gross primary production could explain more than 80% variance of flux tower measurements at both hourly and daily scales.
M. Broich, A. Huete, M. G. Tulbure, X. Ma, Q. Xin, M. Paget, N. Restrepo-Coupe, K. Davies, R. Devadas, and A. Held
Biogeosciences, 11, 5181–5198, https://doi.org/10.5194/bg-11-5181-2014, https://doi.org/10.5194/bg-11-5181-2014, 2014
Wanru He, Xuecao Li, Yuyu Zhou, Zitong Shi, Guojiang Yu, Tengyun Hu, Yixuan Wang, Jianxi Huang, Tiechegn Bai, Zhongchang Sun, Xiaoping Liu, and Peng Gong
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-401, https://doi.org/10.5194/essd-2022-401, 2023
Revised manuscript under review for ESSD
Short summary
Short summary
Most existing global urban products with future projections were developed in urban and non-urban categories, which ignores the gradual change of urban development at the local scale. Using annual global urban extent data from 1985 to 2015, we forecasted global urban fractional changes under eight scenarios throughout 2100. The developed dataset can provide spatially explicit information on urban fractions at 1km resolution, which helps support various urban studies (e.g., urban heat island).
Qian Shi, Mengxi Liu, Andrea Marinoni, and Xiaoping Liu
Earth Syst. Sci. Data, 15, 555–577, https://doi.org/10.5194/essd-15-555-2023, https://doi.org/10.5194/essd-15-555-2023, 2023
Short summary
Short summary
A large-scale and high-resolution urban green space (UGS) product with 1 m of 31 major cities in China (UGS-1m) is generated based on a deep learning framework to provide basic UGS information for relevant UGS research, such as distribution, area, and UGS rate. Moreover, an urban green space dataset (UGSet) with a total of 4454 samples of 512 × 512 in size are also supplied as the benchmark to support model training and algorithm comparison.
Qingliang Li, Gaosong Shi, Wei Shangguan, Vahid Nourani, Jianduo Li, Lu Li, Feini Huang, Ye Zhang, Chunyan Wang, Dagang Wang, Jianxiu Qiu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 14, 5267–5286, https://doi.org/10.5194/essd-14-5267-2022, https://doi.org/10.5194/essd-14-5267-2022, 2022
Short summary
Short summary
SMCI1.0 is a 1 km resolution dataset of daily soil moisture over China for 2000–2020 derived through machine learning trained with in situ measurements of 1789 stations, meteorological forcings, and land surface variables. It contains 10 soil layers with 10 cm intervals up to 100 cm deep. Evaluated by in situ data, the error (ubRMSE) ranges from 0.045 to 0.051, and the correlation (R) range is 0.866-0.893. Compared with ERA5-Land, SMAP-L4, and SoMo.ml, SIMI1.0 has higher accuracy and resolution.
Y. Cai, Q. Shi, and X. Liu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-W1-2022, 1–6, https://doi.org/10.5194/isprs-archives-XLVIII-3-W1-2022-1-2022, https://doi.org/10.5194/isprs-archives-XLVIII-3-W1-2022-1-2022, 2022
Bingjie Li, Xiaocong Xu, Xiaoping Liu, Qian Shi, Haoming Zhuang, Yaotong Cai, and Da He
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-142, https://doi.org/10.5194/essd-2022-142, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
A global land cover map with fine spatial resolution (e.g., 30 m) is important for climate and environmental studies, food security, biodiversity conservation, carbon cycling, etc. In this study, we developed an improved global land cover map in 2015 with 30 m resolution (GLC-2015) by fusing multiple existing land cover products based on the Dempster-Shafer theory of evidence on the Google Earth Engine platform.
Ziqi Lin, Yongjiu Dai, Umakant Mishra, Guocheng Wang, Wei Shangguan, Wen Zhang, and Zhangcai Qin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-232, https://doi.org/10.5194/essd-2022-232, 2022
Manuscript not accepted for further review
Short summary
Short summary
Spatial soil organic carbon (SOC) data is critical for predictions in carbon climate feedbacks and future climate trends, but no conclusion has yet been reached on which dataset to be used for specific purposes. We evaluated the SOC estimates from five widely used global soil datasets and a regional permafrost dataset, and identify uncertainties of SOC estimates by region, biome, and data sources, hoping to help improve SOC/soil data in the future.
Yaoping Wang, Jiafu Mao, Mingzhou Jin, Forrest M. Hoffman, Xiaoying Shi, Stan D. Wullschleger, and Yongjiu Dai
Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, https://doi.org/10.5194/essd-13-4385-2021, 2021
Short summary
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
Yongjiu Dai, Wei Shangguan, Nan Wei, Qinchuan Xin, Hua Yuan, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, Dagang Wang, and Fapeng Yan
SOIL, 5, 137–158, https://doi.org/10.5194/soil-5-137-2019, https://doi.org/10.5194/soil-5-137-2019, 2019
Short summary
Short summary
Soil data are widely used in various Earth science fields. We reviewed soil property maps for Earth system models, which can also offer insights to soil data developers and users. Old soil datasets are often based on limited observations and have various uncertainties. Updated and comprehensive soil data are made available to the public and can benefit related research. Good-quality soil data are identified and suggestions on how to improve and use them are provided.
L. M. Jiao, X. Tang, and X. P. Liu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 1203–1211, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1203-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1203-2017, 2017
Q. Xin, P. Gong, and W. Li
Biogeosciences, 12, 3447–3467, https://doi.org/10.5194/bg-12-3447-2015, https://doi.org/10.5194/bg-12-3447-2015, 2015
Short summary
Short summary
We advance the Geometric Optical Radiative Transfer model and derive analytical solutions to radiation absorption by sunlit/shaded leaves. We link the radiative transfer process with the biochemical diffusion process to model canopy photosynthesis. Modeled gross primary production could explain more than 80% variance of flux tower measurements at both hourly and daily scales.
