Articles | Volume 18, issue 8
https://doi.org/10.5194/bg-18-2511-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2511-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CO2 physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon
Gilvan Sampaio
Coordenação-geral de Ciências da Terra, Instituto Nacional de
Pesquisas Espaciais, São José dos Campos SP, 12227-010, Brazil
Marília H. Shimizu
Coordenação-geral de Ciências da Terra, Instituto Nacional de
Pesquisas Espaciais, São José dos Campos SP, 12227-010, Brazil
Carlos A. Guimarães-Júnior
Coordenação-geral de Ciências da Terra, Instituto Nacional de
Pesquisas Espaciais, São José dos Campos SP, 12227-010, Brazil
Felipe Alexandre
Coordenação-geral de Ciências da Terra, Instituto Nacional de
Pesquisas Espaciais, São José dos Campos SP, 12227-010, Brazil
Marcelo Guatura
Coordenação-geral de Ciências da Terra, Instituto Nacional de
Pesquisas Espaciais, São José dos Campos SP, 12227-010, Brazil
Manoel Cardoso
Coordenação-geral de Ciências da Terra, Instituto Nacional de
Pesquisas Espaciais, São José dos Campos SP, 12227-010, Brazil
Tomas F. Domingues
Departamento de Biologia, Universidade de São Paulo,
Ribeirão Preto SP, 14040-901, Brazil
Anja Rammig
Land Surface-Atmosphere Interactions, Technical University of
Munich, Freising, 85354, Germany
Celso von Randow
Coordenação-geral de Ciências da Terra, Instituto Nacional de
Pesquisas Espaciais, São José dos Campos SP, 12227-010, Brazil
Luiz F. C. Rezende
Coordenação-geral de Ciências da Terra, Instituto Nacional de
Pesquisas Espaciais, São José dos Campos SP, 12227-010, Brazil
David M. Lapola
CORRESPONDING AUTHOR
Centro de Pesquisas Meteorológicas e Climáticas Aplicadas
à Agricultura, Universidade Estadual de Campinas, Campinas SP,
13083-886, Brazil
Related authors
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Isela Leonor Vásquez P., Humberto Alves Barbosa, Gilvan Sampaio, César Arturo Sánchez P., Giselle Utida, David Pareja Quispe, Juan Gregorio Rejas Ayuga, Hugo Abi Karam, Jelena Maksic, Marília Harami Shimizu, and Francisco William Cruz
EGUsphere, https://doi.org/10.5194/egusphere-2022-785, https://doi.org/10.5194/egusphere-2022-785, 2022
Preprint archived
Short summary
Short summary
We wonder if the simulations of the CMIP6 models represent the multidecadal variability of precipitation associated with the position of the ITCZ? We analyzed the outputs of the CMIP6 models together with paleoclimatic records from reconstructed multiproxy data from South America. Our results show that the north-south shift of the ITCZ maintains a relationship with the oceanic region with higher sea surface temperature (SST) in the tropical river basin of the South Atlantic.
Benjamin F. Meyer, João P. Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
Geosci. Model Dev., 18, 4643–4666, https://doi.org/10.5194/gmd-18-4643-2025, https://doi.org/10.5194/gmd-18-4643-2025, 2025
Short summary
Short summary
Climate change has increased the likelihood of drought events across Europe, potentially threatening the European forest carbon sink. Dynamic vegetation models with mechanistic plant hydraulic architecture are needed to model these developments. We evaluate the plant hydraulic architecture version of LPJ-GUESS and show its ability to capture species-specific evapotranspiration responses to drought and to reproduce flux observations of both gross primary production and evapotranspiration.
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Benjamin F. Meyer, Thomas A. M. Pugh, and Anja Rammig
Biogeosciences, 22, 3635–3660, https://doi.org/10.5194/bg-22-3635-2025, https://doi.org/10.5194/bg-22-3635-2025, 2025
Short summary
Short summary
Disturbances, such as fire, can change which vegetation grows in a forest, affecting water and carbon flows and, thus, the climate. Disturbances are expected to increase with climate change, but it is uncertain by how much. Using a simulation model, we studied how future climate, disturbances, and their combined effect impact northern (high-latitude) forest ecosystems. Our findings highlight the importance of considering these factors and the need to better understand how disturbances will change in the future.
