Articles | Volume 18, issue 9
https://doi.org/10.5194/bg-18-2859-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2859-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the response of δ13C in Haloxylon ammodendron, a dominant C4 species in Asian desert ecosystems, to water and nitrogen addition as well as the availability of its δ13C as an indicator of water use efficiency
Zixun Chen
Key Lab of Plant–Soil Interaction, College of Resources and
Environmental Sciences, China Agricultural University, Beijing, 100193,
China
Beijing Key Laboratory of Farmland Soil Pollution Prevention and
Remediation, Department of Environmental Sciences and Engineering, College
of Resources and Environmental Sciences, China Agricultural University,
Beijing, 100193, China
Xuejun Liu
Beijing Key Laboratory of Farmland Soil Pollution Prevention and
Remediation, Department of Environmental Sciences and Engineering, College
of Resources and Environmental Sciences, China Agricultural University,
Beijing, 100193, China
Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences,
Ürümqi, 83011, China
Xiaoqing Cui
Beijing Key Laboratory of Farmland Soil Pollution Prevention and
Remediation, Department of Environmental Sciences and Engineering, College
of Resources and Environmental Sciences, China Agricultural University,
Beijing, 100193, China
Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences,
Ürümqi, 83011, China
Yaowen Han
Beijing Key Laboratory of Farmland Soil Pollution Prevention and
Remediation, Department of Environmental Sciences and Engineering, College
of Resources and Environmental Sciences, China Agricultural University,
Beijing, 100193, China
Guoan Wang
CORRESPONDING AUTHOR
Key Lab of Plant–Soil Interaction, College of Resources and
Environmental Sciences, China Agricultural University, Beijing, 100193,
China
Beijing Key Laboratory of Farmland Soil Pollution Prevention and
Remediation, Department of Environmental Sciences and Engineering, College
of Resources and Environmental Sciences, China Agricultural University,
Beijing, 100193, China
Jiazhu Li
CORRESPONDING AUTHOR
Institute of Desertification Studies, Chinese Academy of Forestry,
Beijing, 100192, China
Related authors
No articles found.
Kaiyue Zhou, Wen Xu, Lin Zhang, Mingrui Ma, Xuejun Liu, and Yu Zhao
Atmos. Chem. Phys., 23, 8531–8551, https://doi.org/10.5194/acp-23-8531-2023, https://doi.org/10.5194/acp-23-8531-2023, 2023
Short summary
Short summary
We developed a dataset of the long-term (2005–2020) variabilities of China’s nitrogen and sulfur deposition, with multiple statistical models that combine available observations and chemistry transport modeling. We demonstrated the strong impact of human activities and national pollution control actions on the spatiotemporal changes in deposition and indicated a relatively small benefit of emission abatement on deposition (and thereby ecological risk) for China compared to Europe and the USA.
Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu
Geosci. Model Dev., 16, 1641–1659, https://doi.org/10.5194/gmd-16-1641-2023, https://doi.org/10.5194/gmd-16-1641-2023, 2023
Short summary
Short summary
Ammonia in the atmosphere has wide impacts on the ecological environment and air quality, and its emission from soil volatilization is highly sensitive to meteorology, making it challenging to be well captured in models. We developed a dynamic emission model capable of calculating ammonia emission interactively with meteorological and soil conditions. Such a coupling of soil emission with meteorology provides a better understanding of ammonia emission and its contribution to atmospheric aerosol.
Pu Liu, Jia Ding, Lei Liu, Wen Xu, and Xuejun Liu
Atmos. Chem. Phys., 22, 9099–9110, https://doi.org/10.5194/acp-22-9099-2022, https://doi.org/10.5194/acp-22-9099-2022, 2022
Short summary
Short summary
Ammonia (NH3) is the important alkaline gas and the key component of fine particulate matter. We used satellite-based observations to analyze the changes in hourly NH3 concentrations and estimated surface NH3 concentrations and NH3 emissions in China. This study shows enormous potential for using satellite data to estimate surface NH3 concentrations and NH3 emissions and provides an important reference for understanding NH3 variation in China.