M. Broich, A. Huete, M. G. Tulbure, X. Ma, Q. Xin, M. Paget, N. Restrepo-Coupe, K. Davies, R. Devadas, and A. Held
Biogeosciences, 11, 5181–5198, https://doi.org/10.5194/bg-11-5181-2014, https://doi.org/10.5194/bg-11-5181-2014, 2014
Related subject area
Biogeochemistry: Modelling, Terrestrial
Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China
Towards an ensemble-based evaluation of land surface models in light of uncertain forcings and observations
Effect of land-use legacy on the future carbon sink for the conterminous US
Information content in time series of litter decomposition studies and the transit time of litter in aridlands
Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: a process-based biogeochemistry model analysis
Improved representation of phosphorus exchange on soil mineral surfaces reduces estimates of phosphorus limitation in temperate forest ecosystems
A coupled ground heat flux–surface energy balance model of evaporation using thermal remote sensing observations
Modeling nitrous oxide emissions from agricultural soil incubation experiments using CoupModel
Local-scale evaluation of the simulated interactions between energy, water and vegetation in ISBA, ORCHIDEE and a diagnostic model
Implementation and initial calibration of carbon-13 soil organic matter decomposition in the Yasso model
The carbon budget of the managed grasslands of Great Britain – informed by earth observations
Accounting for non-rainfall moisture and temperature improves litter decay model performance in a fog-dominated dryland system
Assessing carbon storage capacity and saturation across six central US grasslands using data-model integration
Ideas and perspectives: Allocation of carbon from net primary production in models is inconsistent with observations of the age of respired carbon
Exploring the role of bedrock representation on plant transpiration response during dry periods at four forested sites in Europe
Effects of climate change in European croplands and grasslands: productivity, greenhouse gas balance and soil carbon storage
Assimilation of passive microwave vegetation optical depth in LDAS-Monde: a case study over the continental USA
Global modelling of soil carbonyl sulfide exchanges
Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss, and crop production – a modelling study in eastern Africa
The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition
Exploring the impacts of unprecedented climate extremes on forest ecosystems: hypotheses to guide modeling and experimental studies
Effect of droughts on future weathering rates in Sweden
Resolving temperature limitation on spring productivity in an evergreen conifer forest using a model–data fusion framework
A robust initialization method for accurate soil organic carbon simulations
Evaluation of carbonyl sulfide biosphere exchange in the Simple Biosphere Model (SiB4)
Model simulations of arctic biogeochemistry and permafrost extent are highly sensitive to the implemented snow scheme in LPJ-GUESS
Theoretical insights from upscaling Michaelis–Menten microbial dynamics in biogeochemical models: a dimensionless approach
Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change
An improved process-oriented hydro-biogeochemical model for simulating dynamic fluxes of methane and nitrous oxide in alpine ecosystems with seasonally frozen soils
A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF)
Organic phosphorus cycling may control grassland responses to nitrogen deposition: a long-term field manipulation and modelling study
A triple tree-ring constraint for tree growth and physiology in a global land surface model
Simulating shrubs and their energy and carbon dioxide fluxes in Canada's Low Arctic with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)
Competing effects of nitrogen deposition and ozone exposure on northern hemispheric terrestrial carbon uptake and storage, 1850–2099
Carbonyl sulfide: comparing a mechanistic representation of the vegetation uptake in a land surface model and the leaf relative uptake approach
Optimal model complexity for terrestrial carbon cycle prediction
CO2 physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon
Plant phenology evaluation of CRESCENDO land surface models – Part 1: Start and end of the growing season
Understanding the effect of fire on vegetation composition and gross primary production in a semi-arid shrubland ecosystem using the Ecosystem Demography (EDv2.2) model
Impacts of fertilization on grassland productivity and water quality across the European Alps under current and warming climate: insights from a mechanistic model
The climate benefit of carbon sequestration
Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2
Improving the representation of high-latitude vegetation distribution in dynamic global vegetation models
Robust processing of airborne laser scans to plant area density profiles
Investigating the sensitivity of soil heterotrophic respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model
Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity
Modelling the habitat preference of two key Sphagnum species in a poor fen as controlled by capitulum water content
Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO2
Assessing impacts of selective logging on water, energy, and carbon budgets and ecosystem dynamics in Amazon forests using the Functionally Assembled Terrestrial Ecosystem Simulator
Microbial dormancy and its impacts on northern temperate and boreal terrestrial ecosystem carbon budget
Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers
Biogeosciences, 20, 1635–1648, https://doi.org/10.5194/bg-20-1635-2023, https://doi.org/10.5194/bg-20-1635-2023, 2023
Short summary
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
Vivek K. Arora, Christian Seiler, Libo Wang, and Sian Kou-Giesbrecht
Biogeosciences, 20, 1313–1355, https://doi.org/10.5194/bg-20-1313-2023, https://doi.org/10.5194/bg-20-1313-2023, 2023
Short summary
Short summary
The behaviour of natural systems is now very often represented through mathematical models. These models represent our understanding of how nature works. Of course, nature does not care about our understanding. Since our understanding is not perfect, evaluating models is challenging, and there are uncertainties. This paper illustrates this uncertainty for land models and argues that evaluating models in light of the uncertainty in various components provides useful information.
Benjamin S. Felzer
Biogeosciences, 20, 573–587, https://doi.org/10.5194/bg-20-573-2023, https://doi.org/10.5194/bg-20-573-2023, 2023
Short summary
Short summary
The future of the terrestrial carbon sink depends upon the legacy of past land use, which determines the stand age of the forest and nutrient levels in the soil, both of which affect vegetation growth. This study uses a modeling approach to determine the effects of land-use legacy in the conterminous US from 1750 to 2099. Not accounting for land legacy results in a low carbon sink and high biomass, while water variables are not as highly affected.
Agustín Sarquis and Carlos A. Sierra
EGUsphere, https://doi.org/10.5194/egusphere-2023-90, https://doi.org/10.5194/egusphere-2023-90, 2023
Short summary
Short summary
Although plant litter is chemically and physically heterogeneous, and undergoes multiple transformations, models that represent litter dynamics often ignore this complexity. We used a multi-model inference framework to include information content in litter decomposition datasets, and studied the time it takes to decompose litter as measured by the transit time. In arid lands, the median transit time of litter is about three years and had a negative correlation with mean annual temperature.
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023, https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary
Short summary
In this study, we use a process-based model to simulate the northern peatland's C dynamics in response to future climate change during 1990–2300. Northern peatlands are projected to be a C source under all climate scenarios except for the mildest one before 2100 and C sources under all scenarios afterwards.
We find northern peatlands are a C sink until pan-Arctic annual temperature reaches −2.09 to −2.89 °C. This study emphasizes the vulnerability of northern peatlands to climate change.
Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Biogeosciences, 20, 57–73, https://doi.org/10.5194/bg-20-57-2023, https://doi.org/10.5194/bg-20-57-2023, 2023
Short summary
Short summary
In this study, we addressed a key weakness in current ecosystem models regarding the phosphorus exchange in the soil and developed a new scheme to describe this process. We showed that the new scheme improved the model performance for plant productivity, soil organic carbon, and soil phosphorus content at five beech forest sites in Germany. We claim that this new model could be used as a better tool to study ecosystems under future climate change, particularly phosphorus-limited systems.
Bimal K. Bhattacharya, Kaniska Mallick, Devansh Desai, Ganapati S. Bhat, Ross Morrison, Jamie R. Clevery, William Woodgate, Jason Beringer, Kerry Cawse-Nicholson, Siyan Ma, Joseph Verfaillie, and Dennis Baldocchi
Biogeosciences, 19, 5521–5551, https://doi.org/10.5194/bg-19-5521-2022, https://doi.org/10.5194/bg-19-5521-2022, 2022
Short summary
Short summary
Evaporation retrieval in heterogeneous ecosystems is challenging due to empirical estimation of ground heat flux and complex parameterizations of conductances. We developed a parameter-sparse coupled ground heat flux-evaporation model and tested it across different limits of water stress and vegetation fraction in the Northern/Southern Hemisphere. The model performed particularly well in the savannas and showed good potential for evaporative stress monitoring from thermal infrared satellites.