Mateus Dantas de Paula, Tatiana Reichert, Laynara F. Lugli, Erica McGale, Kerstin Pierick, João Paulo Darela-Filho, Liam Langan, Jürgen Homeier, Anja Rammig, and Thomas Hickler
Biogeosciences, 22, 2707–2732, https://doi.org/10.5194/bg-22-2707-2025, https://doi.org/10.5194/bg-22-2707-2025, 2025
Short summary
Short summary
This study explores how plant roots with different forms and functions rely on fungal partnerships for nutrient uptake. This relationship was integrated into a vegetation model and was tested in a tropical forest in Ecuador. The model accurately predicted root traits and showed that without fungi, biomass decreased by up to 80 %. The findings highlight the critical role of fungi in ecosystem processes and suggest that root–fungal interactions should be considered in vegetation models.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Friedrich J. Bohn, Ana Bastos, Romina Martin, Anja Rammig, Niak Sian Koh, Giles B. Sioen, Bram Buscher, Louise Carver, Fabrice DeClerck, Moritz Drupp, Robert Fletcher, Matthew Forrest, Alexandros Gasparatos, Alex Godoy-Faúndez, Gregor Hagedorn, Martin C. Hänsel, Jessica Hetzer, Thomas Hickler, Cornelia B. Krug, Stasja Koot, Xiuzhen Li, Amy Luers, Shelby Matevich, H. Damon Matthews, Ina C. Meier, Mirco Migliavacca, Awaz Mohamed, Sungmin O, David Obura, Ben Orlove, Rene Orth, Laura Pereira, Markus Reichstein, Lerato Thakholi, Peter H. Verburg, and Yuki Yoshida
Biogeosciences, 22, 2425–2460, https://doi.org/10.5194/bg-22-2425-2025, https://doi.org/10.5194/bg-22-2425-2025, 2025
Short summary
Short summary
An interdisciplinary collaboration of 36 international researchers from 35 institutions highlights recent findings in biosphere research. Within eight themes, they discuss issues arising from climate change and other anthropogenic stressors and highlight the co-benefits of nature-based solutions and ecosystem services. Based on an analysis of these eight topics, we have synthesized four overarching insights.
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
Geosci. Model Dev., 18, 2249–2274, https://doi.org/10.5194/gmd-18-2249-2025, https://doi.org/10.5194/gmd-18-2249-2025, 2025
Short summary
Short summary
Our study maps global nitrogen (N) and phosphorus (P) availability and how they changed from 1901 to 2018. We find that tropical regions are mostly P-limited, while temperate and boreal areas face N limitations. Over time, P limitation increased, especially in the tropics, while N limitation decreased. These shifts are key to understanding global plant growth and carbon storage, highlighting the importance of including P dynamics in ecosystem models.
Marcos B. Sanches, Manoel Cardoso, Celso von Randow, Chris Jones, and Mathew Williams
EGUsphere, https://doi.org/10.5194/egusphere-2025-942, https://doi.org/10.5194/egusphere-2025-942, 2025
Preprint archived
Short summary
Short summary
This study examines South America's role in the global carbon cycle using flux and stock analyses from CMIP6 Earth System Models. We discuss the continent’s relevance, model-observation agreement, and the impacts of dry and wet years on major biomes. Additionally, we assess model results indicating that parts of South America could shift from carbon sinks to emitters, significantly affecting the global carbon balance.
Olivier Bouriaud, Ernst-Detlef Schulze, Konstantin Gregor, Issam Bourkhris, Peter Högberg, Roland Irslinger, Phillip Papastefanou, Julia Pongratz, Anja Rammig, Riccardo Valentini, and Christian Körner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3092, https://doi.org/10.5194/egusphere-2024-3092, 2024
Short summary
Short summary
The impact of harvesting on forests' carbon sink capacities is debated. One view is that their sink strength is resilient to harvesting, the other that it disrupts these capacities. Our work shows that leaf area index (LAI) has been overlooked in this discussion. We found that temperate forests' carbon uptake is largely insensitive to variations in LAI beyond about 4 m² m-², but that forests operate at higher levels.
Renata Moura da Veiga, Celso von Randow, Chantelle Burton, Douglas Kelley, Manoel Cardoso, and Fabiano Morelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2348, https://doi.org/10.5194/egusphere-2024-2348, 2024
Short summary
Short summary
We systematically reviewed 69 papers on fire emissions from the Brazilian Cerrado biome to provide insights into its placement in the atmospheric carbon budget and support future improved estimation. We find that estimating fire emissions in the Cerrado requires a comprehensive approach, combining quantitative and qualitative aspects of fire. A pathway towards this is the inclusion of fire management representation in land surface models and the integration of observational and modelling data.
