Articles | Volume 16, issue 2
https://doi.org/10.5194/bg-16-467-2019
https://doi.org/10.5194/bg-16-467-2019
Research article
 | 
25 Jan 2019
Research article |  | 25 Jan 2019

A simple time-stepping scheme to simulate leaf area index, phenology, and gross primary production across deciduous broadleaf forests in the eastern United States

Qinchuan Xin, Yongjiu Dai, and Xiaoping Liu

Related authors

Modeling photosynthesis of discontinuous plant canopies by linking the Geometric Optical Radiative Transfer model with biochemical processes
Q. Xin, P. Gong, and W. Li
Biogeosciences, 12, 3447–3467, https://doi.org/10.5194/bg-12-3447-2015,https://doi.org/10.5194/bg-12-3447-2015, 2015
Short summary
Land surface phenological response to decadal climate variability across Australia using satellite remote sensing
M. Broich, A. Huete, M. G. Tulbure, X. Ma, Q. Xin, M. Paget, N. Restrepo-Coupe, K. Davies, R. Devadas, and A. Held
Biogeosciences, 11, 5181–5198, https://doi.org/10.5194/bg-11-5181-2014,https://doi.org/10.5194/bg-11-5181-2014, 2014

Related subject area

Biogeochemistry: Modelling, Terrestrial
Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China
Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers
Biogeosciences, 20, 1635–1648, https://doi.org/10.5194/bg-20-1635-2023,https://doi.org/10.5194/bg-20-1635-2023, 2023
Short summary
Towards an ensemble-based evaluation of land surface models in light of uncertain forcings and observations
Vivek K. Arora, Christian Seiler, Libo Wang, and Sian Kou-Giesbrecht
Biogeosciences, 20, 1313–1355, https://doi.org/10.5194/bg-20-1313-2023,https://doi.org/10.5194/bg-20-1313-2023, 2023
Short summary
Effect of land-use legacy on the future carbon sink for the conterminous US
Benjamin S. Felzer
Biogeosciences, 20, 573–587, https://doi.org/10.5194/bg-20-573-2023,https://doi.org/10.5194/bg-20-573-2023, 2023
Short summary
Information content in time series of litter decomposition studies and the transit time of litter in aridlands
Agustín Sarquis and Carlos A. Sierra
EGUsphere, https://doi.org/10.5194/egusphere-2023-90,https://doi.org/10.5194/egusphere-2023-90, 2023
Short summary
Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: a process-based biogeochemistry model analysis
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023,https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary

Cited articles

Akaike, H.: Fitting autoregressive models for prediction, Ann. I. Stat. Math., 21, 243–247, 1969. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300, 6541, 1998. 
AmeriFlux: flux tower data, available at: http://ameriflux.lbl.gov/data/download-data, last access: 13 January 2019. 
Arora, V. K. and Boer, G. J.: A parameterization of leaf phenology for the terrestrial ecosystem component of climate models, Glob. Change Biol., 11, 39–59, 2005. 
Download
Short summary
Terrestrial biosphere models that simulate both leaf dynamics and canopy photosynthesis are required to understand vegetation–climate interactions. A time-stepping scheme is proposed to simulate leaf area index, phenology, and gross primary production via climate variables. The method performs well on simulating deciduous broadleaf forests across the eastern United States; it provides a simplified and improved version of the growing production day model for use in land surface modeling.
Altmetrics
Final-revised paper
Preprint