Articles | Volume 17, issue 16
https://doi.org/10.5194/bg-17-4153-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-4153-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates
National Institute of Water and Atmospheric Research, Wellington, New Zealand
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Kai G. Schulz
Centre for Coastal Biogeochemistry, Southern Cross University, East Lismore, New South Wales, Australia
Alyce Hancock
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Antarctic Gateway Partnership, Hobart, Tasmania, Australia
Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia
Penelope Pascoe
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Department of the Environment and Energy, Australian Antarctic Division, Kingston, Tasmania, Australia
John McKinlay
Department of the Environment and Energy, Australian Antarctic Division, Kingston, Tasmania, Australia
Andrew Davidson
Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia
Department of the Environment and Energy, Australian Antarctic Division, Kingston, Tasmania, Australia
Related authors
Karine Sellegri, Theresa Barthelmeß, Jonathan Trueblood, Antonia Cristi, Evelyn Freney, Clémence Rose, Neill Barr, Mike Harvey, Karl Safi, Stacy Deppeler, Karen Thompson, Wayne Dillon, Anja Engel, and Cliff Law
Atmos. Chem. Phys., 23, 12949–12964, https://doi.org/10.5194/acp-23-12949-2023, https://doi.org/10.5194/acp-23-12949-2023, 2023
Short summary
Short summary
The amount of sea spray emitted to the atmosphere depends on the ocean temperature, but this dependency is not well understood, especially when ocean biology is involved. In this study, we show that sea spray emissions are increased by up to a factor of 4 at low seawater temperatures compared to moderate temperatures, and we quantify the temperature dependence as a function of the ocean biogeochemistry.
Manon Rocco, Erin Dunne, Alexia Saint-Macary, Maija Peltola, Theresa Barthelmeß, Neill Barr, Karl Safi, Andrew Marriner, Stacy Deppeler, James Harnwell, Anja Engel, Aurélie Colomb, Alfonso Saiz-Lopez, Mike Harvey, Cliff S. Law, and Karine Sellegri
EGUsphere, https://doi.org/10.5194/egusphere-2023-516, https://doi.org/10.5194/egusphere-2023-516, 2023
Preprint archived
Short summary
Short summary
During the Sea2cloud campaign in the Southern Pacific Ocean, we measured air-sea emissions from phytopankton of two key atmospheric compounds: DMS and MeSH. These compounds are well-known to play a great role in atmospheric chemistry and climate. We see in this paper that these compounds are most emited by the nanophytoplankton population. We provide here parameters for climate models to predict future trends of the emissions of these compounds and their roles and impacts on the global warming.
Alexia D. Saint-Macary, Andrew Marriner, Theresa Barthelmeß, Stacy Deppeler, Karl Safi, Rafael Costa Santana, Mike Harvey, and Cliff S. Law
Ocean Sci., 19, 1–15, https://doi.org/10.5194/os-19-1-2023, https://doi.org/10.5194/os-19-1-2023, 2023
Short summary
Short summary
The uppermost oceanic layer was sampled to determine what can explain a potential dimethyl sulfide (DMS) enrichment in this environment. A novel sampling method was used, and the results showed that DMS was not as enriched as expected. Our results showed that the phytoplanktonic composition influenced the DMS concentration, confirming results from another study in this oceanic region. However, additional factors are required to observe a DMS enrichment in the uppermost oceanic layer.
Alexia D. Saint-Macary, Andrew Marriner, Stacy Deppeler, Karl A. Safi, and Cliff S. Law
Ocean Sci., 18, 1559–1571, https://doi.org/10.5194/os-18-1559-2022, https://doi.org/10.5194/os-18-1559-2022, 2022
Short summary
Short summary
To understand how dimethyl sulfide (DMS) enrichment is maintained in the sea surface microlayer (SML) while DMS is lost to the atmosphere, deck-board incubation was carried out to determine DMS sources and sinks. Our results showed that the phytoplankton composition played an essential role in DMS processes in the SML. However, all accumulated DMS processes were lower than the calculated air–sea DMS flux.
Stacy Deppeler, Katherina Petrou, Kai G. Schulz, Karen Westwood, Imojen Pearce, John McKinlay, and Andrew Davidson
Biogeosciences, 15, 209–231, https://doi.org/10.5194/bg-15-209-2018, https://doi.org/10.5194/bg-15-209-2018, 2018
Short summary
Short summary
We combined productivity and photophysiology measurements to investigate the effects of ocean acidification on a natural Antarctic marine microbial community. Our study identifies a threshold for CO2 tolerance in the phytoplankton community between 953 and 1140 μatm of CO2, above which productivity declines. Bacteria were tolerant to CO2 up to 1641 μatm. We identify physiological changes in the phytoplankton at high CO2 that allowed them to acclimate to the high CO2 treatment.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
Kai G. Schulz, Lennart T. Bach, and Andrew G. Dickson
State Planet, 2-oae2023, 2, https://doi.org/10.5194/sp-2-oae2023-2-2023, https://doi.org/10.5194/sp-2-oae2023-2-2023, 2023
Short summary
Short summary
Ocean alkalinity enhancement is a promising approach for long-term anthropogenic carbon dioxide sequestration, required to avoid catastrophic climate change. In this chapter we describe its impacts on seawater carbonate chemistry speciation and highlight pitfalls that need to be avoided during sampling, storage, measurements, and calculations.
Karine Sellegri, Theresa Barthelmeß, Jonathan Trueblood, Antonia Cristi, Evelyn Freney, Clémence Rose, Neill Barr, Mike Harvey, Karl Safi, Stacy Deppeler, Karen Thompson, Wayne Dillon, Anja Engel, and Cliff Law
Atmos. Chem. Phys., 23, 12949–12964, https://doi.org/10.5194/acp-23-12949-2023, https://doi.org/10.5194/acp-23-12949-2023, 2023
Short summary
Short summary
The amount of sea spray emitted to the atmosphere depends on the ocean temperature, but this dependency is not well understood, especially when ocean biology is involved. In this study, we show that sea spray emissions are increased by up to a factor of 4 at low seawater temperatures compared to moderate temperatures, and we quantify the temperature dependence as a function of the ocean biogeochemistry.
Manon Rocco, Erin Dunne, Alexia Saint-Macary, Maija Peltola, Theresa Barthelmeß, Neill Barr, Karl Safi, Andrew Marriner, Stacy Deppeler, James Harnwell, Anja Engel, Aurélie Colomb, Alfonso Saiz-Lopez, Mike Harvey, Cliff S. Law, and Karine Sellegri
EGUsphere, https://doi.org/10.5194/egusphere-2023-516, https://doi.org/10.5194/egusphere-2023-516, 2023
Preprint archived
Short summary
Short summary
During the Sea2cloud campaign in the Southern Pacific Ocean, we measured air-sea emissions from phytopankton of two key atmospheric compounds: DMS and MeSH. These compounds are well-known to play a great role in atmospheric chemistry and climate. We see in this paper that these compounds are most emited by the nanophytoplankton population. We provide here parameters for climate models to predict future trends of the emissions of these compounds and their roles and impacts on the global warming.
Alexia D. Saint-Macary, Andrew Marriner, Theresa Barthelmeß, Stacy Deppeler, Karl Safi, Rafael Costa Santana, Mike Harvey, and Cliff S. Law
Ocean Sci., 19, 1–15, https://doi.org/10.5194/os-19-1-2023, https://doi.org/10.5194/os-19-1-2023, 2023
Short summary
Short summary
The uppermost oceanic layer was sampled to determine what can explain a potential dimethyl sulfide (DMS) enrichment in this environment. A novel sampling method was used, and the results showed that DMS was not as enriched as expected. Our results showed that the phytoplanktonic composition influenced the DMS concentration, confirming results from another study in this oceanic region. However, additional factors are required to observe a DMS enrichment in the uppermost oceanic layer.
Aaron Ferderer, Zanna Chase, Fraser Kennedy, Kai G. Schulz, and Lennart T. Bach
Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, https://doi.org/10.5194/bg-19-5375-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the atmosphere, but its effect on marine ecosystems is largely unknown. We assessed the effect of increased alkalinity on a coastal phytoplankton community when seawater was equilibrated and not equilibrated with atmospheric CO2. We found that the phytoplankton community was moderately affected by increased alkalinity and equilibration with atmospheric CO2 had little influence on this effect.
Alexia D. Saint-Macary, Andrew Marriner, Stacy Deppeler, Karl A. Safi, and Cliff S. Law
Ocean Sci., 18, 1559–1571, https://doi.org/10.5194/os-18-1559-2022, https://doi.org/10.5194/os-18-1559-2022, 2022
Short summary
Short summary
To understand how dimethyl sulfide (DMS) enrichment is maintained in the sea surface microlayer (SML) while DMS is lost to the atmosphere, deck-board incubation was carried out to determine DMS sources and sinks. Our results showed that the phytoplankton composition played an essential role in DMS processes in the SML. However, all accumulated DMS processes were lower than the calculated air–sea DMS flux.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Richard Porter-Smith, John McKinlay, Alexander D. Fraser, and Robert A. Massom
Earth Syst. Sci. Data, 13, 3103–3114, https://doi.org/10.5194/essd-13-3103-2021, https://doi.org/10.5194/essd-13-3103-2021, 2021
Short summary
Short summary
This study quantifies the characteristic complexity
signaturesaround the Antarctic outer coastal margin, giving a multiscale estimate of the magnitude and direction of undulation or complexity at each point location along the entire coastline. It has numerous applications for both geophysical and biological studies and will contribute to Antarctic research requiring quantitative information about this important interface.
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 18, 1823–1838, https://doi.org/10.5194/bg-18-1823-2021, https://doi.org/10.5194/bg-18-1823-2021, 2021
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Bruce L. Greaves, Andrew T. Davidson, Alexander D. Fraser, John P. McKinlay, Andrew Martin, Andrew McMinn, and Simon W. Wright
Biogeosciences, 17, 3815–3835, https://doi.org/10.5194/bg-17-3815-2020, https://doi.org/10.5194/bg-17-3815-2020, 2020
Short summary
Short summary
We observed that variation in the Southern Annular Mode (SAM) over 11 years showed a relationship with the species composition of hard-shelled phytoplankton in the seasonal ice zone (SIZ) of the Southern Ocean. Phytoplankton in the SIZ are productive during the southern spring and summer when the area is ice-free, with production feeding most Antarctic life. The SAM is known to be increasing with climate change, and changes in phytoplankton in the SIZ may have implications for higher life forms.
Yong Zhang, Lennart T. Bach, Kai T. Lohbeck, Kai G. Schulz, Luisa Listmann, Regina Klapper, and Ulf Riebesell
Biogeosciences, 15, 3691–3701, https://doi.org/10.5194/bg-15-3691-2018, https://doi.org/10.5194/bg-15-3691-2018, 2018
Short summary
Short summary
To compare variations in physiological responses to pCO2 between populations, we measured growth, POC and PIC production rates at a pCO2 range from 120 to 2630 µatm for 17 strains of the coccolithophore Emiliania huxleyi from the Azores, Canary Islands, and Norwegian coast near Bergen. Optimal pCO2 for growth and POC production rates and tolerance to low pH was significantly higher for the Bergen population than the Azores and Canary Islands populations.
Natasha A. Gafar and Kai G. Schulz
Biogeosciences, 15, 3541–3560, https://doi.org/10.5194/bg-15-3541-2018, https://doi.org/10.5194/bg-15-3541-2018, 2018
Short summary
Short summary
Emiliania huxleyi and Gephyrocapsa oceanica are the most prolific calcifying phytoplankton in today's oceans. We compare their sensitivity to combined anthropogenic stressors of temperature, light and CO2. For the future, we project a niche contraction for G. oceanica. Furthermore, there was good correlation of our new metric, the CaCO3 production potential, with satellite-derived concentrations in the modern ocean, indicating means of assessing overall coccolithophorid success in the future.