Laura M. Pereira, Ignacio Gianelli, Therezah Achieng, Diva Amon, Sally Archibald, Suchinta Arif, Azucena Castro, Tapiwa Prosper Chimbadzwa, Kaera Coetzer, Tracy-Lynn Field, Odirilwe Selomane, Nadia Sitas, Nicola Stevens, Sebastian Villasante, Mohammed Armani, Duncan M. Kimuyu, Ibukun J. Adewumi, David M. Lapola, David Obura, Patricia Pinho, Felipe Roa-Clavijo, Juan Rocha, and U. Rashid Sumaila
Earth Syst. Dynam., 15, 341–366, https://doi.org/10.5194/esd-15-341-2024, https://doi.org/10.5194/esd-15-341-2024, 2024
Short summary
Short summary
Narratives around tipping points, such as the need for
positivetipping points in energy transitions to avoid
negativeEarth system tipping points, do not take into account the entire spectrum of impacts the proposed interventions could have or still rely on narratives that maintain current unsustainable behaviours and marginalize many people. We unpack these ideas in the context of what they mean for the concept of tipping points, using a critical decolonial view from the Global South.
Melanie A. Thurner, Silvia Caldararu, Jan Engel, Anja Rammig, and Sönke Zaehle
Biogeosciences, 21, 1391–1410, https://doi.org/10.5194/bg-21-1391-2024, https://doi.org/10.5194/bg-21-1391-2024, 2024
Short summary
Short summary
Due to their crucial role in terrestrial ecosystems, we implemented mycorrhizal fungi into the QUINCY terrestrial biosphere model. Fungi interact with mineral and organic soil to support plant N uptake and, thus, plant growth. Our results suggest that the effect of mycorrhizal interactions on simulated ecosystem dynamics is minor under constant environmental conditions but necessary to reproduce and understand observed patterns under changing conditions, such as rising atmospheric CO2.
Benjamin F. Meyer, Allan Buras, Konstantin Gregor, Lucia S. Layritz, Adriana Principe, Jürgen Kreyling, Anja Rammig, and Christian S. Zang
Biogeosciences, 21, 1355–1370, https://doi.org/10.5194/bg-21-1355-2024, https://doi.org/10.5194/bg-21-1355-2024, 2024
Short summary
Short summary
Late-spring frost (LSF), critically low temperatures when trees have already flushed their leaves, results in freezing damage leaving trees with reduced ability to perform photosynthesis. Forests with a high proportion of susceptible species like European beech are particularly vulnerable. However, this process is rarely included in dynamic vegetation models (DVMs). We show that the effect on simulated productivity and biomass is substantial, warranting more widespread inclusion of LSF in DVMs.
João Paulo Darela-Filho, Anja Rammig, Katrin Fleischer, Tatiana Reichert, Laynara Figueiredo Lugli, Carlos Alberto Quesada, Luis Carlos Colocho Hurtarte, Mateus Dantas de Paula, and David M. Lapola
Earth Syst. Sci. Data, 16, 715–729, https://doi.org/10.5194/essd-16-715-2024, https://doi.org/10.5194/essd-16-715-2024, 2024
Short summary
Short summary
Phosphorus (P) is crucial for plant growth, and scientists have created models to study how it interacts with carbon cycle in ecosystems. To apply these models, it is important to know the distribution of phosphorus in soil. In this study we estimated the distribution of phosphorus in the Amazon region. The results showed a clear gradient of soil development and P content. These maps can help improve ecosystem models and generate new hypotheses about phosphorus availability in the Amazon.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Isela Leonor Vásquez P., Humberto Alves Barbosa, Gilvan Sampaio, César Arturo Sánchez P., Giselle Utida, David Pareja Quispe, Juan Gregorio Rejas Ayuga, Hugo Abi Karam, Jelena Maksic, Marília Harami Shimizu, and Francisco William Cruz
EGUsphere, https://doi.org/10.5194/egusphere-2022-785, https://doi.org/10.5194/egusphere-2022-785, 2022
Preprint archived
Short summary
Short summary
We wonder if the simulations of the CMIP6 models represent the multidecadal variability of precipitation associated with the position of the ITCZ? We analyzed the outputs of the CMIP6 models together with paleoclimatic records from reconstructed multiproxy data from South America. Our results show that the north-south shift of the ITCZ maintains a relationship with the oceanic region with higher sea surface temperature (SST) in the tropical river basin of the South Atlantic.
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev., 15, 6495–6519, https://doi.org/10.5194/gmd-15-6495-2022, https://doi.org/10.5194/gmd-15-6495-2022, 2022
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyzed these across European forests. We find that uncertainties are dominantly induced by parameters related to water, mortality, and climate, with an increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty but also modifies uncertainties in other ecosystem processes.