Jie Zhang, Wenxin Zhang, Per-Erik Jansson, and Søren O. Petersen
Biogeosciences, 19, 4811–4832, https://doi.org/10.5194/bg-19-4811-2022, https://doi.org/10.5194/bg-19-4811-2022, 2022
Short summary
Short summary
In this study, we relied on a properly controlled laboratory experiment to test the model’s capability of simulating the dominant microbial processes and the emissions of one greenhouse gas (nitrous oxide, N2O) from agricultural soils. This study reveals important processes and parameters that regulate N2O emissions in the investigated model framework and also suggests future steps of model development, which have implications on the broader communities of ecosystem modelers.
Jan De Pue, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Manuela Balzarolo, Fabienne Maignan, and Françoise Gellens-Meulenberghs
Biogeosciences, 19, 4361–4386, https://doi.org/10.5194/bg-19-4361-2022, https://doi.org/10.5194/bg-19-4361-2022, 2022
Short summary
Short summary
The functioning of ecosystems involves numerous biophysical processes which interact with each other. Land surface models (LSMs) are used to describe these processes and form an essential component of climate models. In this paper, we evaluate the performance of three LSMs and their interactions with soil moisture and vegetation. Though we found room for improvement in the simulation of soil moisture and drought stress, the main cause of errors was related to the simulated growth of vegetation.
Jarmo Mäkelä, Laura Arppe, Hannu Fritze, Jussi Heinonsalo, Kristiina Karhu, Jari Liski, Markku Oinonen, Petra Straková, and Toni Viskari
Biogeosciences, 19, 4305–4313, https://doi.org/10.5194/bg-19-4305-2022, https://doi.org/10.5194/bg-19-4305-2022, 2022
Short summary
Short summary
Soils account for the largest share of carbon found in terrestrial ecosystems, and accurate depiction of soil carbon decomposition is essential in understanding how permanent these carbon storages are. We present a straightforward way to include carbon isotope concentrations into soil decomposition and carbon storages for the Yasso model, which enables the model to use 13C as a natural tracer to track changes in the underlying soil organic matter decomposition.
Vasileios Myrgiotis, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 19, 4147–4170, https://doi.org/10.5194/bg-19-4147-2022, https://doi.org/10.5194/bg-19-4147-2022, 2022
Short summary
Short summary
This study shows that livestock grazing and grass cutting can determine whether a grassland is adding (source) or removing (sink) carbon (C) to/from the atmosphere. The annual C balance of 1855 managed grassland fields in Great Britain was quantified for 2017–2018 using process modelling and earth observation data. The examined fields were, on average, small C sinks, but the summer drought of 2018 led to a 9-fold increase in the number of fields that became C sources in 2018 compared to 2017.
J. Robert Logan, Kathe E. Todd-Brown, Kathryn M. Jacobson, Peter J. Jacobson, Roland Vogt, and Sarah E. Evans
Biogeosciences, 19, 4129–4146, https://doi.org/10.5194/bg-19-4129-2022, https://doi.org/10.5194/bg-19-4129-2022, 2022
Short summary
Short summary
Understanding how plants decompose is important for understanding where the atmospheric CO2 they absorb ends up after they die. In forests, decomposition is controlled by rain but not in deserts. We performed a 2.5-year study in one of the driest places on earth (the Namib desert in southern Africa) and found that fog and dew, not rainfall, closely controlled how quickly plants decompose. We also created a model to help predict decomposition in drylands with lots of fog and/or dew.
Kevin R. Wilcox, Scott L. Collins, Alan K. Knapp, William Pockman, Zheng Shi, Melinda Smith, and Yiqi Luo
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-164, https://doi.org/10.5194/bg-2022-164, 2022
Revised manuscript under review for BG
Short summary
Short summary
The capacity for carbon storage (C capacity) is an attribute that determines how ecosystems will store carbon in the future. Here, we employ novel data-model integration techniques to identify the carbon capacity of six grassland sites spanning the US Great Plains. Hot and dry sites had low C capacity due to less plant growth and high turnover of soil C so they may be a C source in the future. Alternately, cooler and wetter ecosystems had high C capacity, so these systems may be a future C sink.
Carlos A. Sierra, Verónika Ceballos-Núñez, Henrik Hartmann, David Herrera-Ramírez, and Holger Metzler
Biogeosciences, 19, 3727–3738, https://doi.org/10.5194/bg-19-3727-2022, https://doi.org/10.5194/bg-19-3727-2022, 2022
Short summary
Short summary
Empirical work that estimates the age of respired CO2 from vegetation tissue shows that it may take from years to decades to respire previously produced photosynthates. However, many ecosystem models represent respiration processes in a form that cannot reproduce these observations. In this contribution, we attempt to provide compelling evidence, based on recent research, with the aim to promote a change in the predominant paradigm implemented in ecosystem models.
César Dionisio Jiménez-Rodríguez, Mauro Sulis, and Stanislaus Schymanski
Biogeosciences, 19, 3395–3423, https://doi.org/10.5194/bg-19-3395-2022, https://doi.org/10.5194/bg-19-3395-2022, 2022
Short summary
Short summary
Vegetation relies on soil water reservoirs during dry periods. However, when this source is depleted, the plants may access water stored deeper in the rocks. This rock moisture contribution is usually omitted in large-scale models, which affects modeled plant water use during dry periods. Our study illustrates that including this additional source of water in the Community Land Model improves the model's ability to reproduce observed plant water use at seasonally dry sites.
Marco Carozzi, Raphaël Martin, Katja Klumpp, and Raia Silvia Massad
Biogeosciences, 19, 3021–3050, https://doi.org/10.5194/bg-19-3021-2022, https://doi.org/10.5194/bg-19-3021-2022, 2022
Short summary
Short summary
Crop and grassland production indicates a strong reduction due to the shortening of the length of the growing cycle associated with rising temperatures. Greenhouse gas emissions will increase exponentially over the century, often exceeding the CO2 accumulation of agro-ecosystems. Water demand will double in the next few decades, whereas the benefits in terms of yield will not fill the gap of C losses due to climate perturbation. Climate change will have a regionally distributed effect in the EU.
Anthony Mucia, Bertrand Bonan, Clément Albergel, Yongjun Zheng, and Jean-Christophe Calvet
Biogeosciences, 19, 2557–2581, https://doi.org/10.5194/bg-19-2557-2022, https://doi.org/10.5194/bg-19-2557-2022, 2022
Short summary
Short summary
For the first time, microwave vegetation optical depth data are assimilated in a land surface model in order to analyze leaf area index and root zone soil moisture. The advantage of microwave products is the higher observation frequency. A large variety of independent datasets are used to verify the added value of the assimilation. It is shown that the assimilation is able to improve the representation of soil moisture, vegetation conditions, and terrestrial water and carbon fluxes.