Fanlei Meng, Yibo Zhang, Jiahui Kang, Mathew R. Heal, Stefan Reis, Mengru Wang, Lei Liu, Kai Wang, Shaocai Yu, Pengfei Li, Jing Wei, Yong Hou, Ying Zhang, Xuejun Liu, Zhenling Cui, Wen Xu, and Fusuo Zhang
Atmos. Chem. Phys., 22, 6291–6308, https://doi.org/10.5194/acp-22-6291-2022, https://doi.org/10.5194/acp-22-6291-2022, 2022
Short summary
Short summary
PM2.5 pollution is a pressing environmental issue threatening human health and food security globally. We combined a meta-analysis of nationwide measurements and air quality modeling to identify efficiency gains by striking a balance between controlling NH3 and acid gas emissions. Persistent secondary inorganic aerosol pollution in China is limited by acid gas emissions, while an additional control on NH3 emissions would become more important as reductions in SO2 and NOx emissions progress.
Pooja V. Pawar, Sachin D. Ghude, Chinmay Jena, Andrea Móring, Mark A. Sutton, Santosh Kulkarni, Deen Mani Lal, Divya Surendran, Martin Van Damme, Lieven Clarisse, Pierre-François Coheur, Xuejun Liu, Gaurav Govardhan, Wen Xu, Jize Jiang, and Tapan Kumar Adhya
Atmos. Chem. Phys., 21, 6389–6409, https://doi.org/10.5194/acp-21-6389-2021, https://doi.org/10.5194/acp-21-6389-2021, 2021
Short summary
Short summary
In this study, simulations of atmospheric ammonia (NH3) with MOZART-4 and HTAP-v2 are compared with satellite (IASI) and ground-based measurements to understand the spatial and temporal variability of NH3 over two emission hotspot regions of Asia, the IGP and the NCP. Our simulations indicate that the formation of ammonium aerosols is quicker over the NCP than the IGP, leading to smaller NH3 columns over the higher NH3-emitting NCP compared to the IGP region for comparable emissions.
Cited articles
Battipaglia, G., Saurer, M., Cherubini, P., Calfapietra, C., McCarthy, H.
R., Norby, R. J., and Cotrufo, M. F.: Elevated CO2 increases tree-level
intrinsic water use efficiency: insights from carbon and oxygen isotope
analyses in tree rings across three forest FACE sites, New Phytol., 197,
544–554, 2013.
Bellasio, C., and Griffiths, H.: Acclimation to low light by C4 maize:
implications for bundle sheath leakiness, Plant Cell Environ., 37,
1046–1058, 2014.
Cernusak, L. A., Winter, K., Aranda, J., Turner, B. L., and Marshall, J. D.:
Transpiration efficiency of a tropical pioneer tree (Ficus insipida) in
relation to soil fertility, J. Exp. Bot., 58, 35490–3566, 2007.
Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J..
D., and Farquhar, G. D.: Environmental and physiological determinants of
carbon isotope discrimination in terrestrial plants, New Phytol., 200,
950–965, https://doi.org/10.1111/nph.12423, 2013.
Chen, Y., Wang, Q., Li, W., and Ruan, X.: Microbiotic crusts and their
interrelations with environmental factors in the Gurbantonggut desert,
western China, Environ. Geol., 52, 691–700, 2007.
Cousins, A. B., Badger, M. R., and von Caemmerer, S.: Carbonic anhydrase and
its influence on carbon isotope discrimination during C4
photosynthesis. Insights from antisense RNA in Flaveria bidentis, Plant Physiol., 141,
232–242, 2006.
Craig, H.: Carbon-13 in plants and relationships between carbon-13 and
carbon-14 variations in nature, J. Geol., 62, 115–149, 1954.
Cui, X. Q.: Effects of enhanced precipitation, temperature and nitrogen
addition on nitrogen fate and plant stoichiometry in temperate desert
ecosystem in Xinjiang, PhD thesis, China Agricultural University, Beijing, China, 2018.
Cui, X. Q., Yue, P., Gong, Y., Li, K. H., Tan, D. Y., Goulding, K., and Liu,
X. J.: Impacts of water and nitrogen addition on nitrogen recovery in,
Haloxylon ammodendron, dominated desert ecosystems, Sci. Total Environ., 601–602, 1280–1288,
2017.