Alyce M. Hancock, Andrew T. Davidson, John McKinlay, Andrew McMinn, Kai G. Schulz, and Rick L. van den Enden
Biogeosciences, 15, 2393–2410, https://doi.org/10.5194/bg-15-2393-2018, https://doi.org/10.5194/bg-15-2393-2018, 2018
Short summary
Short summary
Absorption of carbon dioxide (CO2) realized by humans is decreasing the ocean pH (ocean acidification). Single-celled organisms (microbes) support the Antarctic ecosystem, yet little is known about their sensitivity to ocean acidification. This study shows a shift in a natural Antarctic microbial community, with CO2 levels exceeding 634 μatm changing the community composition and favouring small cells. This would have significant flow effects for Antarctic food webs and elemental cycles.
Stacy Deppeler, Katherina Petrou, Kai G. Schulz, Karen Westwood, Imojen Pearce, John McKinlay, and Andrew Davidson
Biogeosciences, 15, 209–231, https://doi.org/10.5194/bg-15-209-2018, https://doi.org/10.5194/bg-15-209-2018, 2018
Short summary
Short summary
We combined productivity and photophysiology measurements to investigate the effects of ocean acidification on a natural Antarctic marine microbial community. Our study identifies a threshold for CO2 tolerance in the phytoplankton community between 953 and 1140 μatm of CO2, above which productivity declines. Bacteria were tolerant to CO2 up to 1641 μatm. We identify physiological changes in the phytoplankton at high CO2 that allowed them to acclimate to the high CO2 treatment.
Coulson A. Lantz, Kai G. Schulz, Laura Stoltenberg, and Bradley D. Eyre
Biogeosciences, 14, 5377–5391, https://doi.org/10.5194/bg-14-5377-2017, https://doi.org/10.5194/bg-14-5377-2017, 2017
Short summary
Short summary
This study examined the combined effect of seawater warming and organic matter enrichment on coral reef sediment metabolism. Sediments under control conditions were net autotrophic and net calcifying. Warming shifted the sediment to net heterotrophy and net dissolution, while organic matter enrichment increased net production and net calcification. When combined, the effects of each treatment were counterbalanced and sediment metabolism did not significantly differ from control treatments.
Hanieh T. Farid, Kai G. Schulz, and Andrew L. Rose
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-129, https://doi.org/10.5194/bg-2017-129, 2017
Manuscript not accepted for further review
Short summary
Short summary
This study provides new insights into: (a) how organic exudates from a marine cyanobacterium may influence iron speciation and bioavailability in the extracellular milieu; and (b) approaches for evaluating rate constants for Fe(II) oxidation in the presence of unknown organic ligands. Given that microorganisms play critical roles in biochemical cycling of trace metals in water systems, the findings are expected to improve nutrient uptake models and be of interest to broad range of readers.
Mitchell Call, Kai G. Schulz, Matheus C. Carvalho, Isaac R. Santos, and Damien T. Maher
Biogeosciences, 14, 1305–1313, https://doi.org/10.5194/bg-14-1305-2017, https://doi.org/10.5194/bg-14-1305-2017, 2017
Short summary
Short summary
The conventional method for determining dissolved inorganic carbon (DIC) and it carbon stable isotope ratio (δ13C–DIC) can be a laborious process which can limit sampling frequency. This paper presents a new approach to autonomously determine DIC & δ13C–DIC at high temporal resolution. The simple method requires no customised design. Instead it uses two commercially available instruments and achieved a sampling resolution of 16 mins with precision and accuracy comparable to conventional methods.
Silke Lischka, Lennart T. Bach, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 14, 447–466, https://doi.org/10.5194/bg-14-447-2017, https://doi.org/10.5194/bg-14-447-2017, 2017
Short summary
Short summary
We conducted a large-scale field experiment using 55 m3 floating containers (mesocosms) to investigate consequences of near-future projected CO2 elevations (ocean acidification) on a Baltic Sea plankton community in Storfjärden (Finland). The focus of our study was on single- and multicelled small-sized organisms dwelling in the water column. Our results suggest that increasing CO2 concentrations may change the species composition and promote specific food web interactions.
Thomas Hornick, Lennart T. Bach, Katharine J. Crawfurd, Kristian Spilling, Eric P. Achterberg, Jason N. Woodhouse, Kai G. Schulz, Corina P. D. Brussaard, Ulf Riebesell, and Hans-Peter Grossart
Biogeosciences, 14, 1–15, https://doi.org/10.5194/bg-14-1-2017, https://doi.org/10.5194/bg-14-1-2017, 2017
Kristian Spilling, Kai G. Schulz, Allanah J. Paul, Tim Boxhammer, Eric P. Achterberg, Thomas Hornick, Silke Lischka, Annegret Stuhr, Rafael Bermúdez, Jan Czerny, Kate Crawfurd, Corina P. D. Brussaard, Hans-Peter Grossart, and Ulf Riebesell
Biogeosciences, 13, 6081–6093, https://doi.org/10.5194/bg-13-6081-2016, https://doi.org/10.5194/bg-13-6081-2016, 2016
Short summary
Short summary
We performed an experiment in the Baltic Sea in order to investigate the consequences of the increasing CO2 levels on biological processes in the free water mass. There was more accumulation of organic carbon at high CO2 levels. Surprisingly, this was caused by reduced loss processes (respiration and bacterial production) in a high-CO2 environment, and not by increased photosynthetic fixation of CO2. Our carbon budget can be used to better disentangle the effects of ocean acidification.
Francesca Gallo, Kai G. Schulz, Eduardo B. Azevedo, João Madruga, and Joana Barcelos e Ramos
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-352, https://doi.org/10.5194/bg-2016-352, 2016
Revised manuscript not accepted
Short summary
Short summary
Global change driven by humans activities may affect phytoplankton, which are important primary producers. Assessing the combined effect of turbulence and ocean acidification on the species Asterionellopsis glacialis, we found that turbulence magnifies the acidification stress, with negative effects on their growth. In the natural environment, this might have consequences to phytoplankton community composition and production with feedbacks to climate.
Kristian Spilling, Allanah J. Paul, Niklas Virkkala, Tom Hastings, Silke Lischka, Annegret Stuhr, Rafael Bermúdez, Jan Czerny, Tim Boxhammer, Kai G. Schulz, Andrea Ludwig, and Ulf Riebesell
Biogeosciences, 13, 4707–4719, https://doi.org/10.5194/bg-13-4707-2016, https://doi.org/10.5194/bg-13-4707-2016, 2016
Short summary
Short summary
Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. We determined the plankton community composition and measured primary production, respiration rates and carbon export during an ocean acidification experiment. Our results suggest that increased CO2 reduced respiration and increased net carbon fixation at high CO2. This did not, however, translate into higher carbon export, and consequently did not work as a negative feedback mechanism for decreasing pH.
Juntian Xu, Lennart T. Bach, Kai G. Schulz, Wenyan Zhao, Kunshan Gao, and Ulf Riebesell
Biogeosciences, 13, 4637–4643, https://doi.org/10.5194/bg-13-4637-2016, https://doi.org/10.5194/bg-13-4637-2016, 2016
Alison L. Webb, Emma Leedham-Elvidge, Claire Hughes, Frances E. Hopkins, Gill Malin, Lennart T. Bach, Kai Schulz, Kate Crawfurd, Corina P. D. Brussaard, Annegret Stuhr, Ulf Riebesell, and Peter S. Liss
Biogeosciences, 13, 4595–4613, https://doi.org/10.5194/bg-13-4595-2016, https://doi.org/10.5194/bg-13-4595-2016, 2016
Short summary
Short summary
This paper presents concentrations of several trace gases produced by the Baltic Sea phytoplankton community during a mesocosm experiment with five different CO2 levels. Average concentrations of dimethylsulphide were lower in the highest CO2 mesocosms over a 6-week period, corresponding to previous mesocosm experiment results. No dimethylsulfoniopropionate was detected due to a methodological issue. Concentrations of iodine- and bromine-containing halocarbons were unaffected by increasing CO2.
Allanah J. Paul, Eric P. Achterberg, Lennart T. Bach, Tim Boxhammer, Jan Czerny, Mathias Haunost, Kai-Georg Schulz, Annegret Stuhr, and Ulf Riebesell
Biogeosciences, 13, 3901–3913, https://doi.org/10.5194/bg-13-3901-2016, https://doi.org/10.5194/bg-13-3901-2016, 2016
Anna Jansson, Silke Lischka, Tim Boxhammer, Kai G. Schulz, and Joanna Norkko
Biogeosciences, 13, 3377–3385, https://doi.org/10.5194/bg-13-3377-2016, https://doi.org/10.5194/bg-13-3377-2016, 2016
Short summary
Short summary
We studied the responses of larvae of Macoma balthica to a range of future CO2 scenarios using large mesocosms encompassing the entire pelagic community. We focused on the growth and settlement process of M. balthica when exposed to future CO2 levels, and found the size and time to settlement to increase along the CO2 gradient, suggesting a developmental delay. The strong impact of increasing CO2 on early-stage bivalves is alarming as these stages are crucial for sustaining viable populations.
Monika Nausch, Lennart Thomas Bach, Jan Czerny, Josephine Goldstein, Hans-Peter Grossart, Dana Hellemann, Thomas Hornick, Eric Pieter Achterberg, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 13, 3035–3050, https://doi.org/10.5194/bg-13-3035-2016, https://doi.org/10.5194/bg-13-3035-2016, 2016
Short summary
Short summary
Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. Therefore, we conducted a CO2-manipulation mesocosm experiment in the Storfjärden (western Gulf of Finland, Baltic Sea) in summer 2012. We compared the phosphorus dynamics in different mesocosm treatment
M. N. Müller, J. Barcelos e Ramos, K. G. Schulz, U. Riebesell, J. Kaźmierczak, F. Gallo, L. Mackinder, Y. Li, P. N. Nesterenko, T. W. Trull, and G. M. Hallegraeff
Biogeosciences, 12, 6493–6501, https://doi.org/10.5194/bg-12-6493-2015, https://doi.org/10.5194/bg-12-6493-2015, 2015
Short summary
Short summary
The White Cliffs of Dover date back to the Cretaceous and are made up of microscopic chalky shells which were produced mainly by marine phytoplankton (coccolithophores). This is iconic proof for their success at times of relatively high seawater calcium concentrations and, as shown here, to be linked to their ability to precipitate calcium as chalk. The invention of calcification can thus be considered an evolutionary milestone allowing coccolithophores to thrive at times when others struggled.
