Articles | Volume 16, issue 3
https://doi.org/10.5194/bg-16-663-2019
https://doi.org/10.5194/bg-16-663-2019
Research article
 | 
04 Feb 2019
Research article |  | 04 Feb 2019

Modeling anaerobic soil organic carbon decomposition in Arctic polygon tundra: insights into soil geochemical influences on carbon mineralization

Jianqiu Zheng, Peter E. Thornton, Scott L. Painter, Baohua Gu, Stan D. Wullschleger, and David E. Graham

Related authors

Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra
Jianqiu Zheng, Taniya RoyChowdhury, Ziming Yang, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 15, 6621–6635, https://doi.org/10.5194/bg-15-6621-2018,https://doi.org/10.5194/bg-15-6621-2018, 2018
Short summary
Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms
Guoping Tang, Jianqiu Zheng, Xiaofeng Xu, Ziming Yang, David E. Graham, Baohua Gu, Scott L. Painter, and Peter E. Thornton
Biogeosciences, 13, 5021–5041, https://doi.org/10.5194/bg-13-5021-2016,https://doi.org/10.5194/bg-13-5021-2016, 2016
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
A 2001–2022 global gross primary productivity dataset using an ensemble model based on the random forest method
Xin Chen, Tiexi Chen, Xiaodong Li, Yuanfang Chai, Shengjie Zhou, Renjie Guo, and Jie Dai
Biogeosciences, 21, 4285–4300, https://doi.org/10.5194/bg-21-4285-2024,https://doi.org/10.5194/bg-21-4285-2024, 2024
Short summary
Future projections of Siberian wildfire and aerosol emissions
Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata
Biogeosciences, 21, 4195–4227, https://doi.org/10.5194/bg-21-4195-2024,https://doi.org/10.5194/bg-21-4195-2024, 2024
Short summary
Mechanisms of soil organic carbon and nitrogen stabilization in mineral-associated organic matter – insights from modeling in phase space
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024,https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024,https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024,https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary

Cited articles

Atalay, Y. B., Carbonaro, R. F., and Di Toro, D. M.: Distribution of proton dissociation constants for model humic and fulvic acid molecules, Environ. Sci. Technol., 43, 3626–3631, https://doi.org/10.1021/es803057r, 2009. 
Bethke, C. M., Sanford, R. A., Kirk, M. F., Jin, Q., and Flynn, T. M.: The thermodynamic ladder in geomicrobiology, Am. J. Sci., 311, 183–210, https://doi.org/10.2475/03.2011.01, 2011. 
Blumer-Schuette, S. E., Brown, S. D., Sander, K. B., Bayer, E. A., Kataeva, I., Zurawski, J. V., Conway, J. M., Adams, M. W. W., and Kelly, R. M.: Thermophilic lignocellulose deconstruction, FEMS Microbiol. Rev., 38, 393–448, https://doi.org/10.1111/1574-6976.12044, 2014. 
Bore, E. K., Apostel, C., Halicki, S., Kuzyakov, Y., and Dippold, M. A.: Microbial metabolism in soil at subzero temperatures: adaptation mechanisms revealed by position-specific 13C labeling, Front. Microbiol., 8, 946, https://doi.org/10.3389/fmicb.2017.00946, 2017. 
Boye, K., Noël, V., Tfaily, M. M., Bone, S. E., Williams, K. H., Bargar, John R., and Fendorf, S.: Thermodynamically controlled preservation of organic carbon in floodplains, Nature Geosci., 10, 415, https://doi.org/10.1038/ngeo2940, 2017. 
Download
Short summary
Arctic warming exposes soil carbon to increased degradation, increasing CO2 and CH4 emissions. Models underrepresent anaerobic decomposition that predominates wet soils. We simulated microbial growth, pH regulation, and anaerobic carbon decomposition in a new model, parameterized and validated with prior soil incubation data. The model accurately simulated CO2 production and strong influences of water content, pH, methanogen biomass, and competing electron acceptors on CH4 production.
Altmetrics
Final-revised paper
Preprint