Dai, Y., Zheng, X., Tang, L., and Li, Y.: Dynamics of water usage in
Haloxylon ammodendron in the southern edge of the Gurbantunggut Desert, Chinese J. Plant Ecol.,
38, 1214–1225, 2014.
Diefendorf, A. F., Mueller, K. E., and Wing, S. L.: Global patterns in leaf
13C discrimination and implications for studies of past and future
climate, P. Natl. Acad. Sci. USA, 107, 5738–5743, https://doi.org/10.1073/pnas.0910513107, 2010.
Duquesnay, A., Breda, N., Stievenard, M., and Dupouey, J.: Changes of
tree-ring δ13C and water-use efficiency of beech (Fagus sylvatica L.) in
northeastern France during the past century, Plant Cell Environ., 21,
565–572, 1998.
Ehleringer, J. R. and Cerling, T. E.: Atmospheric CO2 and the ratio of
intercellular to ambient CO2 concentrations in plants, Tree Physiol.,
15, 105–111, 1995.
Ellsworth, P. Z. and Cousins, A. B.: Carbon isotopes and water use
efficiency in C4 plants, Curr. Opin. Plant. Biol., 31, 155–161, 2016.
Ellsworth, P. Z., Ellsworth, P. V., and Cousins, A. B.: Relationship of leaf
oxygen and carbon isotopic composition with transpiration efficiency in the
C4 grasses Setaria viridis and Setaria italica, J. Exp. Bot., 68, 3513–3528, 2017.
Fan, L. L., Li, Y., Tang, L. S., and Ma, J.: Combined effects of snow depth
and nitrogen addition on ephemeral growth at the southern edge of the
Gurbantunggut Desert, China, J. Arid. Land, 5, 500–510, 2013.
Farquhar, G. D.: On the nature of carbon isotope discrimination in C4
species, Aust. J. Plant Physiol., 10, 205–226, 1983.
Farquhar, G. D. and Richards, P. A.: Isotopic composition of plant carbon
correlates with water-use efficiency of wheat gemotypes, Aust. J. Plant
Physiol., 11, 539–552, 1984.
Feng, X.: Long-term response of trees in western North
America to atmospheric CO2 concentration derived from carbon isotope
chronologies, Oecologia, 117, 19–25, 1998.
Frank, D., Reichstein, M., Bahn,
M., Thonicke, K., Frank, D., Mahecha, M. D., Smith, P., der Velde, M. V.,
Vicca, S., Babst, F., Beer, C., Buchmann, N, Canadell, J. C., Ciais, P.,
Cramar, W., SIbrom, A., Miglietta, F., Poulter, B., Rammig, A., Seneviratne,
S. I., Walz, A., Wattenbach, M., Zavala, M. A., and Zscheischler, J.:
Effects of climate extremes on the terrestrial carbon cycle: Concepts,
processes and potential future impacts, Glob. Change Biol., 21,
2861–2880, 2015.
Fravolini, A., Williams, D. G., and Thompson, T. L.: Carbon isotope
discrimination and bundle sheath leakiness in three C4 subtypes grown
under variable nitrogen, water and atmospheric CO2 supply, J. Exp.
Bot., 53, 2261–2269, 2002.
Gabrielsen, E. K.: Effects of different chlorophyll concentrations on
photosynthesis in foliage leaves, Physiol. Plantarum, 1, 5–37, 1948.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R.
W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A.,
Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A.
R., and Vörösmarty, C. J.: Nitrogen cycles: past, present, and
future, Biogeochemistry, 70, 153–226, 2004.
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z.,
Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.:
Transformation of the nitrogen cycle: recent trends, questions, and
potential solutions, Science, 320, 889–892, 2008.
Gillon, J. S. and Yakir, D.: Naturally low carbonic anhydrase activity in
C4 and C3 plants limits discrimination against (COO)-O-18 during
photosynthesis, Plant Cell Environ., 23, 903–915, 2000.
Gillon, J. S. and Yakir, D.: Influence of carbonic anhydrase activity in
terrestrial vegetation on the O-18 content of atmospheric CO2, Science,
291, 2584–2587, 2001.
Gong, X. Y., Schäufele, R., and Schnyder, H.: Bundle-sheath leakiness
and intrinsic water use efficiency of a perennial C4 grass are
increased at high vapour pressure deficit during growth. J. Exp. Bot.,
68, 321–333, 2017.