A. J. Paul, L. T. Bach, K.-G. Schulz, T. Boxhammer, J. Czerny, E. P. Achterberg, D. Hellemann, Y. Trense, M. Nausch, M. Sswat, and U. Riebesell
Biogeosciences, 12, 6181–6203, https://doi.org/10.5194/bg-12-6181-2015, https://doi.org/10.5194/bg-12-6181-2015, 2015
M. N. Müller, M. Lebrato, U. Riebesell, J. Barcelos e Ramos, K. G. Schulz, S. Blanco-Ameijeiras, S. Sett, A. Eisenhauer, and H. M. Stoll
Biogeosciences, 11, 1065–1075, https://doi.org/10.5194/bg-11-1065-2014, https://doi.org/10.5194/bg-11-1065-2014, 2014
U. Riebesell, J. Czerny, K. von Bröckel, T. Boxhammer, J. Büdenbender, M. Deckelnick, M. Fischer, D. Hoffmann, S. A. Krug, U. Lentz, A. Ludwig, R. Muche, and K. G. Schulz
Biogeosciences, 10, 1835–1847, https://doi.org/10.5194/bg-10-1835-2013, https://doi.org/10.5194/bg-10-1835-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Marine
Reefal ostracod assemblages from the Zanzibar Archipelago (Tanzania)
Composite calcite and opal test in Foraminifera (Rhizaria)
Influence of oxygen minimum zone on macrobenthic community structure in the northern Benguela Upwelling System: a macro-nematode perspective
Simulated terrestrial runoff shifts the metabolic balance of a coastal Mediterranean plankton community towards heterotrophy
Contrasting carbon cycling in the benthic food webs between a river-fed, high-energy canyon and an upper continental slope
A critical trade-off between nitrogen quota and growth allows Coccolithus braarudii life cycle phases to exploit varying environment
Structural complexity and benthic metabolism: resolving the links between carbon cycling and biodiversity in restored seagrass meadows
Planktic foraminifera assemblage composition and flux dynamics inferred from an annual sediment trap record in the Central Mediterranean Sea
Building your own mountain: the effects, limits, and drawbacks of cold-water coral ecosystem engineering
Viability of coastal fish larvae under ocean alkalinity enhancement: from organisms to communities
Phytoplankton response to increased nickel in the context of ocean alkalinity enhancement
Diversity and density relationships between lebensspuren and tracemaking organisms: a study case from abyssal northwest Pacific
Technical note: An autonomous flow-through salinity and temperature perturbation mesocosm system for multi-stressor experiments
Reviews and syntheses: The clam before the storm – a meta-analysis showing the effect of combined climate change stressors on bivalves
A step towards measuring connectivity in the deep sea: elemental fingerprints of mollusk larval shells discriminate hydrothermal vent sites
Spawner weight and ocean temperature drive Allee effect dynamics in Atlantic cod, Gadus morhua: inherent and emergent density regulation
Bacterioplankton dark CO2 fixation in oligotrophic waters
The bottom mixed layer depth as an indicator of subsurface Chlorophyll a distribution
Ideas and perspectives: The fluctuating nature of oxygen shapes the ecology of aquatic habitats and their biogeochemical cycles – the aquatic oxyscape
Impact of deoxygenation and warming on global marine species in the 21st century
Ecological divergence of a mesocosm in an eastern boundary upwelling system assessed with multi-marker environmental DNA metabarcoding
Unique benthic foraminiferal communities (stained) in diverse environments of sub-Antarctic fjords, South Georgia
Upwelled plankton community modulates surface bloom succession and nutrient availability in a natural plankton assemblage
First phytoplankton community assessment of the Kong Håkon VII Hav, Southern Ocean, during austral autumn
Early life stages of a Mediterranean coral are vulnerable to ocean warming and acidification
Mediterranean seagrasses as carbon sinks: methodological and regional differences
Contrasting vertical distributions of recent planktic foraminifera off Indonesia during the southeast monsoon: implications for paleoceanographic reconstructions
The onset of the spring phytoplankton bloom in the coastal North Sea supports the Disturbance Recovery Hypothesis
Species richness and functional attributes of fish assemblages across a large-scale salinity gradient in shallow coastal areas
Modeling the growth and sporulation dynamics of the macroalga Ulva in mixed-age populations in cultivation and the formation of green tides
Spatial changes in community composition and food web structure of mesozooplankton across the Adriatic basin (Mediterranean Sea)
Predicting mangrove forest dynamics across a soil salinity gradient using an individual-based vegetation model linked with plant hydraulics
Will daytime community calcification reflect reef accretion on future, degraded coral reefs?
Modeling polar marine ecosystem functions guided by bacterial physiological and taxonomic traits
Quantifying functional consequences of habitat degradation on a Caribbean coral reef
Enhanced chlorophyll-a concentration in the wake of Sable Island, eastern Canada, revealed by two decades of satellite observations: a response to grey seal population dynamics?
Population dynamics and reproduction strategies of planktonic foraminifera in the open ocean
The Bouraké semi-enclosed lagoon (New Caledonia) – a natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions
Atypical, high-diversity assemblages of foraminifera in a mangrove estuary in northern Brazil
Permanent ectoplasmic structures in deep-sea Cibicides and Cibicidoides taxa – long-term observations at in situ pressure
Ideas and perspectives: Ushering the Indian Ocean into the UN Decade of Ocean Science for Sustainable Development (UNDOSSD) through marine ecosystem research and operational services – an early career's take
Persistent effects of sand extraction on habitats and associated benthic communities in the German Bight
Spatial patterns of ectoenzymatic kinetics in relation to biogeochemical properties in the Mediterranean Sea and the concentration of the fluorogenic substrate used
A 2-decade (1988–2009) record of diatom fluxes in the Mauritanian coastal upwelling: impact of low-frequency forcing and a two-step shift in the species composition
Review and syntheses: Impacts of turbidity flows on deep-sea benthic communities
Ideas and perspectives: When ocean acidification experiments are not the same, repeatability is not tested
The effect of the salinity, light regime and food source on carbon and nitrogen uptake in a benthic foraminifer
Changes in population depth distribution and oxygen stratification are involved in the current low condition of the eastern Baltic Sea cod (Gadus morhua)
Effects of spatial variability on the exposure of fish to hypoxia: a modeling analysis for the Gulf of Mexico
Plant genotype determines biomass response to flooding frequency in tidal wetlands
Skye Yunshu Tian, Martin Langer, Moriaki Yasuhara, and Chih-Lin Wei
Biogeosciences, 21, 3523–3536, https://doi.org/10.5194/bg-21-3523-2024, https://doi.org/10.5194/bg-21-3523-2024, 2024
Short summary
Short summary
Through the first large-scale study of meiobenthic ostracods from the diverse and productive reef ecosystem in the Zanzibar Archipelago, Tanzania, we found that the diversity and composition of ostracod assemblages as controlled by benthic habitats and human impacts were indicative of overall reef health, and we highlighted the usefulness of ostracods as a model proxy to monitor and understand the degradation of reef ecosystems from the coral-dominated phase to the algae-dominated phase.
Julien Richirt, Satoshi Okada, Yoshiyuki Ishitani, Katsuyuki Uematsu, Akihiro Tame, Kaya Oda, Noriyuki Isobe, Toyoho Ishimura, Masashi Tsuchiya, and Hidetaka Nomaki
Biogeosciences, 21, 3271–3288, https://doi.org/10.5194/bg-21-3271-2024, https://doi.org/10.5194/bg-21-3271-2024, 2024
Short summary
Short summary
We report the first benthic foraminifera with a composite test (i.e. shell) made of opal, which coats the inner part of the calcitic layer. Using comprehensive techniques, we describe the morphology and the composition of this novel opal layer and provide evidence that the opal is precipitated by the foraminifera itself. We explore the potential precipitation process and function(s) of this composite test and further discuss the possible implications for palaeoceanographic reconstructions.
Said Mohamed Hashim, Beth Wangui Waweru, and Agnes Muthumbi
Biogeosciences, 21, 2995–3006, https://doi.org/10.5194/bg-21-2995-2024, https://doi.org/10.5194/bg-21-2995-2024, 2024
Short summary
Short summary
The study investigates the impact of decreasing oxygen in the ocean on macrofaunal communities using the BUS as an example. It identifies distinct shifts in community composition and feeding guilds across oxygen zones, with nematodes dominating dysoxic areas. These findings underscore the complex responses of benthic organisms to oxygen gradients, crucial for understanding ecosystem dynamics in hypoxic environments and their implications for marine biodiversity and sustainability.
Tanguy Soulié, Francesca Vidussi, Justine Courboulès, Marie Heydon, Sébastien Mas, Florian Voron, Carolina Cantoni, Fabien Joux, and Behzad Mostajir
Biogeosciences, 21, 1887–1902, https://doi.org/10.5194/bg-21-1887-2024, https://doi.org/10.5194/bg-21-1887-2024, 2024
Short summary
Short summary
Due to climate change, it is projected that extreme rainfall events, which bring terrestrial matter into coastal seas, will occur more frequently in the Mediterranean region. To test the effects of runoffs of terrestrial matter on plankton communities from Mediterranean coastal waters, an in situ mesocosm experiment was conducted. The simulated runoff affected key processes mediated by plankton, such as primary production and respiration, suggesting major consequences of such events.
Chueh-Chen Tung, Yu-Shih Lin, Jian-Xiang Liao, Tzu-Hsuan Tu, James T. Liu, Li-Hung Lin, Pei-Ling Wang, and Chih-Lin Wei
Biogeosciences, 21, 1729–1756, https://doi.org/10.5194/bg-21-1729-2024, https://doi.org/10.5194/bg-21-1729-2024, 2024
Short summary
Short summary
This study contrasts seabed food webs between a river-fed, high-energy canyon and the nearby slope. We show higher organic carbon (OC) flows through the canyon than the slope. Bacteria dominated the canyon, while seabed fauna contributed more to the slope food web. Due to frequent perturbation, the canyon had a lower faunal stock and OC recycling. Only 4 % of the seabed OC flux enters the canyon food web, suggesting a significant role of the river-fed canyon in transporting OC to the deep sea.
Joost de Vries, Fanny Monteiro, Gerald Langer, Colin Brownlee, and Glen Wheeler
Biogeosciences, 21, 1707–1727, https://doi.org/10.5194/bg-21-1707-2024, https://doi.org/10.5194/bg-21-1707-2024, 2024
Short summary
Short summary
Calcifying phytoplankton (coccolithophores) utilize a life cycle in which they can grow and divide into two different phases. These two phases (HET and HOL) vary in terms of their physiology and distributions, with many unknowns about what the key differences are. Using a combination of lab experiments and model simulations, we find that nutrient storage is a critical difference between the two phases and that this difference allows them to inhabit different nitrogen input regimes.
Theodor Kindeberg, Karl Michael Attard, Jana Hüller, Julia Müller, Cintia Organo Quintana, and Eduardo Infantes
Biogeosciences, 21, 1685–1705, https://doi.org/10.5194/bg-21-1685-2024, https://doi.org/10.5194/bg-21-1685-2024, 2024
Short summary
Short summary
Seagrass meadows are hotspots for biodiversity and productivity, and planting seagrass is proposed as a tool for mitigating biodiversity loss and climate change. We assessed seagrass planted in different years and found that benthic oxygen and carbon fluxes increased as the seabed developed from bare sediments to a mature seagrass meadow. This increase was partly linked to the diversity of colonizing algae which increased the light-use efficiency of the seagrass meadow community.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, Javier P. Tarruella, José A. Flores, Anna Sanchez Vidal, Irene Llamas Cano, and Francisco J. Sierro
EGUsphere, https://doi.org/10.5194/egusphere-2023-3101, https://doi.org/10.5194/egusphere-2023-3101, 2024
Short summary
Short summary
The Mediterranean Sea is considered a climate change hotspot. Documenting planktic foraminifera population is crucial. In the Sicily Strait, fluxes are higher during winter and positively linked with chlorophyll-a concentration and cool temperatures. A comparison with other Mediterranean sites shows the transitional aspect of the studied zone. Finally, modern populations significantly differ from those in the sediment, highlighting a possible effect of environmental change.
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024, https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Short summary
Combining hydrodynamic simulations and annotated videos, we separated which hydrodynamic variables that determine reef cover are engineered by cold-water corals and which are not. Around coral mounds, hydrodynamic zones seem to create a typical reef zonation, restricting corals from moving deeper (the expected response to climate warming). But non-engineered downward velocities in winter (e.g. deep winter mixing) seem more important for coral reef growth than coral engineering.
Silvan Urs Goldenberg, Ulf Riebesell, Daniel Brüggemann, Gregor Börner, Michael Sswat, Arild Folkvord, Maria Couret, Synne Spjelkavik, Nicolás Sánchez, Cornelia Jaspers, and Marta Moyano
EGUsphere, https://doi.org/10.5194/egusphere-2024-286, https://doi.org/10.5194/egusphere-2024-286, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is being evaluated as carbon dioxide removal technology for climate change mitigation. With experiments on single species and species communities, we show that fish larvae can be resilient to the resulting perturbation of seawater. Larvae may hence recruit successfully and continue to support fisheries production in regions of OAE. Our findings for fish and marine food webs help to establish an environmentally safe operating space for this ocean-based solution.
Xiaoke Xin, Giulia Faucher, and Ulf Riebesell
Biogeosciences, 21, 761–772, https://doi.org/10.5194/bg-21-761-2024, https://doi.org/10.5194/bg-21-761-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising approach to remove CO2 by accelerating natural rock weathering. However, some of the alkaline substances contain trace metals which could be toxic to marine life. By exposing three representative phytoplankton species to Ni released from alkaline materials, we observed varying responses of phytoplankton to nickel concentrations, suggesting caution should be taken and toxic thresholds should be avoided in OAE with Ni-rich materials.