Camille Abadie, Fabienne Maignan, Marine Remaud, Jérôme Ogée, J. Elliott Campbell, Mary E. Whelan, Florian Kitz, Felix M. Spielmann, Georg Wohlfahrt, Richard Wehr, Wu Sun, Nina Raoult, Ulli Seibt, Didier Hauglustaine, Sinikka T. Lennartz, Sauveur Belviso, David Montagne, and Philippe Peylin
Biogeosciences, 19, 2427–2463, https://doi.org/10.5194/bg-19-2427-2022, https://doi.org/10.5194/bg-19-2427-2022, 2022
Short summary
Short summary
A better constraint of the components of the carbonyl sulfide (COS) global budget is needed to exploit its potential as a proxy of gross primary productivity. In this study, we compare two representations of oxic soil COS fluxes, and we develop an approach to represent anoxic soil COS fluxes in a land surface model. We show the importance of atmospheric COS concentration variations on oxic soil COS fluxes and provide new estimates for oxic and anoxic soil contributions to the COS global budget.
Jianyong Ma, Sam S. Rabin, Peter Anthoni, Anita D. Bayer, Sylvia S. Nyawira, Stefan Olin, Longlong Xia, and Almut Arneth
Biogeosciences, 19, 2145–2169, https://doi.org/10.5194/bg-19-2145-2022, https://doi.org/10.5194/bg-19-2145-2022, 2022
Short summary
Short summary
Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. We simulated the impacts of seven management practices on soil carbon pools, nitrogen loss, and crop yield under different climate scenarios in this region. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-65, https://doi.org/10.5194/bg-2022-65, 2022
Revised manuscript accepted for BG
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts for ecosystems. We examine extreme droughts with rising CO2 and temperatures using two dynamic vegetation models, to assess ecological processes to measure, and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explored specific plant responses that reflect knowledge gaps.
Veronika Kronnäs, Klas Lucander, Giuliana Zanchi, Nadja Stadlinger, Salim Belyazid, and Cecilia Akselsson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-78, https://doi.org/10.5194/bg-2022-78, 2022
Revised manuscript accepted for BG
Short summary
Short summary
In a future climate, extreme droughts might become more common. Climate change and droughts can have negative effects on soil weathering and plant health. In this study, climate change effects on weathering were studied on sites in Sweden, using the model ForSAFE, a climate change scenario and an extreme drought scenario. The modelling shows that weathering is higher during summer, increases with global warming, but that weathering during drought summers can become as low as winter weathering.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Eva Kanari, Lauric Cécillon, François Baudin, Hugues Clivot, Fabien Ferchaud, Sabine Houot, Florent Levavasseur, Bruno Mary, Laure Soucémarianadin, Claire Chenu, and Pierre Barré
Biogeosciences, 19, 375–387, https://doi.org/10.5194/bg-19-375-2022, https://doi.org/10.5194/bg-19-375-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Linda M. J. Kooijmans, Ara Cho, Jin Ma, Aleya Kaushik, Katherine D. Haynes, Ian Baker, Ingrid T. Luijkx, Mathijs Groenink, Wouter Peters, John B. Miller, Joseph A. Berry, Jerome Ogée, Laura K. Meredith, Wu Sun, Kukka-Maaria Kohonen, Timo Vesala, Ivan Mammarella, Huilin Chen, Felix M. Spielmann, Georg Wohlfahrt, Max Berkelhammer, Mary E. Whelan, Kadmiel Maseyk, Ulli Seibt, Roisin Commane, Richard Wehr, and Maarten Krol
Biogeosciences, 18, 6547–6565, https://doi.org/10.5194/bg-18-6547-2021, https://doi.org/10.5194/bg-18-6547-2021, 2021
Short summary
Short summary
The gas carbonyl sulfide (COS) can be used to estimate photosynthesis. To adopt this approach on regional and global scales, we need biosphere models that can simulate COS exchange. So far, such models have not been evaluated against observations. We evaluate the COS biosphere exchange of the SiB4 model against COS flux observations. We find that the model is capable of simulating key processes in COS biosphere exchange. Still, we give recommendations for further improvement of the model.
Alexandra Pongracz, David Wårlind, Paul A. Miller, and Frans-Jan W. Parmentier
Biogeosciences, 18, 5767–5787, https://doi.org/10.5194/bg-18-5767-2021, https://doi.org/10.5194/bg-18-5767-2021, 2021
Short summary
Short summary
This study shows that the introduction of a multi-layer snow scheme in the LPJ-GUESS DGVM improved simulations of high-latitude soil temperature dynamics and permafrost extent compared to observations. In addition, these improvements led to shifts in carbon fluxes that contrasted within and outside of the permafrost region. Our results show that a realistic snow scheme is essential to accurately simulate snow–soil–vegetation relationships and carbon–climate feedbacks.
Chris H. Wilson and Stefan Gerber
Biogeosciences, 18, 5669–5679, https://doi.org/10.5194/bg-18-5669-2021, https://doi.org/10.5194/bg-18-5669-2021, 2021
Short summary
Short summary
To better mitigate against climate change, it is imperative that ecosystem scientists understand how microbes decompose organic carbon in the soil and thereby release it as carbon dioxide into the atmosphere. A major challenge is the high variability across ecosystems in microbial biomass and in the environmental factors like temperature that drive their activity. In this paper, we use math to better understand how this variability impacts carbon dioxide release over large scales.
Andrew H. MacDougall
Biogeosciences, 18, 4937–4952, https://doi.org/10.5194/bg-18-4937-2021, https://doi.org/10.5194/bg-18-4937-2021, 2021
Short summary
Short summary
Permafrost soils hold about twice as much carbon as the atmosphere. As the Earth warms the organic matter in these soils will decay, releasing CO2 and CH4. It is expected that these soils will continue to release carbon to the atmosphere long after man-made emissions of greenhouse gases cease. Here we use a method employing hundreds of slightly varying model versions to estimate how much warming permafrost carbon will cause after human emissions of CO2 end.
Wei Zhang, Zhisheng Yao, Siqi Li, Xunhua Zheng, Han Zhang, Lei Ma, Kai Wang, Rui Wang, Chunyan Liu, Shenghui Han, Jia Deng, and Yong Li
Biogeosciences, 18, 4211–4225, https://doi.org/10.5194/bg-18-4211-2021, https://doi.org/10.5194/bg-18-4211-2021, 2021
Short summary
Short summary
The hydro-biogeochemical model Catchment Nutrient Management Model – DeNitrification-DeComposition (CNMM-DNDC) is improved by incorporating a soil thermal module to simulate the soil thermal regime in the presence of freeze–thaw cycles. The modified model is validated at a seasonally frozen catchment with typical alpine ecosystems (wetland, meadow and forest). The simulated aggregate emissions of methane and nitrous oxide are highest for the wetland, which is dominated by the methane emissions.
Sian Kou-Giesbrecht, Sergey Malyshev, Isabel Martínez Cano, Stephen W. Pacala, Elena Shevliakova, Thomas A. Bytnerowicz, and Duncan N. L. Menge
Biogeosciences, 18, 4143–4183, https://doi.org/10.5194/bg-18-4143-2021, https://doi.org/10.5194/bg-18-4143-2021, 2021
Short summary
Short summary
Representing biological nitrogen fixation (BNF) is an important challenge for land models. We present a novel representation of BNF and updated nitrogen cycling in a land model. It includes a representation of asymbiotic BNF by soil microbes and the competitive dynamics between nitrogen-fixing and non-fixing plants. It improves estimations of major carbon and nitrogen pools and fluxes and their temporal dynamics in comparison to previous representations of BNF in land models.