Gong, X. W, Lü, G. H., He, X. M., Sarkar, B., and Yang X. D.: High air
humidity causes atmospheric water absorption via assimilating branches in
the deep-rooted tree Haloxylon ammodendron in an arid desert region of Northwest China, Front.
Plant Sci., 10, 573, https://doi.org/10.3389/fpls.2019.00573, 2019.
Gresset, S., Westermeier, P., Rademacher, S., Ouzunova, M., Presterl, T.,
Westhoff, P., and Schön, C.: Stable carbon isotope discrimination is
under genetic control in the C4 species maize with several genomic
regions influencing trait expression, Plant Physiol., 164, 131–143, 2014.
Hall, S. J., Sponseller, R. A., Grimm, N. B., Huber, D., Kaye, J. P., Clark,
C., and Collins, S. L.: Ecosystem response to nutrient enrichment across an
urban airshed in the Sonoran Desert, Ecol. Appl., 21, 640–660, 2011.
Hatch, M. D. and Burnell, J. N.: Carbonic anhydrase activity in leaves and
its role in the first step of C4 photosynthesis, Plant Physiol., 93,
825–828, 1990.
Henderson, S. A., von Caemmerer, S., and Farquhar, G. D.:
Short-termmeasurements of carbon isotope discrimination in several C4
species, Aust. J. Plant Physiol., 19, 263–285, 1992.
Huang, J. P., Yu, H. P., Guan, X. D., Wang, G. Y., and Guo, R. X.:
Accelerated dryland expansion under climate change, J. Nature Climat.
Chang., 6, 166–171, https://doi.org/10.1038/NCLIMATE2837, 2016.
Huang, J. Y., Wang, P., Niu, Y. B., Yu, H. L., Ma, F., Xiao, G. J., and Xu,
X.: Changes in C : N : P stoichiometry modify N and P conservation strategies of
a desert steppe species Glycyrrhiza uralensis, Sci. Rep.-UK, 8, 12668, https://doi.org/10.1038/s41598-018-30324-w, 2018.
Knapp, A. K., Hoover, D. L., Wilcox, K. R., Avolio, M. L., Koerner, S. E.,
La Pierre, K. J., Loik, M. E., Luo Y. Q., Sala, O. E., and Smith, M. D.:
Characterizing differences in precipitation regimes of extreme wet and dry
years: Implications for climate change experiments, Glob. Change Biol.,
21, 2624–2633, 2015.
Kohn, M. J.: Carbon isotope compositions of terrestrial C3 plants as
indicators of (paleo) ecology and (paleo) climate, P. Natl. Acad. Sci.
USA, 107, 19691–19695, https://doi.org/10.1073/pnas.1004933107, 2010.
Kromdijk, J., Griffiths, H., and Schepers, H. E.:. Can the progressive
increase of C4 bundle sheath leakiness at low PFD be explained by
incomplete suppression of photorespiration?, Plant Cell Environ., 33,
1935–1948, 2010.
Li, J. Z., Wang, G. A., Zhang, R. N., and Li, L.: A negative relationship
between foliar carbon isotope composition and mass-based nitrogen
concentration on the eastern slope of mount gongga, China, PLoS ONE, 11,
e0166958, https://doi.org/10.1371/journal.pone.0166958, 2016.
Liu, W. G., Feng, X. H., Ning, Y. F., Zhang, Q. L., Cao, Y. N., and An, Z.
S.: δ13C variation of C3 and C4 plants across an
asian monsoon rainfall gradient in arid northwestern China, Glob. Change
Biol., 11, 1094–1100, 2005.
Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P.,
Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and Zhang, F.:
Enhanced nitrogen deposition over China, Nature, 494, 459–462, 2013.
Liu, Y. X., Li, X., Zhang, Q., Guo, Y. F., Gao, G., and Wang, J. P.:
Simulation of regional temperature and precipitation in the past 50 years
and the next 30 years over China, Quatern. Int., 212, 57–63, 2010.
Ma, J. Y., Sun, W., Liu, X. N., and Chen, F. H.: Variation in the stable
carbon and nitrogen isotope composition of plants and soil along a
precipitation gradient in northern China, PLoS ONE, 7, e51894, https://doi.org/10.1371/journal.pone.0051894, 2012.