Olmo Miguez-Salas, Angelika Brandt, Henry Knauber, and Torben Riehl
Biogeosciences, 21, 641–655, https://doi.org/10.5194/bg-21-641-2024, https://doi.org/10.5194/bg-21-641-2024, 2024
Short summary
Short summary
In the deep sea, the interaction between benthic fauna (tracemakers) and substrate can be preserved as traces (i.e. lebensspuren), which are common features of seafloor landscapes, rendering them promising proxies for inferring biodiversity from marine images. No general correlation was observed between traces and benthic fauna. However, a local correlation was observed between specific stations depending on unknown tracemakers, tracemaker behaviour, and lebensspuren morphotypes.
Cale A. Miller, Pierre Urrutti, Jean-Pierre Gattuso, Steeve Comeau, Anaïs Lebrun, Samir Alliouane, Robert W. Schlegel, and Frédéric Gazeau
Biogeosciences, 21, 315–333, https://doi.org/10.5194/bg-21-315-2024, https://doi.org/10.5194/bg-21-315-2024, 2024
Short summary
Short summary
This work describes an experimental system that can replicate and manipulate environmental conditions in marine or aquatic systems. Here, we show how the temperature and salinity of seawater delivered from a fjord is manipulated to experimental tanks on land. By constantly monitoring temperature and salinity in each tank via a computer program, the system continuously adjusts automated flow valves to ensure the seawater in each tank matches the targeted experimental conditions.
Rachel A. Kruft Welton, George Hoppit, Daniela N. Schmidt, James D. Witts, and Benjamin C. Moon
Biogeosciences, 21, 223–239, https://doi.org/10.5194/bg-21-223-2024, https://doi.org/10.5194/bg-21-223-2024, 2024
Short summary
Short summary
We conducted a meta-analysis of known experimental literature examining how marine bivalve growth rates respond to climate change. Growth is usually negatively impacted by climate change. Bivalve eggs/larva are generally more vulnerable than either juveniles or adults. Available data on the bivalve response to climate stressors are biased towards early growth stages (commercially important in the Global North), and many families have only single experiments examining climate change impacts.
Vincent Mouchi, Christophe Pecheyran, Fanny Claverie, Cécile Cathalot, Marjolaine Matabos, Yoan Germain, Olivier Rouxel, Didier Jollivet, Thomas Broquet, and Thierry Comtet
Biogeosciences, 21, 145–160, https://doi.org/10.5194/bg-21-145-2024, https://doi.org/10.5194/bg-21-145-2024, 2024
Short summary
Short summary
The impact of deep-sea mining will depend critically on the ability of larval dispersal of hydrothermal mollusks to connect and replenish natural populations. However, assessing connectivity is extremely challenging, especially in the deep sea. Here, we investigate the potential of using the chemical composition of larval shells to discriminate larval origins between multiple hydrothermal sites in the southwest Pacific. Our results confirm that this method can be applied with high accuracy.
Anna-Marie Winter, Nadezda Vasilyeva, and Artem Vladimirov
Biogeosciences, 20, 3683–3716, https://doi.org/10.5194/bg-20-3683-2023, https://doi.org/10.5194/bg-20-3683-2023, 2023
Short summary
Short summary
There is an increasing number of fish in poor state, and many do not recover, even when fishing pressure is ceased. An Allee effect can hinder population recovery because it suppresses the fish's productivity at low abundance. With a model fitted to 17 Atlantic cod stocks, we find that ocean warming and fishing can cause an Allee effect. If present, the Allee effect hinders fish recovery. This shows that Allee effects are dynamic, not uncommon, and calls for precautionary management measures.
Afrah Alothman, Daffne López-Sandoval, Carlos M. Duarte, and Susana Agustí
Biogeosciences, 20, 3613–3624, https://doi.org/10.5194/bg-20-3613-2023, https://doi.org/10.5194/bg-20-3613-2023, 2023
Short summary
Short summary
This study investigates bacterial dissolved inorganic carbon (DIC) fixation in the Red Sea, an oligotrophic ecosystem, using stable-isotope labeling and spectroscopy. The research reveals that bacterial DIC fixation significantly contributes to total DIC fixation, in the surface and deep water. The study demonstrates that as primary production decreases, the role of bacterial DIC fixation increases, emphasizing its importance with photosynthesis in estimating oceanic carbon dioxide production.
Arianna Zampollo, Thomas Cornulier, Rory O'Hara Murray, Jacqueline Fiona Tweddle, James Dunning, and Beth E. Scott
Biogeosciences, 20, 3593–3611, https://doi.org/10.5194/bg-20-3593-2023, https://doi.org/10.5194/bg-20-3593-2023, 2023
Short summary
Short summary
This paper highlights the use of the bottom mixed layer depth (BMLD: depth between the end of the pycnocline and the mixed layer below) to investigate subsurface Chlorophyll a (a proxy of primary production) in temperate stratified shelf waters. The strict correlation between subsurface Chl a and BMLD becomes relevant in shelf-productive waters where multiple stressors (e.g. offshore infrastructure) will change the stratification--mixing balance and related carbon fluxes.
Marco Fusi, Sylvain Rigaud, Giovanna Guadagnin, Alberto Barausse, Ramona Marasco, Daniele Daffonchio, Julie Régis, Louison Huchet, Capucine Camin, Laura Pettit, Cristina Vina-Herbon, and Folco Giomi
Biogeosciences, 20, 3509–3521, https://doi.org/10.5194/bg-20-3509-2023, https://doi.org/10.5194/bg-20-3509-2023, 2023
Short summary
Short summary
Oxygen availability in marine water and freshwater is very variable at daily and seasonal scales. The dynamic nature of oxygen fluctuations has important consequences for animal and microbe physiology and ecology, yet it is not fully understood. In this paper, we showed the heterogeneous nature of the aquatic oxygen landscape, which we defined here as the
oxyscape, and we addressed the importance of considering the oxyscape in the modelling and managing of aquatic ecosystems.
Anne L. Morée, Tayler M. Clarke, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 20, 2425–2454, https://doi.org/10.5194/bg-20-2425-2023, https://doi.org/10.5194/bg-20-2425-2023, 2023
Short summary
Short summary
Ocean temperature and oxygen shape marine habitats together with species’ characteristics. We calculated the impacts of projected 21st-century warming and oxygen loss on the contemporary habitat volume of 47 marine species and described the drivers of these impacts. Most species lose less than 5 % of their habitat at 2 °C of global warming, but some species incur losses 2–3 times greater than that. We also calculate which species may be most vulnerable to climate change and why this is the case.
Markus A. Min, David M. Needham, Sebastian Sudek, Nathan Kobun Truelove, Kathleen J. Pitz, Gabriela M. Chavez, Camille Poirier, Bente Gardeler, Elisabeth von der Esch, Andrea Ludwig, Ulf Riebesell, Alexandra Z. Worden, and Francisco P. Chavez
Biogeosciences, 20, 1277–1298, https://doi.org/10.5194/bg-20-1277-2023, https://doi.org/10.5194/bg-20-1277-2023, 2023
Short summary
Short summary
Emerging molecular methods provide new ways of understanding how marine communities respond to changes in ocean conditions. Here, environmental DNA was used to track the temporal evolution of biological communities in the Peruvian coastal upwelling system and in an adjacent enclosure where upwelling was simulated. We found that the two communities quickly diverged, with the open ocean being one found during upwelling and the enclosure evolving to one found under stratified conditions.
Wojciech Majewski, Witold Szczuciński, and Andrew J. Gooday
Biogeosciences, 20, 523–544, https://doi.org/10.5194/bg-20-523-2023, https://doi.org/10.5194/bg-20-523-2023, 2023
Short summary
Short summary
We studied foraminifera living in the fjords of South Georgia, a sub-Antarctic island sensitive to climate change. As conditions in water and on the seafloor vary, different associations of these microorganisms dominate far inside, in the middle, and near fjord openings. Assemblages in inner and middle parts of fjords are specific to South Georgia, but they may become widespread with anticipated warming. These results are important for interpretating fossil records and monitoring future change.
Allanah Joy Paul, Lennart Thomas Bach, Javier Arístegui, Elisabeth von der Esch, Nauzet Hernández-Hernández, Jonna Piiparinen, Laura Ramajo, Kristian Spilling, and Ulf Riebesell
Biogeosciences, 19, 5911–5926, https://doi.org/10.5194/bg-19-5911-2022, https://doi.org/10.5194/bg-19-5911-2022, 2022
Short summary
Short summary
We investigated how different deep water chemistry and biology modulate the response of surface phytoplankton communities to upwelling in the Peruvian coastal zone. Our results show that the most influential drivers were the ratio of inorganic nutrients (N : P) and the microbial community present in upwelling source water. These led to unexpected and variable development in the phytoplankton assemblage that could not be predicted by the amount of inorganic nutrients alone.
Hanna M. Kauko, Philipp Assmy, Ilka Peeken, Magdalena Różańska-Pluta, Józef M. Wiktor, Gunnar Bratbak, Asmita Singh, Thomas J. Ryan-Keogh, and Sebastien Moreau
Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, https://doi.org/10.5194/bg-19-5449-2022, 2022
Short summary
Short summary
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
Chloe Carbonne, Steeve Comeau, Phoebe T. W. Chan, Keyla Plichon, Jean-Pierre Gattuso, and Núria Teixidó
Biogeosciences, 19, 4767–4777, https://doi.org/10.5194/bg-19-4767-2022, https://doi.org/10.5194/bg-19-4767-2022, 2022
Short summary
Short summary
For the first time, our study highlights the synergistic effects of a 9-month warming and acidification combined stress on the early life stages of a Mediterranean azooxanthellate coral, Astroides calycularis. Our results predict a decrease in dispersion, settlement, post-settlement linear extention, budding and survival under future global change and that larvae and recruits of A. calycularis are stages of interest for this Mediterranean coral resistance, resilience and conservation.
Iris E. Hendriks, Anna Escolano-Moltó, Susana Flecha, Raquel Vaquer-Sunyer, Marlene Wesselmann, and Núria Marbà
Biogeosciences, 19, 4619–4637, https://doi.org/10.5194/bg-19-4619-2022, https://doi.org/10.5194/bg-19-4619-2022, 2022
Short summary
Short summary
Seagrasses are marine plants with the capacity to act as carbon sinks due to their high primary productivity, using carbon for growth. This capacity can play a key role in climate change mitigation. We compiled and published data showing that two Mediterranean seagrass species have different metabolic rates, while the study method influences the rates of the measurements. Most communities act as carbon sinks, while the western basin might be more productive than the eastern Mediterranean.
Raúl Tapia, Sze Ling Ho, Hui-Yu Wang, Jeroen Groeneveld, and Mahyar Mohtadi
Biogeosciences, 19, 3185–3208, https://doi.org/10.5194/bg-19-3185-2022, https://doi.org/10.5194/bg-19-3185-2022, 2022
Short summary
Short summary
We report census counts of planktic foraminifera in depth-stratified plankton net samples off Indonesia. Our results show that the vertical distribution of foraminifera species routinely used in paleoceanographic reconstructions varies in hydrographically distinct regions, likely in response to food availability. Consequently, the thermal gradient based on mixed layer and thermocline dwellers also differs for these regions, suggesting potential implications for paleoceanographic reconstructions.
Ricardo González-Gil, Neil S. Banas, Eileen Bresnan, and Michael R. Heath
Biogeosciences, 19, 2417–2426, https://doi.org/10.5194/bg-19-2417-2022, https://doi.org/10.5194/bg-19-2417-2022, 2022
Short summary
Short summary
In oceanic waters, the accumulation of phytoplankton biomass in winter, when light still limits growth, is attributed to a decrease in grazing as the mixed layer deepens. However, in coastal areas, it is not clear whether winter biomass can accumulate without this deepening. Using 21 years of weekly data, we found that in the Scottish coastal North Sea, the seasonal increase in light availability triggers the accumulation of phytoplankton biomass in winter, when light limitation is strongest.