Phillip Papastefanou, Christian S. Zang, Zlatan Angelov, Aline Anderson de Castro, Juan Carlos Jimenez, Luiz Felipe Campos De Rezende, Romina C. Ruscica, Boris Sakschewski, Anna A. Sörensson, Kirsten Thonicke, Carolina Vera, Nicolas Viovy, Celso Von Randow, and Anja Rammig
Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, https://doi.org/10.5194/bg-19-3843-2022, 2022
Short summary
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
Rahayu Adzhar, Douglas I. Kelley, Ning Dong, Charles George, Mireia Torello Raventos, Elmar Veenendaal, Ted R. Feldpausch, Oliver L. Phillips, Simon L. Lewis, Bonaventure Sonké, Herman Taedoumg, Beatriz Schwantes Marimon, Tomas Domingues, Luzmila Arroyo, Gloria Djagbletey, Gustavo Saiz, and France Gerard
Biogeosciences, 19, 1377–1394, https://doi.org/10.5194/bg-19-1377-2022, https://doi.org/10.5194/bg-19-1377-2022, 2022
Short summary
Short summary
The MODIS Vegetation Continuous Fields (VCF) product underestimates tree cover compared to field data and could be underestimating tree cover significantly across the tropics. VCF is used to represent land cover or validate model performance in many land surface and global vegetation models and to train finer-scaled Earth observation products. Because underestimation in VCF may render it unsuitable for training data and bias model predictions, it should be calibrated before use in the tropics.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Mats Lindeskog, Benjamin Smith, Fredrik Lagergren, Ekaterina Sycheva, Andrej Ficko, Hans Pretzsch, and Anja Rammig
Geosci. Model Dev., 14, 6071–6112, https://doi.org/10.5194/gmd-14-6071-2021, https://doi.org/10.5194/gmd-14-6071-2021, 2021
Short summary
Short summary
Forests play an important role in the global carbon cycle and for carbon storage. In Europe, forests are intensively managed. To understand how management influences carbon storage in European forests, we implement detailed forest management into the dynamic vegetation model LPJ-GUESS. We test the model by comparing model output to typical forestry measures, such as growing stock and harvest data, for different countries in Europe.
Cited articles
Aidar, M. P. M., Martinez, C. A., Costa, A. C., Costa, P. M. F., Dietrich,
S. M. C., and Buckeridge, M. S.: Effect of atmospheric CO2 enrichment on the establishment of seedlings of Jatobá, Hymenaea Courbaril L.
(Leguminosae, Caesalpinioideae), Biota Neotrop., 2, 1–10,
https://doi.org/10.1590/S1676-06032002000100008, 2002.
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol., 165, 351–372, https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005.
Ainsworth, E. A. and Rogers, A.: The response of photosynthesis and stomatal
conductance to rising [CO2]: mechanisms and environmental interactions,
Plant Cell Environ., 30, 258–270, https://doi.org/10.1111/j.1365-3040.2007.01641.x,
2007.
Badger, A. M. and Dirmeyer, P. A.: Remote tropical and sub-tropical
responses to Amazon deforestation, Clim. Dynam., 46, 3057–3066,
https://doi.org/10.1007/s00382-015-2752-5, 2016.
Ball, J. and Berry, J. A.: The ratio: a basis for predicting stomatal control of photosynthesis, in: Carnegie Institute Washington Yearbook 81, Carnegie Institute Washington, Washington, USA, 88–92, 1982.
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A Model Predicting Stomatal
Conductance and its Contribution to the Control of Photosynthesis under
Different Environmental Conditions BT – Progress in Photosynthesis Research:
Volume 4, in: Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, 10–15 August 1986, 221–224, 1987.
Banacos, P. C. and Schultz, D. M.: The Use of Moisture Flux Convergence in
Forecasting Convective Initiation: Historical and Operational Perspectives,
Weather Forecast., 20, 351–366, https://doi.org/10.1175/WAF858.1, 2005.
Berry, J. A., Beerling, D. J., and Franks, P. J.: Stomata: key players in the
earth system, past and present, Curr. Opin. Plant Biol., 13, 232–239,
https://doi.org/10.1016/j.pbi.2010.04.013, 2010.
Betts, R. A., Boucher, O., Collins, M., Cox, P. M., Falloon, P. D., Gedney,
N., Hemming, D. L., Huntingford, C., Jones, C. D., Sexton, D. M. H., and
Webb, M. J.: Projected increase in continental runoff due to plant responses
to increasing carbon dioxide, Nature, 448, 1037–1041,
https://doi.org/10.1038/nature06045, 2007.
