Articles | Volume 19, issue 9
https://doi.org/10.5194/bg-19-2487-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2487-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climatic variation drives loss and restructuring of carbon and nitrogen in boreal forest wildfire
Johan A. Eckdahl
CORRESPONDING AUTHOR
Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
Jeppe A. Kristensen
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
Daniel B. Metcalfe
Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
Related authors
No articles found.
John Marshall, Jose Gutierrez-Lopez, Daniel Metcalfe, Nataliia Kozii, and Hjalmar Laudon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3328, https://doi.org/10.5194/egusphere-2025-3328, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The "two water-worlds hypothesis" has attracted significant public attention because it is an accessible way to describe the partitioning of water sources within catchments. This manuscript adds a new degree of complexity to that idea by recognizing that co-occurring tree species, which root at different depths, also use different water sources. So it leads to at least three water worlds.
Prashant Paudel, Stefan Olin, Mark Tjoelker, Mikael Pontarp, Daniel Metcalfe, and Benjamin Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-3977, https://doi.org/10.5194/egusphere-2024-3977, 2025
Short summary
Short summary
Ecological processes respond to changes in rainfall conditions. Competition and stress created by water availability are two primary components at two ends of the rainfall gradient. In wetter areas, plants compete for resources, while in drier regions, stress limits growth. The complex interaction between plant characters and their response to growth conditions governs ecosystem processes. These findings can be used to understand how future rainfall changes could impact ecosystems.
Cited articles
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. a
Akaike, H.: A new look at the statistical model identification, IEEE
T. Automat. Contr., 19, 716–723,
https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Alexander, H. D., Natali, S. M., Loranty, M. M., Ludwig, S. M., Spektor, V. V.,
Davydov, S., Zimov, N., Trujillo, I., and Mack, M. C.: Impacts of increased
soil burn severity on larch forest regeneration on permafrost soils of far
northeastern Siberia, Forest Ecol. Manage., 417, 144–153,
https://doi.org/10.1016/j.foreco.2018.03.008, 2018. a
Alin, A.: Multicollinearity, WIREs Computational Statistics, 2, 370–374,
https://doi.org/10.1002/wics.84, 2010. a, b
Bataineh, A. L., Oswald, B. P., Bataineh, M., Unger, D., Hung, I.-K., and
Scognamillo, D.: Spatial autocorrelation and pseudoreplication in fire
ecology, Fire Ecol., 2, 107–118,
https://doi.org/10.4996/fireecology.0202107, 2006. a
Beguería, S., Latorre, B., Reig, F., and Vicente-Serrarno, S. M.: Global
SPEI database, https://spei.csic.es/database.html, last access: 15 July 2019. a
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area
model of basin hydrology, Hydrol. Sci. B., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979. a
Bodí, M. B., Martin, D. A., Balfour, V. N., Santín, C., Doerr, S. H.,
Pereira, P., Cerdà, A., and Mataix-Solera, J.: Wildland fire ash:
Production, composition and eco-hydro-geomorphic effects, Earth-Sci.
