Articles | Volume 18, issue 13
Biogeosciences, 18, 4211–4225, 2021
https://doi.org/10.5194/bg-18-4211-2021
Biogeosciences, 18, 4211–4225, 2021
https://doi.org/10.5194/bg-18-4211-2021

Research article 14 Jul 2021

Research article | 14 Jul 2021

An improved process-oriented hydro-biogeochemical model for simulating dynamic fluxes of methane and nitrous oxide in alpine ecosystems with seasonally frozen soils

Wei Zhang et al.

Related authors

Effects of fertilization and stand age on N2O and NO emissions from tea plantations: a site-scale study in a subtropical region using a modified biogeochemical model
Wei Zhang, Zhisheng Yao, Xunhua Zheng, Chunyan Liu, Rui Wang, Kai Wang, Siqi Li, Shenghui Han, Qiang Zuo, and Jianchu Shi
Atmos. Chem. Phys., 20, 6903–6919, https://doi.org/10.5194/acp-20-6903-2020,https://doi.org/10.5194/acp-20-6903-2020, 2020
Short summary
Using a modified DNDC biogeochemical model to optimize field management of a multi-crop (cotton, wheat, and maize) system: a site-scale case study in northern China
Wei Zhang, Chunyan Liu, Xunhua Zheng, Kai Wang, Feng Cui, Rui Wang, Siqi Li, Zhisheng Yao, and Jiang Zhu
Biogeosciences, 16, 2905–2922, https://doi.org/10.5194/bg-16-2905-2019,https://doi.org/10.5194/bg-16-2905-2019, 2019
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF)
Sian Kou-Giesbrecht, Sergey Malyshev, Isabel Martínez Cano, Stephen W. Pacala, Elena Shevliakova, Thomas A. Bytnerowicz, and Duncan N. L. Menge
Biogeosciences, 18, 4143–4183, https://doi.org/10.5194/bg-18-4143-2021,https://doi.org/10.5194/bg-18-4143-2021, 2021
Short summary
Organic phosphorus cycling may control grassland responses to nitrogen deposition: a long-term field manipulation and modelling study
Christopher R. Taylor, Victoria Janes-Bassett, Gareth K. Phoenix, Ben Keane, Iain P. Hartley, and Jessica A. C. Davies
Biogeosciences, 18, 4021–4037, https://doi.org/10.5194/bg-18-4021-2021,https://doi.org/10.5194/bg-18-4021-2021, 2021
Short summary
A triple tree-ring constraint for tree growth and physiology in a global land surface model
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021,https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Simulating shrubs and their energy and carbon dioxide fluxes in Canada's Low Arctic with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021,https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Competing effects of nitrogen deposition and ozone exposure on northern hemispheric terrestrial carbon uptake and storage, 1850–2099
Martina Franz and Sönke Zaehle
Biogeosciences, 18, 3219–3241, https://doi.org/10.5194/bg-18-3219-2021,https://doi.org/10.5194/bg-18-3219-2021, 2021
Short summary

Cited articles

Bechmann, M.: Long-term monitoring of nitrogen in surface and subsurface runoff from small agricultural dominated catchments in Norway, Agr. Ecosyst. Environ., 198, 13–24, 2014. 
Bosch, N., Allan, J., Dolan, D., Han, H., and Richards, R.: Application of the Soil and Water Assessment Tool for six watersheds of Lake Erie: Model parameterization and calibration, J. Great Lakes Res., 37, 263–271, 2011. 
Breuer, L., VachÉ, K., Julich, S., and Frede, H.: Current concepts in nitrogen dynamics for mesoscale catchments, Hydrol. Sci. J., 53, 1059–1074, 2010. 
Canfield, D., Glazer, A., and Falkowski, P.: The evolution and future of Earth's nitrogen cycle, Science, 330, 192–196, 2010. 
Castellano, M., Lewis, D., and Kaye, J.: Response of soil nitrogen retention to the interactive effects of soil texture, hydrology, and organic matter, J. Geophys. Res.-Biogeo., 118, 280–290, 2013. 
Download
Short summary
The hydro-biogeochemical model Catchment Nutrient Management Model – DeNitrification-DeComposition (CNMM-DNDC) is improved by incorporating a soil thermal module to simulate the soil thermal regime in the presence of freeze–thaw cycles. The modified model is validated at a seasonally frozen catchment with typical alpine ecosystems (wetland, meadow and forest). The simulated aggregate emissions of methane and nitrous oxide are highest for the wetland, which is dominated by the methane emissions.
Altmetrics
Final-revised paper
Preprint