Christopher R. Taylor, Victoria Janes-Bassett, Gareth K. Phoenix, Ben Keane, Iain P. Hartley, and Jessica A. C. Davies
Biogeosciences, 18, 4021–4037, https://doi.org/10.5194/bg-18-4021-2021, https://doi.org/10.5194/bg-18-4021-2021, 2021
Short summary
Short summary
We used experimental data to model two phosphorus-limited grasslands and investigated their response to nitrogen (N) deposition. Greater uptake of organic P facilitated a positive response to N deposition, stimulating growth and soil carbon storage. Where organic P access was less, N deposition exacerbated P demand and reduced plant C input to the soil. This caused more C to be released into the atmosphere than is taken in, reducing the climate-mitigation capacity of the modelled grassland.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021, https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Short summary
Shrub and sedge plant functional types (PFTs) were incorporated in the land surface component of the Canadian Earth System Model to improve representation of Arctic tundra ecosystems. Evaluated against 14 years of non-winter measurements, the magnitude and seasonality of carbon dioxide and energy fluxes at a Canadian dwarf-shrub tundra site were better captured by the shrub PFTs than by previously used grass and tree PFTs. Model simulations showed the tundra site to be an annual net CO2 source.
Martina Franz and Sönke Zaehle
Biogeosciences, 18, 3219–3241, https://doi.org/10.5194/bg-18-3219-2021, https://doi.org/10.5194/bg-18-3219-2021, 2021
Short summary
Short summary
The combined effects of ozone and nitrogen deposition on the terrestrial carbon uptake and storage has been unclear. Our simulations, from 1850 to 2099, show that ozone-related damage considerably reduced gross primary production and carbon storage in the past. The growth-stimulating effect induced by nitrogen deposition is offset until the 2050s. Accounting for nitrogen deposition without considering ozone effects might lead to an overestimation of terrestrial carbon uptake and storage.
Fabienne Maignan, Camille Abadie, Marine Remaud, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Róisín Commane, Richard Wehr, J. Elliott Campbell, Sauveur Belviso, Stephen A. Montzka, Nina Raoult, Ulli Seibt, Yoichi P. Shiga, Nicolas Vuichard, Mary E. Whelan, and Philippe Peylin
Biogeosciences, 18, 2917–2955, https://doi.org/10.5194/bg-18-2917-2021, https://doi.org/10.5194/bg-18-2917-2021, 2021
Short summary
Short summary
The assimilation of carbonyl sulfide (COS) by continental vegetation has been proposed as a proxy for gross primary production (GPP). Using a land surface and a transport model, we compare a mechanistic representation of the plant COS uptake (Berry et al., 2013) to the classical leaf relative uptake (LRU) approach linking GPP and vegetation COS fluxes. We show that at high temporal resolutions a mechanistic approach is mandatory, but at large scales the LRU approach compares similarly.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
Gilvan Sampaio, Marília H. Shimizu, Carlos A. Guimarães-Júnior, Felipe Alexandre, Marcelo Guatura, Manoel Cardoso, Tomas F. Domingues, Anja Rammig, Celso von Randow, Luiz F. C. Rezende, and David M. Lapola
Biogeosciences, 18, 2511–2525, https://doi.org/10.5194/bg-18-2511-2021, https://doi.org/10.5194/bg-18-2511-2021, 2021
Short summary
Short summary
The impact of large-scale deforestation and the physiological effects of elevated atmospheric CO2 on Amazon rainfall are systematically compared in this study. Our results are remarkable in showing that the two disturbances cause equivalent rainfall decrease, though through different causal mechanisms. These results highlight the importance of not only curbing regional deforestation but also reducing global CO2 emissions to avoid climatic changes in the Amazon.
Daniele Peano, Deborah Hemming, Stefano Materia, Christine Delire, Yuanchao Fan, Emilie Joetzjer, Hanna Lee, Julia E. M. S. Nabel, Taejin Park, Philippe Peylin, David Wårlind, Andy Wiltshire, and Sönke Zaehle
Biogeosciences, 18, 2405–2428, https://doi.org/10.5194/bg-18-2405-2021, https://doi.org/10.5194/bg-18-2405-2021, 2021
Short summary
Short summary
Global climate models are the scientist’s tools used for studying past, present, and future climate conditions. This work examines the ability of a group of our tools in reproducing and capturing the right timing and length of the season when plants show their green leaves. This season, indeed, is fundamental for CO2 exchanges between land, atmosphere, and climate. This work shows that discrepancies compared to observations remain, demanding further polishing of these tools.
Karun Pandit, Hamid Dashti, Andrew T. Hudak, Nancy F. Glenn, Alejandro N. Flores, and Douglas J. Shinneman
Biogeosciences, 18, 2027–2045, https://doi.org/10.5194/bg-18-2027-2021, https://doi.org/10.5194/bg-18-2027-2021, 2021
Short summary
Short summary
A dynamic global vegetation model, Ecosystem Demography (EDv2.2), is used to understand spatiotemporal dynamics of a semi-arid shrub ecosystem under alternative fire regimes. Multi-decadal point simulations suggest shrub dominance for a non-fire scenario and a contrasting phase of shrub and C3 grass growth for a fire scenario. Regional gross primary productivity (GPP) simulations indicate moderate agreement with MODIS GPP and a GPP reduction in fire-affected areas before showing some recovery.
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
Carlos A. Sierra, Susan E. Crow, Martin Heimann, Holger Metzler, and Ernst-Detlef Schulze
Biogeosciences, 18, 1029–1048, https://doi.org/10.5194/bg-18-1029-2021, https://doi.org/10.5194/bg-18-1029-2021, 2021
Short summary
Short summary
The climate benefit of carbon sequestration (CBS) is a metric developed to quantify avoided warming by two separate processes: the amount of carbon drawdown from the atmosphere and the time this carbon is stored in a reservoir. This metric can be useful for quantifying the role of forests and soils for climate change mitigation and to better quantify the benefits of carbon removals by sinks.
Xiaoying Shi, Daniel M. Ricciuto, Peter E. Thornton, Xiaofeng Xu, Fengming Yuan, Richard J. Norby, Anthony P. Walker, Jeffrey M. Warren, Jiafu Mao, Paul J. Hanson, Lin Meng, David Weston, and Natalie A. Griffiths
Biogeosciences, 18, 467–486, https://doi.org/10.5194/bg-18-467-2021, https://doi.org/10.5194/bg-18-467-2021, 2021
Short summary
Short summary
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the peatland ecosystem, we introduced the moss species to the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. We tested the model against field observations and used the model to make projections of the site's carbon cycle under warming and atmospheric CO2 concentration scenarios.