Rev., 130, 103–127,
https://doi.org/10.1016/j.earscirev.2013.12.007, 2014. a, b
Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., and Gower, S. T.: Fire as the
dominant driver of central Canadian boreal forest carbon balance, Nature,
450, 89–92, https://doi.org/10.1038/nature06272, 2007. a
Buchanan, B. P., Fleming, M., Schneider, R. L., Richards, B. K., Archibald, J., Qiu, Z., and Walter, M. T.: Evaluating topographic wetness indices across central New York agricultural landscapes, Hydrol. Earth Syst. Sci., 18, 3279–3299, https://doi.org/10.5194/hess-18-3279-2014, 2014. a
Callesen, I., Raulund-Rasmussen, K., Westman, C., and Tau-Strand, L.: Nitrogen
pools and C : N ratios in well-drained Nordic forest soils related to climate
and soil texture, Boreal Environ. Res., 12, 681–692, 2007. a
Canada Soil Survey Committee: The Canadian system of soil classification,
Research Branch, Canada Department of Agriculture, ISBN-13 978-0-66001-620-7, 1978. a
Certini, G.: Effects of fire on properties of forest soils: a review,
Oecologia, 143, 1–10,
https://doi.org/10.1007/s00442-004-1788-8, 2005. a, b, c
Chen, D., Zhang, P., Seftigen, K., Ou, T., Giese, M., and Barthel, R.:
Hydroclimate changes over Sweden in the twentieth and twenty-first centuries:
a millennium perspective, Geogr. Ann. A,
103, 103–131, https://doi.org/10.1080/04353676.2020.1841410, 2021. a
De Frenne, P., Graae, B. J., Rodríguez-Sánchez, F., Kolb, A., Chabrerie, O.,
Decocq, G., De Kort, H., De Schrijver, A., Diekmann, M., Eriksson, O.,
Gruwez, R., Hermy, M., Lenoir, J., Plue, J., Coomes, D. A., and Verheyen, K.:
Latitudinal gradients as natural laboratories to infer species' responses to
temperature, J. Ecol., 101, 784–795,
https://doi.org/10.1111/1365-2745.12074, 2013. a
de Groot, W., Bothwell, P., Carlsson, D., and Logan, K.: Simulating the effects
of future fire regimes on western Canadian boreal forests, J.
Veg. Sci., 14, 355–364,
https://doi.org/10.1111/j.1654-1103.2003.tb02161.x, 2003. a, b
de Groot, W. J., Cantin, A. S., Flannigan, M. D., Soja, A. J., Gowman, L. M.,
and Newbery, A.: A comparison of Canadian and Russian boreal forest fire
regimes, Forest Ecol. Manage., 294, 23–34,
https://doi.org/10.1016/j.foreco.2012.07.033,
2013a. a, b, c
de Groot, W. J., Flannigan, M. D., and Cantin, A. S.: Climate change impacts on
future boreal fire regimes, Forest Ecol. Manage., 294, 35–44,
https://doi.org/10.1016/j.foreco.2012.09.027,
2013b. a
Deluca, T. H. and Boisvenue, C.: Boreal forest soil carbon: distribution,
function and modelling, Forestry, 85, 161–184,
https://doi.org/10.1093/forestry/cps003, 2012. a, b
Dept. of Forest Resource Management, Swedish University of Agricultural Sciences: SLU Forest Map,
https://www.slu.se/centrumbildningar-och-projekt/riksskogstaxeringen/statistik-om-skog/slu-skogskarta/om-slu-skogskarta/ (last access: 15 July 2019),
2015. a
Dieleman, C. M., Rogers, B. M., Potter, S., Veraverbeke, S., Johnstone, J. F.,
Laflamme, J., Solvik, K., Walker, X. J., Mack, M. C., and Turetsky, M. R.:
Wildfire combustion and carbon stocks in the southern Canadian boreal forest:
Implications for a warming world, Glob. Change Biol., 26, 6062–6079,
https://doi.org/10.1111/gcb.15158, 2020. a
Dymov, A., Startsev, V., Milanovsky, E., Valdes-Korovkin, I., Farkhodov, Y.,
Yudina, A., Donnerhack, O., and Guggenberger, G.: Soils and soil organic
matter transformations during the two years after a low-intensity surface
fire (Subpolar Ural, Russia), Geoderma, 404, 115278,
https://doi.org/10.1016/j.geoderma.2021.115278, 2021. a, b, c
Eckdahl, J., Kristensen, J., and Metcalfe, D.: Dataset for “Climatic Variation
Drives Loss and Restructuring of Carbon and Nitrogen in Boreal Forest
