Articles | Volume 18, issue 1
https://doi.org/10.5194/bg-18-135-2021
https://doi.org/10.5194/bg-18-135-2021
Research article
 | 
08 Jan 2021
Research article |  | 08 Jan 2021

A climate-dependent global model of ammonia emissions from chicken farming

Jize Jiang, David S. Stevenson, Aimable Uwizeye, Giuseppe Tempio, and Mark A. Sutton

Related authors

A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024,https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Analysis of atmospheric ammonia over South and East Asia based on the MOZART-4 model and its comparison with satellite and surface observations
Pooja V. Pawar, Sachin D. Ghude, Chinmay Jena, Andrea Móring, Mark A. Sutton, Santosh Kulkarni, Deen Mani Lal, Divya Surendran, Martin Van Damme, Lieven Clarisse, Pierre-François Coheur, Xuejun Liu, Gaurav Govardhan, Wen Xu, Jize Jiang, and Tapan Kumar Adhya
Atmos. Chem. Phys., 21, 6389–6409, https://doi.org/10.5194/acp-21-6389-2021,https://doi.org/10.5194/acp-21-6389-2021, 2021
Short summary

Related subject area

Biogeochemistry: Air - Land Exchange
Anticorrelation of net uptake of atmospheric CO2 by the world ocean and terrestrial biosphere in current carbon cycle models
Stephen E. Schwartz
Biogeosciences, 21, 5045–5057, https://doi.org/10.5194/bg-21-5045-2024,https://doi.org/10.5194/bg-21-5045-2024, 2024
Short summary
Impact of meteorological conditions on the biogenic volatile organic compound (BVOC) emission rate from eastern Mediterranean vegetation under drought
Qian Li, Gil Lerner, Einat Bar, Efraim Lewinsohn, and Eran Tas
Biogeosciences, 21, 4133–4147, https://doi.org/10.5194/bg-21-4133-2024,https://doi.org/10.5194/bg-21-4133-2024, 2024
Short summary
Monitoring cropland daily carbon dioxide exchange at field scales with Sentinel-2 satellite imagery
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024,https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Compound soil and atmospheric drought (CSAD) events and CO2 fluxes of a mixed deciduous forest: the occurrence, impact, and temporal contribution of main drivers
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024,https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
Similar freezing spectra of particles on plant canopies as in air at a high-altitude site
Annika Einbock and Franz Conen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2067,https://doi.org/10.5194/egusphere-2024-2067, 2024
Short summary

Cited articles

Albrektsen, R., Mikkelsen, M. H., and Gyldenkærne, S.: Danish emission inventories for agriculture. Inventories 1985–2015, Aarhus University, DCE – Danish Centre for Environment and Energy, 190 pp., 2017. 
Amon, B., Hutchings, N., Dämmgen, U., Sommer, S., and Webb, J.: EMEP/EEA air pollutant emission inventory Guidebook 2019, European 2019. 
Animal Feeding Operations: 2012 Monitored AFOs, available at: https://archive.epa.gov/airquality/afo2012/web/html/index.html (last access: 11 July 2016), 2012. 
Bittman, S., Dedina, M., Howard, C. M., Oenema, O., and Sutton, M. A.: Options for ammonia mitigation: Guidance from the UNECE Task Force on Reactive Nitrogen, UK Centre for Ecology and Hydrology, Edinburgh, UK, 2014. 
Blackall, T. D., Wilson, L. J., Theobald, M. R., Milford, C., Nemitz, E., Bull, J., Bacon, P. J., Hamer, K. C., Wanless, S., and Sutton, M. A.: Ammonia emissions from seabird colonies, Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2006GL028928, 2007. 
Download
Short summary
Ammonia is a key water and air pollutant and impacts human health and climate change. Ammonia emissions mainly originate from agriculture. We find that chicken agriculture contributes to large ammonia emissions, especially in hot and wet regions. These emissions can be greatly affected by the local environment, i.e. temperature and humidity, and also by human management. We develop a model that suggests ammonia emissions from chicken farming are likely to increase under a warming climate.
Altmetrics
Final-revised paper
Preprint