Peter Horvath, Hui Tang, Rune Halvorsen, Frode Stordal, Lena Merete Tallaksen, Terje Koren Berntsen, and Anders Bryn
Biogeosciences, 18, 95–112, https://doi.org/10.5194/bg-18-95-2021, https://doi.org/10.5194/bg-18-95-2021, 2021
Short summary
Short summary
We evaluated the performance of three methods for representing vegetation cover. Remote sensing provided the best match to a reference dataset, closely followed by distribution modelling (DM), whereas the dynamic global vegetation model (DGVM) in CLM4.5BGCDV deviated strongly from the reference. Sensitivity tests show that use of threshold values for predictors identified by DM may improve DGVM performance. The results highlight the potential of using DM in the development of DGVMs.
Johan Arnqvist, Julia Freier, and Ebba Dellwik
Biogeosciences, 17, 5939–5952, https://doi.org/10.5194/bg-17-5939-2020, https://doi.org/10.5194/bg-17-5939-2020, 2020
Short summary
Short summary
Data generated by airborne laser scans enable the characterization of surface vegetation for any application that might need it, such as forest management, modeling for numerical weather prediction, or wind energy estimation. In this work we present a new algorithm for calculating the vegetation density using data from airborne laser scans. The new routine is more robust than earlier methods, and an implementation in popular programming languages accompanies the article to support new users.
Yonghong Yi, John S. Kimball, Jennifer D. Watts, Susan M. Natali, Donatella Zona, Junjie Liu, Masahito Ueyama, Hideki Kobayashi, Walter Oechel, and Charles E. Miller
Biogeosciences, 17, 5861–5882, https://doi.org/10.5194/bg-17-5861-2020, https://doi.org/10.5194/bg-17-5861-2020, 2020
Short summary
Short summary
We developed a 1 km satellite-data-driven permafrost carbon model to evaluate soil respiration sensitivity to recent snow cover changes in Alaska. Results show earlier snowmelt enhances growing-season soil respiration and reduces annual carbon uptake, while early cold-season soil respiration is linked to the number of snow-free days after the land surface freezes. Our results also show nonnegligible influences of subgrid variability in surface conditions on model-simulated CO2 seasonal cycles.
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Jinnan Gong, Nigel Roulet, Steve Frolking, Heli Peltola, Anna M. Laine, Nicola Kokkonen, and Eeva-Stiina Tuittila
Biogeosciences, 17, 5693–5719, https://doi.org/10.5194/bg-17-5693-2020, https://doi.org/10.5194/bg-17-5693-2020, 2020
Short summary
Short summary
In this study, which combined a field and lab experiment with modelling, we developed a process-based model for simulating dynamics within peatland moss communities. The model is useful because Sphagnum mosses are key engineers in peatlands; their response to changes in climate via altered hydrology controls the feedback of peatland biogeochemistry to climate. Our work showed that moss capitulum traits related to water retention are the mechanism controlling moss layer dynamics in peatlands.
Tea Thum, Julia E. M. S. Nabel, Aki Tsuruta, Tuula Aalto, Edward J. Dlugokencky, Jari Liski, Ingrid T. Luijkx, Tiina Markkanen, Julia Pongratz, Yukio Yoshida, and Sönke Zaehle
Biogeosciences, 17, 5721–5743, https://doi.org/10.5194/bg-17-5721-2020, https://doi.org/10.5194/bg-17-5721-2020, 2020
Short summary
Short summary
Global vegetation models are important tools in estimating the impacts of global climate change. The fate of soil carbon is of the upmost importance as its emissions will enhance the atmospheric carbon dioxide concentration. To evaluate the skill of global vegetation models to model the soil carbon and its responses to environmental factors, it is important to use different data sources. We evaluated two different soil carbon models by using atmospheric carbon dioxide concentrations.
Maoyi Huang, Yi Xu, Marcos Longo, Michael Keller, Ryan G. Knox, Charles D. Koven, and Rosie A. Fisher
Biogeosciences, 17, 4999–5023, https://doi.org/10.5194/bg-17-4999-2020, https://doi.org/10.5194/bg-17-4999-2020, 2020
Short summary
Short summary
The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is enhanced to mimic the ecological, biophysical, and biogeochemical processes following a logging event. The model can specify the timing and aerial extent of logging events; determine the survivorship of cohorts in the disturbed forest; and modifying the biomass, coarse woody debris, and litter pools. This study lays the foundation to simulate land use change and forest degradation in FATES as part of an Earth system model.
Junrong Zha and Qianla Zhuang
Biogeosciences, 17, 4591–4610, https://doi.org/10.5194/bg-17-4591-2020, https://doi.org/10.5194/bg-17-4591-2020, 2020
Short summary
Short summary
This study incorporated microbial dormancy into a detailed microbe-based biogeochemistry model to examine the fate of Arctic carbon budgets under changing climate conditions. Compared with the model without microbial dormancy, the new model estimated a much higher carbon accumulation in the region during the last and current century. This study highlights the importance of the representation of microbial dormancy in earth system models to adequately quantify the carbon dynamics in the Arctic.
Cited articles
Akaike, H.: Fitting autoregressive models for prediction,
Ann. I. Stat. Math., 21, 243–247, 1969.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration-Guidelines for computing crop water requirements-FAO
Irrigation and drainage paper 56, FAO, Rome, 300, 6541, 1998.
AmeriFlux: flux tower data, available at: http://ameriflux.lbl.gov/data/download-data, last access: 13 January 2019.
Arora, V. K. and Boer, G. J.: A parameterization of leaf phenology for the
terrestrial ecosystem component of climate models, Glob. Change Biol., 11,
39–59, 2005.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N.,
Roedenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A.,
Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis,
H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C.,
Woodward, F. I., and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake:
Global Distribution and Covariation with Climate, Science, 329, 834–838,
2010.
Bonan, G. B.: Ecological climatology: concepts and applications, Cambridge
University Press, 2002.
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the
climate benefits of forests, Science, 320, 1444–1449, 2008.
Broxton, P. D., Zeng, X., Sulla-Menashe, D., and Troch, P. A.: A global land
cover climatology using MODIS data, J. Appl. Meteorol. Climatol., 53, 1593–1605, 2014.
Chuine, I., Cour, P., and Rousseau, D. D.: Selecting models to predict the
timing of flowering of temperate trees: implications for tree phenology
modelling, Plant Cell Environ., 22, 1–13, 1999.
Clark, K. L., Skowronski, N., Gallagher, M., Renninger, H., and Schäfer,
K.: Effects of invasive insects and fire on forest energy exchange and
evapotranspiration in the New Jersey pinelands, Agr. Forest Meteorol., 166,
50–61, 2012.
De Réaumur, R. A. F.: Observations du thermometer, faites à Paris
pendant l'année 1735, comparées avec celles qui ont été
faites sous la ligne, à l'Isle de France, à Alger et en quelques-unes
de nos isles de l'Amérique, Mémoires de l'Académie des Sciences,
545–584, 1735.
Desai, A. R., Noormets, A., Bolstad, P. V., Chen, J., Cook, B. D., Davis, K.
J., Euskirchen, E. S., Gough, C., Martin, J. G., and Ricciuto, D. M.:
Influence of vegetation and seasonal forcing on carbon dioxide fluxes across
the Upper Midwest, USA: Implications for regional scaling, Agr.
Forest Meteorol., 148, 288–308, 2008.