Birgit Koehler, Mårten Erlandsson, Martin Karlsson, and Lena Bergström
Biogeosciences, 19, 2295–2312, https://doi.org/10.5194/bg-19-2295-2022, https://doi.org/10.5194/bg-19-2295-2022, 2022
Short summary
Short summary
Understanding species richness patterns remains a challenge for biodiversity management. We estimated fish species richness over a coastal salinity gradient (3–32) with a method that allowed comparing data from various sources. Species richness was 3-fold higher at high vs. low salinity, and salinity influenced species’ habitat preference, mobility and feeding type. If climate change causes upper-layer freshening of the Baltic Sea, further shifts along the identified patterns may be expected.
Uri Obolski, Thomas Wichard, Alvaro Israel, Alexander Golberg, and Alexander Liberzon
Biogeosciences, 19, 2263–2271, https://doi.org/10.5194/bg-19-2263-2022, https://doi.org/10.5194/bg-19-2263-2022, 2022
Short summary
Short summary
The algal genus Ulva plays a major role in coastal ecosystems worldwide and is a promising prospect as an seagriculture crop. A substantial hindrance to cultivating Ulva arises from sudden sporulation, leading to biomass loss. This process is not yet well understood. Here, we characterize the dynamics of Ulva growth, considering the potential impact of sporulation inhibitors, using a mathematical model. Our findings are an essential step towards understanding the dynamics of Ulva growth.
Emanuela Fanelli, Samuele Menicucci, Sara Malavolti, Andrea De Felice, and Iole Leonori
Biogeosciences, 19, 1833–1851, https://doi.org/10.5194/bg-19-1833-2022, https://doi.org/10.5194/bg-19-1833-2022, 2022
Short summary
Short summary
Zooplankton play a key role in marine ecosystems, forming the base of the marine food web and a link between primary producers and higher-order consumers, such as fish. This aspect is crucial in the Adriatic basin, one of the most productive and overexploited areas of the Mediterranean Sea. A better understanding of community and food web structure and their response to water mass changes is essential under a global warming scenario, as zooplankton are sensitive to climate change.
Masaya Yoshikai, Takashi Nakamura, Rempei Suwa, Sahadev Sharma, Rene Rollon, Jun Yasuoka, Ryohei Egawa, and Kazuo Nadaoka
Biogeosciences, 19, 1813–1832, https://doi.org/10.5194/bg-19-1813-2022, https://doi.org/10.5194/bg-19-1813-2022, 2022
Short summary
Short summary
This study presents a new individual-based vegetation model to investigate salinity control on mangrove productivity. The model incorporates plant hydraulics and tree competition and predicts unique and complex patterns of mangrove forest structures that vary across soil salinity gradients. The presented model does not hold an empirical expression of salinity influence on productivity and thus may provide a better understanding of mangrove forest dynamics in future climate change.
Coulson A. Lantz, William Leggat, Jessica L. Bergman, Alexander Fordyce, Charlotte Page, Thomas Mesaglio, and Tracy D. Ainsworth
Biogeosciences, 19, 891–906, https://doi.org/10.5194/bg-19-891-2022, https://doi.org/10.5194/bg-19-891-2022, 2022
Short summary
Short summary
Coral bleaching events continue to drive the degradation of coral reefs worldwide. In this study we measured rates of daytime coral reef community calcification and photosynthesis during a reef-wide bleaching event. Despite a measured decline in coral health across several taxa, there was no change in overall daytime community calcification and photosynthesis. These findings highlight potential limitations of these community-level metrics to reflect actual changes in coral health.
Hyewon Heather Kim, Jeff S. Bowman, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Biogeosciences, 19, 117–136, https://doi.org/10.5194/bg-19-117-2022, https://doi.org/10.5194/bg-19-117-2022, 2022
Short summary
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Emmanuel Devred, Andrea Hilborn, and Cornelia Elizabeth den Heyer
Biogeosciences, 18, 6115–6132, https://doi.org/10.5194/bg-18-6115-2021, https://doi.org/10.5194/bg-18-6115-2021, 2021
Short summary
Short summary
A theoretical model of grey seal seasonal abundance on Sable Island (SI) coupled with chlorophyll-a concentration [chl-a] measured by satellite revealed the impact of seal nitrogen fertilization on the surrounding waters of SI, Canada. The increase in seals from about 100 000 in 2003 to about 360 000 in 2018 during the breeding season is consistent with an increase in [chl-a] leeward of SI. The increase in seal abundance explains 8 % of the [chl-a] increase.
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Federica Maggioni, Mireille Pujo-Pay, Jérome Aucan, Carlo Cerrano, Barbara Calcinai, Claude Payri, Francesca Benzoni, Yves Letourneur, and Riccardo Rodolfo-Metalpa
Biogeosciences, 18, 5117–5140, https://doi.org/10.5194/bg-18-5117-2021, https://doi.org/10.5194/bg-18-5117-2021, 2021
Short summary
Short summary
Based on current experimental evidence, climate change will affect up to 90 % of coral reefs worldwide. The originality of this study arises from our recent discovery of an exceptional study site where environmental conditions (temperature, pH, and oxygen) are even worse than those forecasted for the future.
While these conditions are generally recognized as unfavorable for marine life, we found a rich and abundant coral reef thriving under such extreme environmental conditions.
Nisan Sariaslan and Martin R. Langer
Biogeosciences, 18, 4073–4090, https://doi.org/10.5194/bg-18-4073-2021, https://doi.org/10.5194/bg-18-4073-2021, 2021
Short summary
Short summary
Analyses of foraminiferal assemblages from the Mamanguape mangrove estuary (northern Brazil) revealed highly diverse, species-rich, and structurally complex biotas. The atypical fauna resembles shallow-water offshore assemblages and are interpreted to be the result of highly saline ocean waters penetrating deep into the estuary. The findings contrast with previous studies, have implications for the fossil record, and provide novel perspectives for reconstructing mangrove environments.
Jutta E. Wollenburg, Jelle Bijma, Charlotte Cremer, Ulf Bickmeyer, and Zora Mila Colomba Zittier
Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, https://doi.org/10.5194/bg-18-3903-2021, 2021
Short summary
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
Kumar Nimit
Biogeosciences, 18, 3631–3635, https://doi.org/10.5194/bg-18-3631-2021, https://doi.org/10.5194/bg-18-3631-2021, 2021
Short summary
Short summary
The Indian Ocean Rim hosts many of the underdeveloped and emerging economies that depend on ocean resources for the livelihood of millions. Operational ocean information services cater to the requirements of resource managers and end-users to efficiently harness resources, mitigate threats and ensure safety. This paper outlines existing tools and explores the ongoing research that has the potential to convert the findings into operational services in the near- to midterm.
Finn Mielck, Rune Michaelis, H. Christian Hass, Sarah Hertel, Caroline Ganal, and Werner Armonies
Biogeosciences, 18, 3565–3577, https://doi.org/10.5194/bg-18-3565-2021, https://doi.org/10.5194/bg-18-3565-2021, 2021
Short summary
Short summary
Marine sand mining is becoming more and more important to nourish fragile coastlines that face global change. We investigated the largest sand extraction site in the German Bight. The study reveals that after more than 35 years of mining, the excavation pits are still detectable on the seafloor while the sediment composition has largely changed. The organic communities living in and on the seafloor were strongly decimated, and no recovery is observable towards previous conditions.
France Van Wambeke, Elvira Pulido, Philippe Catala, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Barbara Marie, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences, 18, 2301–2323, https://doi.org/10.5194/bg-18-2301-2021, https://doi.org/10.5194/bg-18-2301-2021, 2021
Short summary
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
Oscar E. Romero, Simon Ramondenc, and Gerhard Fischer
Biogeosciences, 18, 1873–1891, https://doi.org/10.5194/bg-18-1873-2021, https://doi.org/10.5194/bg-18-1873-2021, 2021
Short summary
Short summary
Upwelling intensity along NW Africa varies on the interannual to decadal timescale. Understanding its changes is key for the prediction of future changes of CO2 sequestration in the northeastern Atlantic. Based on a multiyear (1988–2009) sediment trap experiment at the site CBmeso, fluxes and the species composition of the diatom assemblage are presented. Our data help in establishing the scientific basis for forecasting and modeling future states of this ecosystem and its decadal changes.
Katharine T. Bigham, Ashley A. Rowden, Daniel Leduc, and David A. Bowden
Biogeosciences, 18, 1893–1908, https://doi.org/10.5194/bg-18-1893-2021, https://doi.org/10.5194/bg-18-1893-2021, 2021
Short summary
Short summary
Turbidity flows – underwater avalanches – are large-scale physical disturbances believed to have profound impacts on productivity and diversity of benthic communities in the deep sea. We reviewed published studies and found that current evidence for changes in productivity is ambiguous at best, but the influence on regional and local diversity is clearer. We suggest study design criteria that may lead to a better understanding of large-scale disturbance effects on deep-sea benthos.
Phillip Williamson, Hans-Otto Pörtner, Steve Widdicombe, and Jean-Pierre Gattuso
Biogeosciences, 18, 1787–1792, https://doi.org/10.5194/bg-18-1787-2021, https://doi.org/10.5194/bg-18-1787-2021, 2021
Short summary
Short summary
The reliability of ocean acidification research was challenged in early 2020 when a high-profile paper failed to corroborate previously observed impacts of high CO2 on the behaviour of coral reef fish. We now know the reason why: the
replicatedstudies differed in many ways. Open-minded and collaborative assessment of all research results, both negative and positive, remains the best way to develop process-based understanding of the impacts of ocean acidification on marine organisms.
Michael Lintner, Bianca Lintner, Wolfgang Wanek, Nina Keul, and Petra Heinz
Biogeosciences, 18, 1395–1406, https://doi.org/10.5194/bg-18-1395-2021, https://doi.org/10.5194/bg-18-1395-2021, 2021
Short summary
Short summary
Foraminifera are unicellular marine organisms that play an important role in the marine element cycle. Changes of environmental parameters such as salinity or temperature have a significant impact on the faunal assemblages. Our experiments show that changes in salinity immediately influence the foraminiferal activity. Also the light regime has a significant impact on carbon or nitrogen processing in foraminifera which contain no kleptoplasts.
Michele Casini, Martin Hansson, Alessandro Orio, and Karin Limburg
Biogeosciences, 18, 1321–1331, https://doi.org/10.5194/bg-18-1321-2021, https://doi.org/10.5194/bg-18-1321-2021, 2021
Short summary
Short summary
In the past 20 years the condition of the eastern Baltic cod has dropped, with large implications for the fishery. Our results show that simultaneously the cod population has moved deeper while low-oxygenated waters detrimental for cod growth have become shallower. Cod have thus dwelled more in detrimental waters, explaining the drop in its condition. This study, using long-term fish and hydrological monitoring data, evidences the impact of deoxygenation on fish biology and fishing.
Elizabeth D. LaBone, Kenneth A. Rose, Dubravko Justic, Haosheng Huang, and Lixia Wang
Biogeosciences, 18, 487–507, https://doi.org/10.5194/bg-18-487-2021, https://doi.org/10.5194/bg-18-487-2021, 2021
Short summary
Short summary
The hypoxic zone is an area of low dissolved oxygen (DO) in the Gulf of Mexico. Fish can be killed by exposure to hypoxia and can be negatively impacted by exposure to low, nonlethal DO concentrations (sublethal DO). We found that high sublethal area resulted in higher exposure and DO variability had a small effect on exposure. There was a large variation in exposure among individuals, which when combined with spatial variability of DO, can result in an underestimation of exposure when averaged.