Ma, J. Y., Sun, W., Koteyeva, N. K., Voznesenskaya, E., Stutz, S. S.,
Gandin, A., Smith-Moritz, A. M., Heazlewood, J. L., and Cousins, A. B.:
Influence of light and nitrogen on the photosynthetic efficiency in the c4
plant Miscanthus × Giganteus, Photo. Res., 131, 1–11, 2016.
Meinzer, F. C. and Zhu, J.: Nitrogen stress reduces the efficiency of the
C4 CO2 concentrating system, and therefore quantum yield, in
Saccharum (sugarcane) species, J. Exp. Bot., 49, 1227–1234, 1998.
Nyongesah, M. J. and Wang, Q.: Variation of photosynthesis and pigment
concentration relative to irradiance and nitrogen content for two coexisting
desert shrubs. Ecol. Eng., 58, 238–248, 2013.
O'Leary, M. H.: Measurement of the isotopic fractionation associated with
diffusion of carbon dioxide in aqueous solution, J. Phys. Chem., 88,
823–825, 1984.
Pengelly, J. J. L., Sirault, X. R. R., Tazoe, Y., Evans, J. R., Furbank, R.
T., and von Caemmerer, S.: Growth of the C4 dicot Flaveria bidentis:
photosynthetic acclimation to low light through shifts in leaf anatomy and
biochemistry, J. Exp. Bot., 61, 4109–4122, 2010.
Rao, Z. G., Guo, W. K., Cao, J. T., Shi, F. X., Jiang, H., and Li, C. Z.:
Relationship between the stable carbon isotopic composition of modern plants
and surface soils and climate: A global review, Earth Sci. Rev., 165,
110–119, 2017.
Reynolds, J. F., Smith, D. M. S., Lambin, E. F., Turnerll, B. L., Mortimore,
M., Batterbury, S. P. J., Downing, T. E., Dowlatabadi, H., Fernández, R.
J., Herrick, J. E., Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T.,
Maestre, F. T., Ayarza, M., and Walker, B.: Global desertification: building
a science for dryland development, Science, 316, 847–851, 2007.
Schmidt, G., Gebauer, G., Widmann, K., and Ziegler, H.: Influence of
nitrogen supply and temperature on stable carbon isotope ratios in plants of
different photosynthetic pathways (C3, C4, CAM), Isot.
Environ. Healt. S., 29, 9–13, 1993.
Serret, M. D., Yousfi, S., Vicente, R., Piñero, M. C.,
Otálora-Alcón G., del Amor, F. M., and Araus, J. L.: Interactive
effects of CO2 concentration and water regime on stable isotope
signatures, nitrogen assimilation and growth in sweet pepper, Front. Plant
Sci., 8, 2180, https://doi.org/10.3389/fpls.2017.02180, 2018.
Sheng, J., Qiao, Y., Liu, H., Zhai, Z., and Guo, Y.: A Study on the Root
System of Haloxylon Aammodendron (C. A. Mey.) Bunge, Acta Agrestia Sinica, 12, 91–94, 2004.
Sheng, Y., Zheng, W., Pei, K., and Ma, K.: Genetic variation within and among populations of a dominant desert tree Haloxylon ammodendron (Amaranthaceae) in China, Ann. Bot., 96, 245–252, 2005.
Song, L., Kuang, F., Skiba, U., Zhu, B., Liu, X., Levy, P., Dore, A., and
Fowler, D.: Bulk deposition of organic and inorganic nitrogen in southwest
China from 2008 to 2013, Environ. Pollut., 227, 157–166, 2017.
Sparks, J. P. and Ehleringer, J. R.: Leaf carbon isotope discrimination and
nitrogen content for riparian trees along elevational transects, Oecologia,
109, 362–367, https://doi.org/10.1007/s004420050094, 1997.
Stewart, G. R., Turnbull, M. H., Schmidt, S., and Erskine, P. F.: 13C
Natural abundance in plant communities along a rainfall gradient: a
biological integrator of water availability, Aust. J. Plant Physiol., 22,
51–55, https://doi.org/10.1071/PP9950051, 1995.