Ding, R., Kang, S., Du, T., Hao, X., and Zhang, Y.: Scaling Up Stomatal
Conductance from Leaf to Canopy Using a Dual-Leaf Model for Estimating Crop
Evapotranspiration, PloS one, 9, e95584, https://doi.org/10.1371/journal.pone.0095584, 2014.
Dragoni, D., Schmid, H. P., Wayson, C. A., Potter, H., Grimmond, C. S. B.,
and Randolph, J. C.: Evidence of increased net ecosystem productivity
associated with a longer vegetated season in a deciduous forest in
south-central Indiana, USA, Glob. Change Biol., 17, 886–897, 2011.
Eagleson, P. S.: Ecohydrology: Darwinian expression of vegetation form and
function, Cambridge University Press, 2005.
Givnish, T. J.: On the Economy of Plant Form and Function: Proceedings of the
Sixth Maria Moors Cabot Symposium, Evolutionary Constraints on Primary
Productivity, Adaptive Patterns of Energy Capture in Plants, Harvard Forest,
August 1983, Cambridge University Press, 1986.
Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel,
C. S., Nadelhoffer, K. J., and Curtis, P. S.: Sustained carbon uptake and
storage following moderate disturbance in a Great Lakes forest, Ecol.
Appl., 23, 1202–1215, 2013.
Gu, L., Meyers, T., Pallardy, S. G., Hanson, P. J., Yang, B., Heuer, M.,
Hosman, K. P., Riggs, J. S., Sluss, D., and Wullschleger, S. D.: Direct and
indirect effects of atmospheric conditions and soil moisture on surface
energy partitioning revealed by a prolonged drought at a temperate forest
site, J. Geophys. Res.-Atmos., 111, D16102, https://doi.org/10.1029/2006JD007161, 2006.
He, M., Ju, W., Zhou, Y., Chen, J., He, H., Wang, S., Wang, H., Guan, D.,
Yan, J., Li, Y., Hao, Y., and Zhao, F.: Development of a two-leaf light use
efficiency model for improving the calculation of terrestrial gross primary
productivity, Agr. Forest Meteorol., 173, 28–39, 2013.
Hollinger, D. Y., Ollinger, S., Richardson, A., Meyers, T., Dail, D., Martin,
M., Scott, N., Arkebauer, T., Baldocchi, D., and Clark, K.: Albedo estimates
for land surface models and support for a new paradigm based on foliage
nitrogen concentration, Glob. Change Biol., 16, 696–710, 2010.
Hufkens, K., Basler, D., Milliman, T., Melaas, E. K., and Richardson, A. D.:
An integrated phenology modelling framework in R, Methods Ecol.
Evol., 9, 1276–1285, 2018.
Jenkins, J., Richardson, A. D., Braswell, B., Ollinger, S. V., Hollinger, D.
Y., and Smith, M.-L.: Refining light-use efficiency calculations for a
deciduous forest canopy using simultaneous tower-based carbon flux and
radiometric measurements, Agr. Forest Meteorol., 143, 64–79, 2007.
Jolly, W. M., Nemani, R., and Running, S. W.: A generalized, bioclimatic
index to predict foliar phenology in response to climate, Glob. Change Biol.,
11, 619–632, 2005.
Levine, N. M., Zhang, K., Longo, M., Baccini, A., Phillips, O. L., Lewis, S.
L., Alvarez-Dávila, E., de Andrade, A. C. S., Brienen, R. J., and Erwin,
T. L.: Ecosystem heterogeneity determines the ecological resilience of the
Amazon to climate change, P. Natl. Acad. Sci. USA, 113, 793–797, 2016.
Li, W., Guo, Q., Tao, S., and Su, Y.: VBRT: A novel voxel-based radiative
transfer model for heterogeneous three-dimensional forest scenes, Remote
Sens. Environ., 206, 318–335, 2018.
Liu, J., Chen, J., Cihlar, J., and Park, W.: A process-based boreal ecosystem
productivity simulator using remote sensing inputs, Remote Sens. Environ.,
62, 158–175, 1997.
Liu, Q., Fu, Y. H., Liu, Y., Janssens, I. A., and Piao, S.: Simulating the
onset of spring vegetation growth across the Northern Hemisphere, Glob.
Change Biol., 24, 1342–1356, 2018.
Melaas, E. K., Richardson, A. D., Friedl, M. A., Dragoni, D., Gough, C. M.,
Herbst, M., Montagnani, L., and Moors, E.: Using FLUXNET data to improve
models of springtime vegetation activity onset in forest ecosystems, Agr.
Forest Meteorol., 171, 46–56, 2013.
Melaas, E. K., Friedl, M. A., and Richardson, A. D.: Multiscale modeling of
spring phenology across Deciduous Forests in the Eastern United States, Glob.
Change Biol., 22, 792–805, 2016.
Miller, G. R., Baldocchi, D. D., Law, B. E., and Meyers, T.: An analysis of
soil moisture dynamics using multi-year data from a network of
micrometeorological observation sites, Adv. Water Resour., 30, 1065–1081,
2007.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J.,
Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl,
M., Morisette, J. T., Votava, P., Nemani, R. R., and Running, S. W.: Global
products of vegetation leaf area and fraction absorbed PAR from year one of
MODIS data, Remote Sens. Environ., 83, 214–231, 2002.
Ni-Meister, W., Yang, W., and Kiang, N. Y.: A clumped-foliage canopy
radiative transfer model for a global dynamic terrestrial ecosystem model. I:
Theory, Agr. Forest Meteorol., 150, 881–894, 2010.
Oishi, A. C., Oren, R., and Stoy, P. C.: Estimating components of forest
evapotranspiration: a footprint approach for scaling sap flux measurements,
Agr. Forest Meteorol., 148, 1719–1732, 2008.
Oleson, K., Lawrence, D., Bonan, G., Drewniak, B., Huang, M., Koven, C.,
Levis, S., Li, F., Riley, W., and Subin, Z.: Technical Description of version
4.5 of the Community Land Model (CLM), NCAR, National Center for Atmospheric
Research (NCAR) Boulder, Colorado, 2013.
ORNL DAAC: Daymet data, available at: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1328, last access: 13 January 2019.
Polgar, C. A. and Primack, R. B.: Leaf-out phenology of temperate woody
plants: from trees to ecosystems, New Phytol., 191, 926–941, 2011.
Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P.
M., Mooney, H. A., and Klooster, S. A.: Terrestrial ecosystem production: a
process model based on global satellite and surface data, Global Biogeochem.
Cy., 7, 811–841, 1993.
Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G., Bohrer, G.,
Chen, G. S., Chen, J. M., Ciais, P., Davis, K. J., Desai, A. R., Dietze, M.
C., Dragoni, D., Garrity, S. R., Gough, C. M., Grant, R., Hollinger, D. Y.,
Margolis, H. A., McCaughey, H., Migliavacca, M., Monson, R. K., Munger, J.
W., Poulter, B., Raczka, B. M., Ricciuto, D. M., Sahoo, A. K., Schaefer, K.,
Tian, H. Q., Vargas, R., Verbeeck, H., Xiao, J. F., and Xue, Y. K.:
Terrestrial biosphere models need better representation of vegetation
phenology: results from the North American Carbon Program Site Synthesis,
Glob. Change Biol., 18, 566–584, 2012.