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021, https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Short summary
By conducting a flooding experiment with two genotypes of the salt-marsh grass Elymus athericus, we show considerable differences in biomass response to flooding within the same species. As biomass production plays a major role in sedimentation processes and thereby salt-marsh accretion, we emphasise the importance of taking intraspecific differences into account when evaluating ecosystem resilience to accelerated sea level rise.
Cited articles
Aberle, N., Schulz, K. G., Stuhr, A., Malzahn, A. M., Ludwig, A., and
Riebesell, U.: High tolerance of microzooplankton to ocean acidification in
an Arctic coastal plankton community, Biogeosciences, 10, 1471–1481,
https://doi.org/10.5194/bg-10-1471-2013, 2013. a, b
Allgaier, M., Riebesell, U., Vogt, M., Thyrhaug, R., and Grossart, H.-P.:
Coupling of heterotrophic bacteria to phytoplankton bloom development at
different pCO2 levels: a mesocosm study, Biogeosciences, 5,
1007–1022, https://doi.org/10.5194/bg-5-1007-2008, 2008. a, b
Archer, S. D., Leakey, R. J. G., Burkill, P. H., and Sleigh, M. A.: Microbial
dynamics in coastal waters of East Antarctica: Herbivory by heterotrophic
dinoflagellates, Mar. Ecol. Prog. Ser., 139, 239–255,
https://doi.org/10.3354/meps139239, 1996. a
Arrigo, K. R., van Dijken, G. L., and Bushinsky, S.: Primary production in the
Southern Ocean, 1997–2006, J. Geophys. Res.-Ocean., 113,
C08004, https://doi.org/10.1029/2007JC004551, 2008. a
Azam, F. and Malfatti, F.: Microbial structuring of marine ecosystems, Nat.
Rev. Microbiol., 5, 782–791, https://doi.org/10.1038/nrmicro1747, 2007. a, b, c
Azam, F., Fenchel, T., Field, J. G., Gray, J. C., Meyer-Reil, L. A., and
Thingstad, F.: The ecological role of water-column microbes in the sea,
Mar. Ecol. Prog. Ser., 10, 257–264, https://doi.org/10.3354/meps010257, 1983. a
Azam, F., Smith, D. C., and Hollibaugh, J. T.: The role of the microbial loop
in Antarctic pelagic ecosystems, Polar Res., 10, 239–243,
https://doi.org/10.1111/j.1751-8369.1991.tb00649.x, 1991. a, b, c
Beardall, J. and Giordano, M.: Ecological implications of microalgal and
cyanobacterial CO2 concentrating mechanisms, and their regulation,
Funct. Plant Biol., 29, 335–347, 2002. a
Behrenfeld, M. J.: Climate-mediated dance of the plankton, Nat. Clim.
Change, 4, 880–887, https://doi.org/10.1038/nclimate2349, 2014. a
Bergen, B., Endres, S., Engel, A., Zark, M., Dittmar, T., Sommer, U., and
Jürgens, K.: Acidification and warming affect prominent bacteria in
two seasonal phytoplankton bloom mesocosms, Environ. Microbiol., 18,
4579–4595, https://doi.org/10.1111/1462-2920.13549, 2016. a, b, c
Bertrand, E. M., McCrow, J. P., Moustafa, A., Zheng, H., McQuaid, J. B.,
Delmont, T. O., Post, A. F., Sipler, R. E., Spackeen, J. L., Xu, K., Bronk,
D. a., Hutchins, D. A., and Allen, A. E.: Phytoplankton–bacterial
interactions mediate micronutrient colimitation at the coastal Antarctic sea
ice edge, P. Natl. Acade. Sci. USA, 112, 9938–9943,
https://doi.org/10.1073/pnas.1501615112, 2015. a
Biswas, H., Jie, J., Li, Y., Zhang, G., Zhu, Z. Y., Wu, Y., Zhang, G. L., Li,
Y. W., Liu, S. M., and Zhang, J.: Response of a natural phytoplankton
community from the Qingdao coast (Yellow Sea, China) to variable CO2
levels over a short-term incubation experiment, Curr. Sci., 108,
1901–1909, 2015. a
Bjørnsen, P. K. and Kuparinen, J.: Growth and herbivory by heterotrophic
dinoflagellates in the Southern Ocean, studied by microcosm experiments,
Mar. Biol., 109, 397–405, https://doi.org/10.1007/BF01313505, 1991. a
Bockmon, E. E. and Dickson, A. G.: A seawater filtration method suitable for
total dissolved inorganic carbon and pH analyses, Limnol.
Oceanogr.-Method., 12, 191–195, https://doi.org/10.4319/lom.2014.12.191, 2014. a
Boyd, P. W., Cornwall, C. E., Davison, A., Doney, S. C., Fourquez, M., Hurd,
C. L., Lima, I. D., and McMinn, A.: Biological responses to environmental
heterogeneity under future ocean conditions, Glob. Change Biol., 22,
2633–2650, https://doi.org/10.1111/gcb.13287, 2016. a
Brussaard, C. P. D., Noordeloos, A. A. M., Witte, H., Collenteur, M. C. J.,
Schulz, K., Ludwig, A., and Riebesell, U.: Arctic microbial community
dynamics influenced by elevated CO2 levels, Biogeosciences, 10,
719–731, https://doi.org/10.5194/bg-10-719-2013, 2013. a, b
Buchan, A., LeCleir, G. R., Gulvik, C. A., and González, J. M.: Master
recyclers: features and functions of bacteria associated with phytoplankton
blooms, Nat. Rev. Microbiol., 12, 686–698,
https://doi.org/10.1038/nrmicro3326, 2014. a, b, c
Bunse, C., Lundin, D., Karlsson, C. M. G., Vila-Costa, M., Palovaara, J.,
Akram, N., Svensson, L., Holmfeldt, K., González, J. M., Calvo, E.,
Pelejero, C., Marrasé, C., Dopson, M., Gasol, J. M., and Pinhassi, J.:
Response of marine bacterioplankton pH homeostasis gene expression to
elevated CO2, Nat. Clim. Change, 1, 1–7,
https://doi.org/10.1038/nclimate2914, 2016. a
Calbet, A., Sazhin, A. F., Nejstgaard, J. C., Berger, S. A., Tait, Z. S.,
Olmos, L., Sousoni, D., Isari, S., Martínez, R. A., Bouquet, J.-M.,
Thompson, E. M., Båmstedt, U., and Jakobsen, H. H.: Future Climate
Scenarios for a Coastal Productive Planktonic Food Web Resulting in
Microplankton Phenology Changes and Decreased Trophic Transfer Efficiency,
PLoS ONE, 9, e94388, https://doi.org/10.1371/journal.pone.0094388, 2014. a
Caron, D. A. and Hutchins, D. A.: The effects of changing climate on
microzooplankton grazing and community structure: drivers, predictions and
knowledge gaps, J. Plank. Res., 35, 235–252,
https://doi.org/10.1093/plankt/fbs091, 2013. a, b, c
Caron, D. A., Dennett, M. R., Lonsdale, D. J., Moran, D. M., and Shalapyonok,
L.: Microzooplankton herbivory in the Ross Sea, Antarctica, Deep-Sea
Res. Pt. II, 47, 3249–3272,
https://doi.org/10.1016/S0967-0645(00)00067-9, 2000. a
Celussi, M., Malfatti, F., Annalisa, F., Gazeau, F., Giannakourou, A., Pitta,
P., Tsiola, A., and Del Negro, P.: Ocean acidification effect on
prokaryotic metabolism tested in two diverse trophic regimes in the
Mediterranean Sea, Estuar. Coast. Shelf Sci., 186, 125–138,
https://doi.org/10.1016/j.ecss.2015.08.015, 2017. a
Crawfurd, K. J., Alvarez-Fernandez, S., Mojica, K. D. A., Riebesell, U., and
Brussaard, C. P. D.: Alterations in microbial community composition with
increasing fCO2: a mesocosm study in the eastern Baltic Sea,
Biogeosciences, 14, 3831–3849, https://doi.org/10.5194/bg-14-3831-2017, 2017. a
Dason, J. S. and Colman, B.: Inhibition of growth in two dinoflagellates by
rapid changes in external pH, Can. J. Botany, 82, 515–520,
https://doi.org/10.1139/b04-023, 2004. a, b
Davidson, A., McKinlay, J., Westwood, K., Thomson, P., van den Enden, R.,
de Salas, M., Wright, S., Johnson, R., and Berry, K.: Enhanced CO2
concentrations change the structure of Antarctic marine microbial
communities, Mar. Ecol. Prog. Ser., 552, 93–113,
https://doi.org/10.3354/meps11742, 2016. a, b, c, d, e, f, g, h
Davidson, A. T., Scott, F. J., Nash, G. V., Wright, S. W., and Raymond, B.:
Physical and biological control of protistan community composition,
distribution and abundance in the seasonal ice zone of the Southern Ocean
between 30 and 80∘ E, Deep-Sea Res. Pt. II, 57, 828–848, https://doi.org/10.1016/j.dsr2.2009.02.011, 2010. a
Deppeler, S. L. and Davidson, A. T.: Southern Ocean Phytoplankton in a
Changing Climate, Front. Mar. Sci., 4, 1–18,
https://doi.org/10.3389/fmars.2017.00040,
2017. a
Deppeler, S. L., Davidson, A. T., and Schulz, K.: Environmental data for Davis 14/15 ocean acidification minicosm experiment, Australian Antarctic Data Centre, https://doi.org/10.4225/15/599a7dfe9470a, 2017. a
Deppeler, S., Petrou, K., Schulz, K. G., Westwood, K., Pearce, I., McKinlay,
J., and Davidson, A.: Ocean acidification of a coastal Antarctic marine
microbial community reveals a critical threshold for CO2 tolerance in
phytoplankton productivity, Biogeosciences, 15, 209–231,
https://doi.org/10.5194/bg-15-209-2018, 2018a. a, b, c, d, e, f, g, h, i, j, k
Deppeler, S. L., Schulz, K. G., Hancock, A., Pascoe, P., Mckinlay, J., and Davidson, A. T.: Flow cytometry data, Data for manuscript “Ocean acidification reduces growth and grazing of Antarctic heterotrophic nanoflagellates”, Australian Antarctic Data Centre, https://doi.org/10.4225/15/5b234e4bb9313, 2018b. a
Dickson, A.: Standards for Ocean Measurements, Oceanography, 23, 34–47,
https://doi.org/10.5670/oceanog.2010.22, 2010. a
Endres, S., Galgani, L., Riebesell, U., Schulz, K.-G., and Engel, A.:
Stimulated Bacterial Growth under Elevated pCO2: Results from
an Off-Shore Mesocosm Study, PLoS ONE, 9, e99228,
https://doi.org/10.1371/journal.pone.0099228, 2014. a, b, c
Engel, A., Piontek, J., Grossart, H.-P., Riebesell, U., Schulz, K. G., and
Sperling, M.: Impact of CO2 enrichment on organic matter dynamics
during nutrient induced coastal phytoplankton blooms, J. Plank.
Res., 36, 641–657, https://doi.org/10.1093/plankt/fbt125, 2014. a
Evans, C., Archer, S. D., Jacquet, S., and Wilson, W. H.: Direct estimates of
the contribution of viral lysis and microzooplankton grazing to the decline
of a Micromonas spp. population, Aquat. Microb. Ecol., 30,
207–219, https://doi.org/10.3354/ame030207, 2003. a
Fenchel, T.: The microbial loop – 25 years later, J. Exp.
