Articles | Volume 17, issue 5
https://doi.org/10.5194/bg-17-1281-2020
https://doi.org/10.5194/bg-17-1281-2020
Research article
 | 
11 Mar 2020
Research article |  | 11 Mar 2020

Comparing stability in random forest models to map Northern Great Plains plant communities in pastures occupied by prairie dogs using Pleiades imagery

Jameson R. Brennan, Patricia S. Johnson, and Niall P. Hanan

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024,https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024,https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024,https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024,https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024,https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary

Cited articles

Agnew, W. D., Uresk, W. D., and Hansen, M. R.: Flora and Fauna Associated with Prairie Dog Colonies and Adjacent Ungrazed Mixed-Grass Prairie in Western South Dakota, J. Range Manage., 39, 135–139, 1986. 
Archer, S., Garrett, M. G., and Detling, J. K.: Rates of Vegetation Change Associated with Prairie Dog (Cynomys ludovicianus) Grazing in North American Mixed-Grass Prairie, Vegetatio, 72, 159–166, 1987. 
Augustine, D. J. and Springer, T. L.: Competition and facilitation between a native and a domestic herbivore: trade-offs between forage quantity and quality, Ecol. Appl., 23, 850–863, 2013. 
Barth, C. J., Liebig, M. A., Hendrickson, J. R., Sedivec, K. K., and Halvorson, G.: Soil Change Induced by Prairie Dogs across Three Ecological Sites, Soil Sci. Soc. Am. J., 78, 2054–2060, 2014. 
Belgiu, M. and Drăguţ, L.: Random forest in remote sensing: A review of applications and future directions, ISPRS J. Photogramm., 114, 24–31, 2016. 
Download
Short summary
Prairie dogs have been described as a keystone species and are important for grassland conservation, yet concerns exist over the impact of prairie dogs on livestock production. The aim of this study was to classify plant communities on and off prairie dog towns in South Dakota and determine the utility of using remote sensing to identity prairie dog colony extent. The results show that remote sensing is effective at determining prairie dog colony boundaries.
Altmetrics
Final-revised paper
Preprint