Bonal, D., Sabatier, D., Montpied, P., Tremeaux, D., and Guehl, J. M.:
Interspecific variability of δ13C among trees in rainforests of
French Guiana: functional groups and canopy integration, Oecologia, 124,
454–468, https://doi.org/10.1007/PL00008871, 2000.
Cao, L., Bala, G., Caldeira, K., Nemani, R., and Ban-Weiss, G.: Importance of
carbon dioxide physiological forcing to future climate change,
P. Natl. Acad. Sci. USA, 107, 9513–9518, https://doi.org/10.1073/pnas.0913000107, 2010.
Cavalcanti, I. F. A., Marengo, J. A., Satyamurty, P., Nobre, C. A.,
Trosnikov, I., Bonatti, J. P., Manzi, A. O., Tarasova, T., Pezzi, L. P.,
D'Almeida, C., Sampaio, G., Castro, C. C., Sanches, M. B., and Camargo, H.:
Global Climatological Features in a Simulation Using the CPTEC–COLA AGCM,
J. Climate, 15, 2965–2988, https://doi.org/10.1175/1520-0442(2002)015<2965:GCFIAS>2.0.CO;2, 2002.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental regulation of stomatal conductance, photosynthesis and
transpiration: a model that includes a laminar boundary layer,
Agr. Forest Meteorol., 54, 107–136,
https://doi.org/10.1016/0168-1923(91)90002-8, 1991.
Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C., and
Jones, C. D.: Amazonian forest dieback under climate-carbon cycle
projections for the 21st century, Theor. Appl. Climatol., 78,
137–156, https://doi.org/10.1007/s00704-004-0049-4, 2004.
De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C.,
Hickler, T., Jain, A. K., Luo, Y., Parton, W. J., Prentice, I. C., Smith,
B., Thornton, P. E., Wang, S., Wang, Y.-P., Wårlind, D., Weng, E.,
Crous, K. Y., Ellsworth, D. S., Hanson, P. J., Seok, H.-K., Warren, J. M.,
Oren, R., and Norby, R. J.: Forest water use and water use efficiency at
elevated CO2: a model-data intercomparison at two contrasting temperate
forest FACE sites, Global Change Biol., 19, 1759–1779,
https://doi.org/10.1111/gcb.12164, 2013.
Domingues, T. F., Martinelli, L. A., and Ehleringer, J. R.: Seasonal patterns
of leaf-level photosynthetic gas exchange in an eastern Amazonian rain
forest, Plant Ecol. Divers., 7, 189–203,
https://doi.org/10.1080/17550874.2012.748849, 2014.
Dubreuil, V., Debortoli, N., Funatsu, B., Nédélec, V., and Durieux,
L.: Impact of land-cover change in the Southern Amazonia climate: a case
study for the region of Alta Floresta, Mato Grosso, Brazil,
Environ. Monit. Assess., 184, 877–891, https://doi.org/10.1007/s10661-011-2006-x, 2012.
Eltahir, E. A. B. and Bras, R. L.: Precipitation recycling in the Amazon
basin, Q. J. Roy. Meteor. Soc., 120, 861–880,
https://doi.org/10.1002/qj.49712051806, 1994.
Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E.,
Meehl, G. A., and Washington, W. M.: The Importance of Land-Cover Change in
Simulating Future Climates, Science, 310, 1674–1678,
https://doi.org/10.1126/science.1118160, 2005.
Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F., Fuchslueger, L., Garcia, S., Goll, D. S., Grandis, A., Jiang, M., Haverd, V., Hofhansl, F., Holm, J. A., Kruijt, B., Leung, F., Medlyn, B. E., Mercado, L. M., Norby, R. J.,
Pak, B., von Randow, C., Quesada, C. A., Schaap, K. J., Valverde-Barrantes, O. J., Wang, Y.-P., Yang, X., Zaehle, S., Zhu, Q., and Lapola, D. M.: Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition, Nat. Geosci., 12, 736–741, https://doi.org/10.1038/s41561-019-0404-9, 2019.
Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D.,
Sitch, S., and Haxeltine, A.: An integrated biosphere model of land surface
processes, terrestrial carbon balance, and vegetation dynamics,
Global Biogeochem. Cy., 10, 603–628, https://doi.org/10.1029/96GB02692, 1996.
Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L.,
Chakraborty, S., Fernandes, K., Liebmann, B., Fisher, R., and Myneni, R. B.:
Increased dry-season length over southern Amazonia in recent decades and its
implication for future climate projection, P. Natl. Acad. Sci. USA, 110,
18110–18115, https://doi.org/10.1073/pnas.1302584110, 2013.
Gimeno, T. E., Crous, K. Y., Cooke, J., O'Grady, A. P., Ósvaldsson, A.,
Medlyn, B. E., and Ellsworth, D. S.: Conserved stomatal behaviour under
elevated CO2 and varying water availability in a mature woodland, Funct. Ecol., 30, 700–709, https://doi.org/10.1111/1365-2435.12532, 2016.
Hickler, T., Smith, B., Prentice, I. C., Mjöfors, K., Miller, P.,
Arneth, A., and Sykes, M. T.: CO2 fertilization in temperate FACE experiments
not representative of boreal and tropical forests, Global Change Biol.,
14, 1531–1542, https://doi.org/10.1111/j.1365-2486.2008.01598.x, 2008.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.
IPCC: Summary for Policy Makers, in: Climate Change 2013: The physical
science basis, Contribution of working gorup I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by:
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., and Allen, S. K., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2013.
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C.,
Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda-Gómez, L.,
Collins, L., Crous, K. Y., De Kauwe, M. G., dos Santos, B. M., Emmerson, K.
M., Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson, S.
N., Kännaste, A., Macdonald, C. A., Mahmud, K., Moore, B. D., Nazaries,
L., Neilson, E. H. J., Nielsen, U. N., Niinemets, Ü., Noh, N. J.,
Ochoa-Hueso, R., Pathare, V. S., Pendall, E., Pihlblad, J., Piñeiro, J.,
Powell, J. R., Power, S. A., Reich, P. B., Renchon, A. A., Riegler, M.,
Rinnan, R., Rymer, P. D., Salomón, R. L., Singh, B. K., Smith, B.,
Tjoelker, M. G., Walker, J. K. M., Wujeska-Klause, A., Yang, J., Zaehle, S.,
and Ellsworth, D. S.: The fate of carbon in a mature forest under carbon
dioxide enrichment, Nature, 580, 227–231,
https://doi.org/10.1038/s41586-020-2128-9, 2020.
Kooperman, G. J., Chen, Y., Hoffman, F. M., Koven, C. D., Lindsay, K.,
Pritchard, M. S., Swann, A. L. S., and Randerson, J. T.: Forest response to
rising CO2 drives zonally asymmetric rainfall change over tropical land,
Nat. Clim. Change, 8, 434–440, https://doi.org/10.1038/s41558-018-0144-7, 2018.
Kucharik, C. J., Foley, J. A., Delire, C., Fisher, V. A., Coe, M. T.,
Lenters, J. D., Young-Molling, C., Ramankutty, N., Norman, J. M., and Gower,
S. T.: Testing the performance of a dynamic global ecosystem model: Water
balance, carbon balance, and vegetation structure, Global Biogeochem. Cy., 14, 795–825, https://doi.org/10.1029/1999GB001138, 2000.
Langenbrunner, B., Pritchard, M. S., Kooperman, G. J., and Randerson, J. T.:
Why Does Amazon Precipitation Decrease When Tropical Forests Respond to
Increasing CO2?, Earth's Future, 7, 450–468, https://doi.org/10.1029/2018EF001026, 2019.
Lapola, D. M.: Bytes and boots to understand the future of the Amazon
forest, New Phytol., 219, 845–847, https://doi.org/10.1111/nph.15342, 2018.
Lapola, D. M. and Sampaio, G.: Impacts of eCO2 vs. deforestation on Amazon climate modelled with the CPTEC-BAM, Repositório de Dados de Pesquisa da Unicamp, V2, https://doi.org/10.25824/redu/OJMILK, 2021.
Lapola, D. M., Pinho, P., Quesada, C. A., Strassburg, B. B. N., Rammig, A.,
Kruijt, B., Brown, F., Ometto, J. P. H. B., Premebida, A., Marengo, J. A.,
Vergara, W., and Nobre, C. A.: Limiting the high impacts of Amazon forest
dieback with no-regrets science and policy action, P. Natl. Acad. Sci. USA,
115, 11671–11679, https://doi.org/10.1073/pnas.1721770115, 2018.
Lawrence, D. and Vandecar, K.: Effects of tropical deforestation on climate
and agriculture, Nat. Clim. Change, 5, 27–36, https://doi.org/10.1038/nclimate2430,
2015.