Mar. Biol. Ecol., 366, 99–103, https://doi.org/10.1016/j.jembe.2008.07.013,
2008. a
Feng, Y., Hare, C., Rose, J., Handy, S., DiTullio, G., Lee, P., Smith, W.,
Peloquin, J., Tozzi, S., Sun, J., Zhang, Y., Dunbar, R., Long, M., Sohst, B.,
Lohan, M., and Hutchins, D.: Interactive effects of iron, irradiance and
CO2 on Ross Sea phytoplankton, Deep-Sea Res. Pt. I, 57, 368–383, https://doi.org/10.1016/j.dsr.2009.10.013, 2010. a
Flombaum, P., Gallegos, J. L., Gordillo, R. a., Rincon, J., Zabala, L. L.,
Jiao, N., Karl, D. M., Li, W. K. W., Lomas, M. W., Veneziano, D., Vera,
C. S., Vrugt, J. A., and Martiny, A. C.: Present and future global
distributions of the marine Cyanobacteria Prochlorococcus and
Synechococcus, P Natl. Acad. Sci. USA,
110, 9824–9829, https://doi.org/10.1073/pnas.1307701110, 2013. a
Flynn, K. J., Blackford, J. C., Baird, M. E., Raven, J. A., Clark, D. R.,
Beardall, J., Brownlee, C., Fabian, H., and Wheeler, G. L.: Changes in pH at
the exterior surface of plankton with ocean acidification, Nat. Clim.
Change, 2, 510–513, https://doi.org/10.1038/nclimate1489, 2012. a
Frölicher, T. L., Sarmiento, J. L., Paynter, D. J., Dunne, J. P.,
Krasting, J. P., and Winton, M.: Dominance of the Southern Ocean in
Anthropogenic Carbon and Heat Uptake in CMIP5 Models, J. Clim.,
28, 862–886, https://doi.org/10.1175/JCLI-D-14-00117.1, 2015. a
Gao, K., Helbling, E. W., Häder, D. P., and Hutchins, D. A.: Responses
of marine primary producers to interactions between ocean acidification,
solar radiation, and warming, Mar. Ecol. Prog. Ser., 470, 167–189,
https://doi.org/10.3354/meps10043, 2012a. a
Gao, K., Xu, J., Gao, G., Li, Y., Hutchins, D. A., Huang, B., Wang, L., Zheng,
Y., Jin, P., Cai, X., Häder, D.-p., Li, W., Xu, K., Liu, N., and
Riebesell, U.: Rising CO2 and increased light exposure synergistically
reduce marine primary productivity, Nat. Clim.Change, 2, 519–523,
https://doi.org/10.1038/nclimate1507, 2012b. a
Gast, R. J., Fay, S. A., and Sanders, R. W.: Mixotrophic Activity and
Diversity of Antarctic Marine Protists in Austral Summer, Front.
Mar. Sci., 5, 1–12, https://doi.org/10.3389/fmars.2018.00013, 2018. a, b
Gibson, J. A. E. and Trull, T. W.: Annual cycle of fCO2 under sea-ice
and in open water in Prydz Bay, East Antarctica, Mar. Chem., 66,
187–200, https://doi.org/10.1016/S0304-4203(99)00040-7, 1999. a
Grossart, H.-p., Allgaier, M., Passow, U., and Riebesell, U.: Testing the
effect of CO2 concentration on the dynamics of marine heterotrophic
bacterioplankton, Limnol. Oceanogr., 51, 1–11,
https://doi.org/10.4319/lo.2006.51.1.0001, 2006. a, b
Haberman, K. L., Quetin, L. B., and Ross, R. M.: Diet of the Antarctic krill
(Euphausia superba Dana), J. Exp. Mar. Biol.
Ecol., 283, 79–95, https://doi.org/10.1016/S0022-0981(02)00466-5, 2003. a, b
Hancock, A. M., Davidson, A. T., McKinlay, J., McMinn, A., Schulz, K. G., and
van den Enden, R. L.: Ocean acidification changes the structure of an
Antarctic coastal protistan community, Biogeosciences, 15, 2393–2410,
https://doi.org/10.5194/bg-15-2393-2018, 2018a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Hancock, A. M., Davidson, A. T., McKinlay, J., McMinn, A., Schulz, K., and van den Enden, R. L.: Ocean acidification changes the structure of an Antarctic coastal protistan community, Ver. 2, Australian Antarctic Data Centre, https://doi.org/10.4225/15/592b83a5c7506, 2018b. a
Hoppe, C. J. M., Hassler, C. S., Payne, C. D., Tortell, P. D., Rost, B., and
Trimborn, S.: Iron Limitation Modulates Ocean Acidification Effects on
Southern Ocean Phytoplankton Communities, PLoS ONE, 8, e79890,
https://doi.org/10.1371/journal.pone.0079890, 2013. a
Hutchins, D. A. and Fu, F.: Microorganisms and ocean global change, Nat.
Microbiol., 2, 1–11, https://doi.org/10.1038/nmicrobiol.2017.58, 2017. a
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, Cambridge, United Kingdom and
New York, NY, USA, https://doi.org/10.1017/CBO9781107415324, 2013. a
Kawaguchi, S., Ichii, T., and Naganobu, M.: Green krill, the indicator of
micro- and nano-size phytoplankton availability to krill, Polar Biol., 22,
133–136, https://doi.org/10.1007/s003000050400, 1999. a
Kim, H., Spivack, A. J., and Menden-Deuer, S.: pH alters the swimming
behaviors of the raphidophyte Heterosigma akashiwo: Implications for
bloom formation in an acidified ocean, Harmful Algae, 26, 1–11,
https://doi.org/10.1016/j.hal.2013.03.004, 2013. a
Krause, E., Wichels, A., Giménez, L., Lunau, M., Schilhabel, M. B., and
Gerdts, G.: Small Changes in pH Have Direct Effects on Marine Bacterial
Community Composition: A Microcosm Approach, PLoS ONE, 7, e47035,
https://doi.org/10.1371/journal.pone.0047035, 2012. a
Landry, M. R. and Calbet, A.: Microzooplankton production in the oceans, ICES
J. Mar. Sci., 61, 501–507, https://doi.org/10.1016/j.icesjms.2004.03.011,
2004. a
Li, G., Brown, C. M., Jeans, J. A., Donaher, N. A., McCarthy, A., and Campbell,
D. A.: The nitrogen costs of photosynthesis in a diatom under current and
future pCO2, New Phytol., 205, 533–543,
https://doi.org/10.1111/nph.13037, 2015. a
Liang, Y., Bai, X., Jiang, Y., Wang, M., He, J., and McMinn, A.: Distribution
of marine viruses and their potential hosts in Prydz Bay and adjacent
Southern Ocean, Antarctic, Polar Biol., 39, 365–378,
https://doi.org/10.1007/s00300-015-1787-8, 2016. a, b, c
Lin, L., He, J., Zhao, Y., Zhang, F., and Cai, M.: Flow cytometry
investigation of picoplankton across latitudes and along the circum Antarctic
Ocean, Acta Oceanol. Sin., 31, 134–142,
https://doi.org/10.1007/s13131-012-0185-0, 2012. a, b
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2
calculated from dissolved inorganic carbon, alkalinity, and equations for
K1 and K2: validation based on laboratory measurements of CO2
in gas and seawater at equilibrium, Mar. Chem., 70, 105–119,
https://doi.org/10.1016/S0304-4203(00)00022-0, 2000. a
Marie, D., Simon, N., and Vaulot, D.: Phytoplankton Cell Counting by Flow
Cytometry, in: Algal Culturing Techniques, edited by: Anderson, R. A.,
chap. 17, Academic Press, San Diego, CA, USA, 253–267,
https://doi.org/10.1016/B978-012088426-1/50018-4, 2005. a
McNeil, B. I. and Matear, R. J.: Southern Ocean acidification: A tipping point
at 450-ppm atmospheric CO2, P. Natl. Acad.
Sci. USA, 105, 18860–18864, https://doi.org/10.1073/pnas.0806318105, 2008. a
Meakin, N. G. and Wyman, M.: Rapid shifts in picoeukaryote community structure
in response to ocean acidification, ISME J., 5, 1397–1405,
https://doi.org/10.1038/ismej.2011.18, 2011. a
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M.:
Measurement of the Apparent Dissociation Constants of Carbonic Acid in
Seawater At Atmospheric Pressure, Limnol. Oceanogr., 18, 897–907,
https://doi.org/10.4319/lo.1973.18.6.0897, 1973. a
Meyer, B., Atkinson, A., Blume, B., and Bathmann, U. V.: Feeding and energy
budgets of larval antarctic krill Euphausia superba in summer,
Mar. Ecol. Prog. Ser., 257, 167–177, https://doi.org/10.3354/meps257167,
2003. a
Mitra, A., Flynn, K. J., Burkholder, J. M., Berge, T., Calbet, A., Raven,
J. A., Granéli, E., Glibert, P. M., Hansen, P. J., Stoecker, D. K.,
Thingstad, F., Tillmann, U., Väge, S., Wilken, S., and Zubkov, M. V.:
The role of mixotrophic protists in the biological carbon pump,
Biogeosciences, 11, 995–1005, https://doi.org/10.5194/bg-11-995-2014, 2014. a
Morita, M., Suwa, R., Iguchi, A., Nakamura, M., Shimada, K., Sakai, K., and
Suzuki, A.: Ocean acidification reduces sperm flagellar motility in
broadcast spawning reef invertebrates, Zygote, 18, 103–107,
https://doi.org/10.1017/S0967199409990177, 2010. a
Moustaka-Gouni, M., Kormas, K. A., Scotti, M., Vardaka, E., and Sommer, U.:
Warming and Acidification Effects on Planktonic Heterotrophic Pico- and
Nanoflagellates in a Mesocosm Experiment, Protist, 167, 389–410,
https://doi.org/10.1016/j.protis.2016.06.004, 2016. a, b
Nakajima, A.: Increase in intracellular pH induces phosphorylation of axonemal
proteins for activation of flagellar motility in starfish sperm, J.