Running, S. W. and Zhao, M.: Daily GPP and annual NPP (MOD17A2/A3) products
NASA Earth Observing System MODIS land algorithm, MOD17 User's Guide, 2015.
2015.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M. S., Reeves, M., and
Hashimoto, H.: A continuous satellite-derived measure of global terrestrial
primary production, Bioscience, 54, 547–560, 2004.
Ryu, Y., Baldocchi, D. D., Kobayashi, H., Ingen, C., Li, J., Black, T. A.,
Beringer, J., Gorsel, E., Knohl, A., and Law, B. E.: Integration of MODIS
land and atmosphere products with a coupled-process model to estimate gross
primary productivity and evapotranspiration from 1 km to global scales,
Global Biogeochem. Cy., 25, GB4017, https://doi.org/10.1029/2011GB004053, 2011.
Sellers, P., Randall, D., Collatz, G., Berry, J., Field, C., Dazlich, D.,
Zhang, C., Collelo, G., and Bounoua, L.: A revised land surface
parameterization (SiB2) for atmospheric GCMs – Part I: Model formulation, J.
Climate, 9, 676–705, 1996a.
Sellers, P. J., Tucker, C. J., Collatz, G. J., Los, S. O., Justice, C. O.,
Dazlich, D. A., and Randall, D. A.: A revised land surface parameterization
(SiB2) for atmospheric GCMs. Part II: The generation of global fields of
terrestrial biophysical parameters from satellite data, J. Climate, 9,
706–737, 1996b.
Shen, M., Tang, Y., Chen, J., Zhu, X., and Zheng, Y.: Influences of
temperature and precipitation before the growing season on spring phenology
in grasslands of the central and eastern Qinghai-Tibetan Plateau, Agr. Forest
Meteorol., 151, 1711–1722, 2011.
Thornton, P., Thornton, M., Mayer, B., Wilhelmi, N., Wei, Y., and Cook, R.:
Daymet: Daily surface weather on a 1 km grid for North America, 1980–2008,
Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge,
Tennessee, USA, 2012.
Turner, D. P., Ritts, W. D., Cohen, W. B., Gower, S. T., Running, S. W.,
Zhao, M., Costa, M. H., Kirschbaum, A. A., Ham, J. M., and Saleska, S. R.:
Evaluation of MODIS NPP and GPP products across multiple biomes, Remote Sens.
Environ., 102, 282–292, 2006.
Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J.,
McKain, K., Fitzjarrald, D., Czikowsky, M., and Munger, J.: Factors
controlling CO2 exchange on timescales from hourly to decadal at
Harvard Forest, J. Geophys. Res.-Biogeo., 112, G02020,
https://doi.org/10.1029/2006JG000293, 2007.
USGS LCI: land cover data, available at: https://archive.usgs.gov/archive/sites/landcover.usgs.gov/global_climatology.html, last access: 1 December 2018.
USGS LPDAAC: MODIS data, available at: https://e4ftl01.cr.usgs.gov/MOLT/,last access: 13 January 2019.
White, M. A., Thornton, P. E., Running, S. W., and Nemani, R. R.:
Parameterization and sensitivity analysis of the BIOME–BGC terrestrial
ecosystem model: net primary production controls, Earth Interact., 4, 1–85,
2000.
Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore,
B., and Ojima, D.: Modeling gross primary production of temperate deciduous
broadleaf forest using satellite images and climate data, Remote Sens.
Environ., 91, 256–270, 2004.
Xiao, Z., Liang, S., Wang, J., Chen, P., Yin, X., Zhang, L., and Song, J.:
Use of General Regression Neural Networks for Generating the GLASS Leaf Area
Index Product From Time-Series MODIS Surface Reflectance, IEEE T. Geoscience
Remote Sens., 52, 209–223, 2014.
Xie, J., Chen, J., Sun, G., Chu, H., Noormets, A., Ouyang, Z., John, R., Wan,
S., and Guan, W.: Long-term variability and environmental control of the
carbon cycle in an oak-dominated temperate forest, Forest Ecol. Manage., 313,
319–328, 2014.
Xin, Q.: A risk-benefit model to simulate vegetation spring onset in response
to multi-decadal climate variability: Theoretical basis and applications from
the field to the Northern Hemisphere, Agr. Forest Meteorol., 228–229,
139–163, 2016.
Xin, Q., Dai, Y., Li, X., Liu, X., Gong, P., and Richardson, A. D.: A
steady-state approximation approach to simulate seasonal leaf dynamics of
deciduous broadleaf forests via climate variables, Agr. Forest Meteorol.,
249, 44–56, 2018.
Yang, X., Mustard, J. F., Tang, J., and Xu, H.: Regional-scale phenology
modeling based on meteorological records and remote sensing observations, J.
Geophys. Res.-Biogeo., 117, G03029, https://doi.org/10.1029/2012JG001977, 2012.
Yu, C., Li, C., Xin, Q., Chen, H., Zhang, J., Zhang, F., Li, X., Clinton, N.,
Huang, X., Yue, Y., and Gong, P.: Dynamic assessment of the impact of drought
on agricultural yield and scale-dependent return periods over large
geographic regions, Environ. Model. Softw., 62, 454–464, 2014.
Yuan, H., Dickinson, R. E., Dai, Y., Shaikh, M. J., Zhou, L., Shangguan, W.,
and Ji, D.: A 3D Canopy Radiative Transfer Model for Global Climate Modeling:
Description, Validation, and Application, J. Climate, 27, 1168–1192, 2013.
Yuan, W., Liu, S., Yu, G., Bonnefond, J.-M., Chen, J., Davis, K., Desai, A.
R., Goldstein, A. H., Gianelle, D., and Rossi, F.: Global estimates of
evapotranspiration and gross primary production based on MODIS and global
meteorology data, Remote Sens. Environ., 114, 1416–1431, 2010.
Zeng, F., Collatz, G. J., Pinzon, J. E., and Ivanoff, A.: Evaluating and
quantifying the climate-driven interannual variability in Global Inventory
Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index
(NDVI3g) at global scales, Remote Sens., 5, 3918–3950, 2013.
Zhu, P., Zhuang, Q., Ciais, P., Welp, L., Li, W., and Xin, Q.: Elevated
atmospheric CO2 negatively impacts photosynthesis through radiative
forcing and physiology-mediated climate feedback, Geophys. Res. Lett., 44,
1956–1963, 2017.
Short summary
Terrestrial biosphere models that simulate both leaf dynamics and canopy photosynthesis are required to understand vegetation–climate interactions. A time-stepping scheme is proposed to simulate leaf area index, phenology, and gross primary production via climate variables. The method performs well on simulating deciduous broadleaf forests across the eastern United States; it provides a simplified and improved version of the growing production day model for use in land surface modeling.
Terrestrial biosphere models that simulate both leaf dynamics and canopy photosynthesis are...
Altmetrics
Final-revised paper
Preprint