Swap, R. J., Aranibar, J. N., Dowty, P. R., Gilhooly III, W. P., and Macko,
S. A.: Natural abundance of 13C and 15N in C3 and C4
vegetation of southern africa: patterns and implications. Glob. Change
Biol., 10, 350–358, 2004.
Tranan, M. W. and Schubertt, B. A.: Temperature-induced water stress in
high-latitude forests in response to natural and anthropogenic warming,
Glob. Change Biol., 22, 782–791, https://doi.org/10.1111/gcb.13121, 2016.
Ubierna, N., Sun, W., Kramer, D. M., and Cousins, A. B.: The efficiency of
C4 photosynthesis under low light conditions in Zea mays, Miscanthus x
giganteus and Flaveria bidentis, Plant Cell Environ., 36, 365–381, 2013.
von Caemmerer, S., Ghannoum, O., Pengelly, J. J. L., and Cousins, A. B.:
Carbon isotope discrimination as a tool to explore C4 photosynthesis,
J. Exp. Bot., 65, 3459–3470, 2014.
Wang, G., Feng, X., Han, J., Zhou, L., Tan, W., and Su, F.: Paleovegetation reconstruction using δ13C of Soil Organic Matter, Biogeosciences, 5, 1325–1337, https://doi.org/10.5194/bg-5-1325-2008, 2008.
Wang, G. A. and Feng, X. H.: Response of plants' water use efficiency to
increasing atmospheric CO2 concentration, Environ. Sci. Technol., 46,
8610–8620, 2012.
Wang, G. A., Han, J. M., Zhou, L. P., Xiong, X. G., and Wu, Z. H.: Carbon
isotope ratios of plants and occurrences of C4 species under different
soil moisture regimes in arid region of Northwest China, Physiol. Plant.,
25, 74–81, 2005.
Wang, G. A., Han, J. M., Zhou, L. P., Xiong, X. G., Tan, M., Wu, Z. H., and
Peng, J.: Carbon isotope ratios of C4 plants in loess areas of North
China, Sci. China Ser. D., 49, 97–102, 2006.
Williams, D. G., Gempko, V., Fravolini, A., Leavitt, S. W., Wall, G. W.,
Kimball, B. A., Pinter Jr., P. J., LaMorte, R., and Ottman, M.: Carbon
isotope discrimination by Sorghum bicolor under CO2 enrichment and drought, New Phytol., 150, 285–293, 2001.
Yang, H., Yu, Q., Sheng, W. P., Li, S. G., and Tian, J.: Determination of
leaf carbon isotope discrimination in C4 plants under variable N and
water supply, Sci. Rep.-UK, 7, 351, https://doi.org/10.1038/s41598-017-00498-w, 2017.
Yao, F. Y., Wang, G. A., Liu, X. J., and Song, L.: Assessment of effects of
the rising atmospheric nitrogen deposition on nitrogen uptake and long-term
water-use efficiency of plants using nitrogen and carbon stable isotopes,
Rapid Commun. Mass Sp., 25, 1827–1836, 2011.
Zhang, J., Gu, L., Bao, F., Cao, Y., Hao, Y., He, J., Li, J., Li, Y., Ren, Y., Wang, F., Wu, R., Yao, B., Zhao, Y., Lin, G., Wu, B., Lu, Q., and Meng, P.: Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species, Biogeosciences, 12, 15–27, https://doi.org/10.5194/bg-12-15-2015, 2015.
Zhang, Y. M., Chen, J., Wang, L., Wang, X. Q., and Gu, Z. H.: The spatial
distribution patterns of biological soil crusts in the Gurbantunggut Desert,
Northern Xinjiang, China, J. Arid Environ., 68, 599–610, 2007.
Short summary
δ13C in plants is a sensitive long-term indicator of physiological acclimatization. The present study suggests that precipitation change and increasing atmospheric N deposition have little impact on δ13C of H. ammodendron, a dominant plant in central Asian deserts, but affect its gas exchange. In addition, this study shows that δ13C of H. ammodendron could not indicate its water use efficiency (WUE), suggesting that whether δ13C of C4 plants indicates WUE is species-specific.
δ13C in plants is a sensitive long-term indicator of physiological acclimatization. The present...
Altmetrics
Final-revised paper
Preprint