Lejeune, Q., Davin, E. L., Guillod, B. P., and Seneviratne, S. I.: Influence
of Amazonian deforestation on the future evolution of regional surface
fluxes, circulation, surface temperature and precipitation, Clim. Dynam.,
44, 2769–2786, https://doi.org/10.1007/s00382-014-2203-8, 2015.
Li, D., Malyshev, S., and Shevliakova, E.: Exploring historical and future
urban climate in the Earth System Modeling framework: 2. Impact of urban
land use over the Continental United States, J. Adv. Model. Earth Sy.,
8, 936–953, https://doi.org/10.1002/2015MS000579, 2016.
Lindsay, K., Bonan, G. B., Doney, S. C., Hoffman, F. M., Lawrence, D. M.,
Long, M. C., Mahowald, N. M., Keith Moore, J., Randerson, J. T., and
Thornton, P. E.: Preindustrial-Control and Twentieth-Century Carbon Cycle
Experiments with the Earth System Model CESM1(BGC), J. Climate, 27,
8981–9005, https://doi.org/10.1175/JCLI-D-12-00565.1, 2014.
Lorenz, R., Pitman, A. J., and Sisson, S. A.: Does Amazonian deforestation
cause global effects, can we be sure?, J. Geophys. Res.-Atmos., 121,
5567–5584, https://doi.org/10.1002/2015JD024357, 2016.
Marengo, J. A., Cavalcanti, I. F. A., Satyamurty, P., Trosnikov, I., Nobre,
C. A., Bonatti, J. P., Camargo, H., Sampaio, G., Sanches, M. B., Manzi, A.
O., Castro, C. A. C., D'Almeida, C., Pezzi, L. P., and Candido, L.:
Assessment of regional seasonal rainfall predictability using the CPTEC/COLA
atmospheric GCM, Clim. Dynam., 21, 459–475, https://doi.org/10.1007/s00382-003-0346-0,
2003.
Medvigy, D., Walko, R. L., Otte, M. J., and Avissar, R.: Simulated Changes in
Northwest US, Climate in Response to Amazon Deforestation, J. Climate,
26, 9115–9136, https://doi.org/10.1175/JCLI-D-12-00775.1, 2013.
Nepstad, D., McGrath, D., Stickler, C., Alencar, A., Azevedo, A., Swette,
B., Bezerra, T., DiGiano, M., Shimada, J., Seroa da Motta, R., Armijo, E.,
Castello, L., Brando, P., Hansen, M. C., McGrath-Horn, M., Carvalho, O., and
Hess, L.: Slowing Amazon deforestation through public policy and
interventions in beef and soy supply chains, Science, 344,
1118–1123, https://doi.org/10.1126/science.1248525, 2014.
Nobre, C. A., Sellers, P. J., and Shukla, J.: Amazonian Deforestation and
Regional Climate Change, J. Climate, 4, 957–988,
https://doi.org/10.1175/1520-0442(1991)004<0957:ADARCC>2.0.CO;2, 1991.
Nobre, C. A., Sampaio, G., Borma, L. S., Castilla-Rubio, J. C., Silva, J. S.,
and Cardoso, M.: Land-use and climate change risks in the Amazon and the
need of a novel sustainable development paradigm,
P. Natl. Acad. Sci. USA, 113, 10759–10768, https://doi.org/10.1073/pnas.1605516113, 2016.
Nobre, P., Malagutti, M., Urbano, D. F., de Almeida, R. A. F., and Giarolla,
E.: Amazon Deforestation and Climate Change in a Coupled Model Simulation,
J. Climate, 22, 5686–5697, https://doi.org/10.1175/2009JCLI2757.1, 2009.
Norby, R. J., De Kauwe, M. G., Domingues, T. F., Duursma, R. A., Ellsworth,
D. S., Goll, D. S., Lapola, D. M., Luus, K. A., MacKenzie, A. R., Medlyn, B.
E., Pavlick, R., Rammig, A., Smith, B., Thomas, R., Thonicke, K., Walker, A.
P., Yang, X., and Zaehle, S.: Model-data synthesis for the next generation of
forest free-air CO2 enrichment (FACE) experiments, New Phytol., 209,
17–28, https://doi.org/10.1111/nph.13593, 2016.
Peters, G. P., Andrew, R. M., Solomon, S., and Friedlingstein, P.: Measuring
a fair and ambitious climate agreement using cumulative emissions,
Environ. Res. Lett., 10, 105004, https://doi.org/10.1088/1748-9326/10/10/105004, 2015.