Exp. Biol., 208, 4411–4418, https://doi.org/10.1242/jeb.01906, 2005. a
Nakamura, M. and Morita, M.: Sperm motility of the scleractinian coral
Acropora digitifera under preindustrial, current, and predicted
ocean acidification regimes, Aquat. Biol., 15, 299–302,
https://doi.org/10.3354/ab00436, 2012. a
Newbold, L. K., Oliver, A. E., Booth, T., Tiwari, B., DeSantis, T., Maguire,
M., Andersen, G., van der Gast, C. J., and Whiteley, A. S.: The response of
marine picoplankton to ocean acidification, Environ. Microbiol., 14,
2293–2307, https://doi.org/10.1111/j.1462-2920.2012.02762.x, 2012. a, b, c
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A.,
Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K.,
Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G.,
Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer,
R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool,
A.: Anthropogenic ocean acidification over the twenty-first century and its
impact on calcifying organisms, Nature, 437, 681–6,
https://doi.org/10.1038/nature04095, 2005. a
Padan, E., Bibi, E., Ito, M., and Krulwich, T. A.: Alkaline pH homeostasis in
bacteria: New insights, Biochim. Biophys. Acta, 1717,
67–88, https://doi.org/10.1016/j.bbamem.2005.09.010, 2005. a
Paulino, A. I., Egge, J. K., and Larsen, A.: Effects of increased atmospheric
CO2 on small and intermediate sized osmotrophs during a nutrient induced
phytoplankton bloom, Biogeosciences, 5, 739–748,
https://doi.org/10.5194/bg-5-739-2008, 2008. a, b, c, d
Pearce, I., Davidson, A., Bell, E., and Wright, S.: Seasonal changes in the
concentration and metabolic activity of bacteria and viruses at an Antarctic
coastal site, Aquat. Microb. Ecol., 47, 11–23,
https://doi.org/10.3354/ame047011, 2007. a, b
Pearce, I., Davidson, A. T., Thomson, P. G., Wright, S., and van den Enden, R.:
Marine microbial ecology off East Antarctica (30–80∘ E): Rates of
bacterial and phytoplankton growth and grazing by heterotrophic protists,
Deep-Sea Res. Pt. II, 57, 849–862,
https://doi.org/10.1016/j.dsr2.2008.04.039, 2010. a, b, c, d, e, f, g
Petrou, K., Baker, K. G., Nielsen, D. A., Hancock, A. M., Schulz, K. G., and
Davidson, A. T.: Acidification diminishes diatom silica production in the
Southern Ocean, Nat. Clim. Change, 9, 781–786,
https://doi.org/10.1038/s41558-019-0557-y, 2019. a, b
Piontek, J., Lunau, M., Händel, N., Borchard, C., Wurst, M., and Engel,
A.: Acidification increases microbial polysaccharide degradation in the
ocean, Biogeosciences, 7, 1615–1624, https://doi.org/10.5194/bg-7-1615-2010, 2010. a
Pörtner, H. O.: Ecosystem effects of ocean acidification in times of
ocean warming: A physiologist's view, Mar. Ecol. Prog. Ser., 373,
203–217, https://doi.org/10.3354/meps07768, 2008. a
Quetin, L. B. and Ross, R. M.: Feeding by Antarctic Krill, Euphausia superba:
Does Size Matter?, in: Antarctic Nutrient Cycles and Food Webs, edited by:
Siegfried, W., Condy, P., and Laws, R., Springer Berlin
Heidelberg, Berlin, Heidelberg, 372–377, https://doi.org/10.1007/978-3-642-82275-9_52, 1985. a
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 2 August 2020), 2019. a
Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P.,
Riebesell, U., Shepherd, J., Turley, C., and Watson, A.: Ocean acidification
due to increasing atmospheric carbon dioxide, Tech. Rep. June, Royal
Society, UK, 2005. a
Riebesell, U., Wolf-Gladrow, D. A., and Smetacek, V.: Carbon dioxide
limitation of marine phytoplankton growth rates, Nature, 361, 249–251,
https://doi.org/10.1038/361249a0, 1993. a
Riebesell, U., Bellerby, R. G. J., Grossart, H.-P., and Thingstad, F.:
Mesocosm CO2 perturbation studies: from organism to community level,
Biogeosciences, 5, 1157–1164, https://doi.org/10.5194/bg-5-1157-2008, 2008. a
Roden, N. P., Shadwick, E. H., Tilbrook, B., and Trull, T. W.: Annual cycle of
carbonate chemistry and decadal change in coastal Prydz Bay, East
Antarctica, Mar. Chem., 155, 135–147,
https://doi.org/10.1016/j.marchem.2013.06.006, 2013. a, b
Rose, J., Feng, Y., Gobler, C., Gutierrez, R., Hare, C., Leblanc, K., and
Hutchins, D.: Effects of increased pCO2 and temperature on the
North Atlantic spring bloom. II. Microzooplankton abundance and grazing,
Mar. Ecol. Prog. Ser., 388, 27–40, https://doi.org/10.3354/meps08134,
2009a. a, b
Rose, J. M., Feng, Y., DiTullio, G. R., Dunbar, R. B., Hare, C. E., Lee, P. a.,
Lohan, M., Long, M., Smith, W. O. J., Sohst, B., Tozzi, S., Zhang, Y., and
Hutchins, D. a.: Synergistic effects of iron and temperature on Antarctic
phytoplankton and microzooplankton assemblages, Biogeosciences, 6,
3131–3147, https://doi.org/10.5194/bg-6-3131-2009, 2009b. a
Rose, J. M., Caron, D. A., Sieracki, M. E., and Poulton, N.: Counting
heterotrophic nanoplanktonic protists in cultures and aquatic communities by
flow cytometry, Aquat. Microb. Ecol., 34, 263–277,
https://doi.org/10.3354/ame034263, 2004. a, b
Roy, A.-S., Gibbons, S. M., Schunck, H., Owens, S., Caporaso, J. G., Sperling,
M., Nissimov, J. I., Romac, S., Bittner, L., Mühling, M., Riebesell,
U., LaRoche, J., and Gilbert, J. A.: Ocean acidification shows negligible
impacts on high-latitude bacterial community structure in coastal pelagic
mesocosms, Biogeosciences, 10, 555–566, https://doi.org/10.5194/bg-10-555-2013, 2013. a, b, c
Sabine, C. L.: The Oceanic Sink for Anthropogenic CO2, Science, 305,
367–371, https://doi.org/10.1126/science.1097403, 2004. a
Safi, K. A., Griffiths, F. B., and Hall, J. A.: Microzooplankton composition,
biomass and grazing rates along the WOCE SR3 line between Tasmania and
Antarctica, Deep-Sea Res. Pt. I, 54,
1025–1041, https://doi.org/10.1016/j.dsr.2007.05.003, 2007. a, b
Sarmento, H. and Gasol, J. M.: Use of phytoplankton-derived dissolved organic
carbon by different types of bacterioplankton, Environ. Microbiol.,
14, 2348–2360, https://doi.org/10.1111/j.1462-2920.2012.02787.x, 2012. a
Schmidt, K., Atkinson, A., Petzke, K.-J., Voss, M., and Pond, D. W.:
Protozoans as a food source for Antarctic krill, Euphausia superba:
Complementary insights from stomach content, fatty acids, and stable
isotopes, Limnol. Oceanogr., 51, 2409–2427,
https://doi.org/10.4319/lo.2006.51.5.2409, 2006. a
Schulz, K. G., Bellerby, R. G. J., Brussaard, C. P. D., Büdenbender, J.,
Czerny, J., Engel, A., Fischer, M., Koch-Klavsen, S., Krug, S. A., Lischka,
S., Ludwig, A., Meyerhöfer, M., Nondal, G., Silyakova, A., Stuhr, A.,
and Riebesell, U.: Temporal biomass dynamics of an Arctic plankton bloom in
response to increasing levels of atmospheric carbon dioxide, Biogeosciences,
10, 161–180, https://doi.org/10.5194/bg-10-161-2013, 2013. a, b, c
Schulz, K. G., Bach, L. T., Bellerby, R. G. J., Bermúdez, R.,
Büdenbender, J., Boxhammer, T., Czerny, J., Engel, A., Ludwig, A.,
Meyerhöfer, M., Larsen, A., Paul, A. J., Sswat, M., and Riebesell, U.:
Phytoplankton Blooms at Increasing Levels of Atmospheric Carbon Dioxide:
Experimental Evidence for Negative Effects on Prymnesiophytes and Positive on
Small Picoeukaryotes, Front. Mar. Sci., 4, 1–18,
https://doi.org/10.3389/fmars.2017.00064, 2017. a
Sherr, E. B. and Sherr, B. F.: Significance of predation by protists, Anton. Leeuw., 81, 293–308, https://doi.org/10.1023/A:1020591307260, 2002. a, b, c
Smetacek, V., Assmy, P., and Henjes, J.: The role of grazing in structuring
Southern Ocean pelagic ecosystems and biogeochemical cycles, Antarctic
Sci., 16, 541–558, https://doi.org/10.1017/S0954102004002317, 2004. a, b
Sommer, U., Paul, C., and Moustaka-Gouni, M.: Warming and Ocean Acidification
Effects on Phytoplankton – From Species Shifts to Size Shifts within Species
in a Mesocosm Experiment, PLOS ONE, 10, e0125239,
https://doi.org/10.1371/journal.pone.0125239, 2015. a
Stoecker, D. K., Hansen, P. J., Caron, D. A., and Mitra, A.: Mixotrophy in the
Marine Plankton, Annu. Rev. Mar. Sci., 9, 311–335,
https://doi.org/10.1146/annurev-marine-010816-060617, 2017. a, b
Suffrian, K., Simonelli, P., Nejstgaard, J. C., Putzeys, S., Carotenuto, Y.,
and Antia, A. N.: Microzooplankton grazing and phytoplankton growth in
marine mesocosms with increased CO2 levels, Biogeosciences, 5,
1145–1156, https://doi.org/10.5194/bg-5-1145-2008, 2008. a, b
Takahashi, T., Sweeney, C., Hales, B., Chipman, D., Newberger, T., Goddard, J.,
Iannuzzi, R., and Sutherland, S.: The Changing Carbon Cycle in the Southern
Ocean, Oceanography, 25, 26–37, https://doi.org/10.5670/oceanog.2012.71, 2012. a
Teira, E., Fernández, A., Álvarez-Salgado, X. A.,
García-Martín, E. E., Serret, P., and Sobrino, C.: Response of
two marine bacterial isolates to high CO2 concentration, Mar. Ecol.
Prog. Ser., 453, 27–36, https://doi.org/10.3354/meps09644, 2012. a, b
Thomson, P. G., Davidson, A. T., van den Enden, R., Pearce, I., Seuront, L.,
Paterson, J. S., and Williams, G. D.: Distribution and abundance of marine
microbes in the Southern Ocean between 30 and 80∘ E, Deep-Sea
Res. Pt. II, 57, 815–827,
https://doi.org/10.1016/j.dsr2.2008.10.040, 2010. a
Tortell, P. D., Payne, C. D., Li, Y., Trimborn, S., Rost, B., Smith, W. O.,
Riesselman, C., Dunbar, R. B., Sedwick, P., and DiTullio, G. R.: CO2
sensitivity of Southern Ocean phytoplankton, Geophys. Res. Lett.,
35, L04605, https://doi.org/10.1029/2007GL032583, 2008. a
Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M.,
Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O.,
Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M., and Pondaven, P.: Influence
of diatom diversity on the ocean biological carbon pump, Nat. Geosci.,
11, 27–37, https://doi.org/10.1038/s41561-017-0028-x, 2018. a
Trimborn, S., Thoms, S., Brenneis, T., Heiden, J. P., Beszteri, S., and
Bischof, K.: Two Southern Ocean diatoms are more sensitive to ocean
acidification and changes in irradiance than the prymnesiophyte
Phaeocystis antarctica, Physiol. Plantarum, 160, 155–170,
https://doi.org/10.1111/ppl.12539, 2017. a
Wang, Y., Zhang, R., Zheng, Q., Deng, Y., Van Nostrand, J. D., Zhou, J., and
Jiao, N.: Bacterioplankton community resilience to ocean acidification:
evidence from microbial network analysis, ICES J. Mar. Sci., 73, 865–875, https://doi.org/10.1093/icesjms/fsv187, 2016. a
Westwood, K. J., Thomson, P. G., van den Enden, R. L., Maher, L. E., Wright,
S. W., and Davidson, A. T.: Ocean acidification impacts primary and
bacterial production in Antarctic coastal waters during austral summer,
J. Exp. Mar. Biol. Ecol., 498, 46–60,
https://doi.org/10.1016/j.jembe.2017.11.003, 2018. a, b, c, d, e, f
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New
York, available at: https://ggplot2.tidyverse.org (last access: 10 June 2020), 2016. a
Wood, S. N.: Fast stable restricted maximum likelihood and marginal likelihood
estimation of semiparametric generalized linear models, J. Roy.
Stat. Soc. B, 73, 3–36, 2011. a
Wright, S. W., Ishikawa, A., Marchant, H. J., Davidson, A. T., van den Enden,
R. L., and Nash, G. V.: Composition and significance of picophytoplankton in
Antarctic waters, Polar Biol., 32, 797–808,
https://doi.org/10.1007/s00300-009-0582-9, 2009. a, b
Young, J., Kranz, S., Goldman, J., Tortell, P., and Morel, F.: Antarctic
phytoplankton down-regulate their carbon-concentrating mechanisms under high
CO2 with no change in growth rates, Mar. Ecol. Prog. Ser.,
532, 13–28, https://doi.org/10.3354/meps11336, 2015. a
Zhang, R., Xia, X., Lau, S. C. K., Motegi, C., Weinbauer, M. G., and Jiao, N.:
Response of bacterioplankton community structure to an artificial gradient
of pCO2 in the Arctic Ocean, Biogeosciences, 10, 3679–3689,
https://doi.org/10.5194/bg-10-3679-2013, 2013. a, b, c
Download
- Article
(3542 KB) - Full-text XML
Short summary
Our study showed how ocean acidification can exert both direct and indirect influences on the interactions among trophic levels within the microbial loop. Microbial grazer abundance was reduced at CO2 concentrations at and above 634 µatm, while microbial communities increased in abundance, likely due to a reduction in being grazed. Such changes in predator–prey interactions with ocean acidification could have significant effects on the food web and biogeochemistry in the Southern Ocean.
Our study showed how ocean acidification can exert both direct and indirect influences on the...
Altmetrics
Final-revised paper
Preprint