Rajão, R., Soares-Filho, B., Nunes, F., Börner, J., Machado, L.,
Assis, D., Oliveira, A., Pinto, L., Ribeiro, V., Rausch, L., Gibbs, H., and
Figueira, D.: The rotten apples of Brazil's agribusiness, Science, 369, 246–248, https://doi.org/10.1126/science.aba6646, 2020.
Saad, S. I., da Rocha, H. R., Silva Dias, M. A. F., and Rosolem, R.: Can the
Deforestation Breeze Change the Rainfall in Amazonia? A Case Study for the
BR-163 Highway Region, Earth Interact., 14, 1–25,
https://doi.org/10.1175/2010EI351.1, 2010.
Sampaio, G., Nobre, C., Costa, M. H., Satyamurty, P., Soares-Filho, B. S.,
and Cardoso, M.: Regional climate change over eastern Amazonia caused by
pasture and soybean cropland expansion, Geophys. Res. Lett., 34, L17709,
https://doi.org/10.1029/2007GL030612, 2007.
Silva Dias, M. A. F., Petersen, W., Silva Dias, P. L., Cifelli, R., Betts,
A. K., Longo, M., Gomes, A. M., Fisch, G. F., Lima, M. A., Antonio, M. A.,
and Albrecht, R. I.: A case study of convective organization into
precipitating lines in the Southwest Amazon during the WETAMC and TRMM-LBA,
J. Geophys. Res.-Atmos., 107, 8078, https://doi.org/10.1029/2001JD000375, 2002.
Soares-Filho, B. S., Nepstad, D. C., Curran, L. M., Cerqueira, G. C.,
Garcia, R. A., Ramos, C. A., Voll, E., McDonald, A., Lefebvre, P., and
Schlesinger, P.: Modelling conservation in the Amazon basin, Nature,
440, 520–523, https://doi.org/10.1038/nature04389, 2006.
Spracklen, D. V. and Garcia-Carreras, L.: The impact of Amazonian
deforestation on Amazon basin rainfall, Geophys. Res. Lett., 42,
9546–9552, https://doi.org/10.1002/2015GL066063, 2015.
Spracklen, D. V., Arnold, S. R., and Taylor, C. M.: Observations of increased
tropical rainfall preceded by air passage over forests, Nature, 489,
282–285, https://doi.org/10.1038/nature11390, 2012.
Sud, Y. C., Lau, W. K.-M., Walker, G. K., Kim, J.-H., Liston, G. E., and
Sellers, P. J.: Biogeophysical Consequences of a Tropical Deforestation
Scenario: A GCM Simulation Study, J. Climate, 9, 3225–3247,
https://doi.org/10.1175/1520-0442(1996)009<3225:BCOATD>2.0.CO;2, 1996.
van der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P. R., Boom, A.,
Bongers, F., Pons, T. L., Terburg, G., and Zuidema, P. A.: No growth
stimulation of tropical trees by 150 years of CO2 fertilization but
water-use efficiency increased, Nat. Geosci., 8, 24–28,
https://doi.org/10.1038/ngeo2313, 2014.
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Nakicenovic, N.,
Smith, S. J., and Rose, S. K.: The representative concentration pathways: an
overview, Climatic Change, 109, 5, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Xu, Z., Jiang, Y., Jia, B., and Zhou, G.: Elevated-CO2 Response of Stomata
and Its Dependence on Environmental Factors, Front. Plant Sci., 7, 657,
https://doi.org/10.3389/fpls.2016.00657, 2016.
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., Hirota, M., Montade, V.,
Sampaio, G., Staal, A., Wang-Erlandsson, L., and Rammig, A.: Self-amplified
Amazon forest loss due to vegetation-atmosphere feedbacks, Nat. Commun., 8,
14681, https://doi.org/10.1038/ncomms14681, 2017.
Zheng, Y., Li, F., Hao, L., Yu, J., Guo, L., Zhou, H., Ma, C., Zhang, X., and
Xu, M.: Elevated CO2 concentration induces photosynthetic down-regulation
with changes in leaf structure, non-structural carbohydrates and nitrogen
content of soybean, BMC Plant Biol., 19, 255,
https://doi.org/10.1186/s12870-019-1788-9, 2019.
Short summary
The impact of large-scale deforestation and the physiological effects of elevated atmospheric CO2 on Amazon rainfall are systematically compared in this study. Our results are remarkable in showing that the two disturbances cause equivalent rainfall decrease, though through different causal mechanisms. These results highlight the importance of not only curbing regional deforestation but also reducing global CO2 emissions to avoid climatic changes in the Amazon.
The impact of large-scale deforestation and the physiological effects of elevated atmospheric...
Altmetrics
Final-revised paper
Preprint