Wildfire”, Zenodo [data set], https://doi.org/10.5281/zenodo.5078669, 2021. a
Esri Inc.: ArcGIS Pro, Esri Inc.,
https://www.esri.com/en-us/arcgis/products/arcgis-pro/, last access: 15 July 2019. a
French, N. H., Goovaerts, P., and Kasischke, E. S.: Uncertainty in estimating
carbon emissions from boreal forest fires, J. Geophys. Res.-Atmos., 109, D14S08, https://doi.org/10.1029/2003JD003635, 2004. a, b
Gaboriau, D. M., Remy, C. C., Girardin, M. P., Asselin, H., Hély, C.,
Bergeron, Y., and Ali, A. A.: Temperature and fuel availability control fire
size/severity in the boreal forest of central Northwest Territories, Canada,
Quaternary Sci. Rev., 250, 106697,
https://doi.org/10.1016/j.quascirev.2020.106697, 2020. a
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.: The
Collection 6 MODIS burned area mapping algorithm and product, Remote Sens. Environ., 217, 72–85, https://doi.org/10.1016/j.rse.2018.08.005, 2018. a
Gillett, N., Weaver, A., Zwiers, F., and Flannigan, M.: Detecting the effect of
climate change on Canadian forest fires, Geophys. Res. Lett., 31, L18211,
https://doi.org/10.1029/2004GL020876, 2004. a
Granath, G., Evans, C. D., Strengbom, J., Fölster, J., Grelle, A., Strömqvist, J., and Köhler, S. J.: The impact of wildfire on biogeochemical fluxes and water quality in boreal catchments, Biogeosciences, 18, 3243–3261, https://doi.org/10.5194/bg-18-3243-2021, 2021. a, b, c, d
Gundale, M. J. and DeLuca, T. H.: Temperature and source material influence
ecological attributes of ponderosa pine and Douglas-fir charcoal, Forest
Ecol. Manage., 231, 86–93,
https://doi.org/10.1016/j.foreco.2006.05.004, 2006. a
Gustafsson, L., Berglind, M., Granström, A., Grelle, A., Isacsson, G.,
Kjellander, P., Larsson, S., Lindh, M., Pettersson, L. B., Strengbom, J.,
Stridh, B., Sävström, T., Thor, G., Wikars, L.-O., and Mikusiński, G.:
Rapid ecological response and intensified knowledge accumulation following a
north European mega-fire, Scand. J. Forest Res., 34,
234–253, https://doi.org/10.1080/02827581.2019.1603323, 2019. a
Ivanova, G., Conard, S., Kukavskaya, E., and McRae, D.: Fire impact on carbon
storage in light conifer forests of the Lower Angara region, Siberia,
Environ. Res. Lett., 6, 045203,
https://doi.org/10.1088/1748-9326/6/4/045203, 2011. a, b
Johnstone, J., Celis, G., Chapin III, F., Hollingsworth, T., Jean, M., and
Mack, M.: Factors shaping alternate successional trajectories in burned black
spruce forests of Alaska, Ecosphere, 11, e03129,
https://doi.org/10.1002/ecs2.3129, 2020. a
Jonsson, B. G., Ekström, M., Esseen, P.-A., Grafström, A., Ståhl, G., and
Westerlund, B.: Dead wood availability in managed Swedish forests – Policy
outcomes and implications for biodiversity, Forest Ecol. Manage.,
376, 174–182, https://doi.org/10.1016/j.foreco.2016.06.017, 2016. a
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012. a, b
Kasischke, E. S., Hyer, E. J., Novelli, P. C., Bruhwiler, L. P., French, N. H.,
Sukhinin, A. I., Hewson, J. H., and Stocks, B. J.: Influences of boreal fire
emissions on Northern Hemisphere atmospheric carbon and carbon monoxide,
Global Biogeochem. Cy., 19, GB1012,
https://doi.org/10.1029/2004GB002300, 2005. a
Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., and
Lindquist, E.: Dynamics of global forest area: Results from the FAO Global
Forest Resources Assessment 2015, Forest Ecol. Manage., 352, 9–20,
https://doi.org/10.1016/j.foreco.2015.06.014, 2015. a
Kelly, J., Ibáñez, T. S., Santín, C., Doerr, S. H., Nilsson, M.-C., Holst,
T., Lindroth, A., and Kljun, N.: Boreal forest soil carbon fluxes one year
after a wildfire: Effects of burn severity and management, Glob. Change
Biol., 27, 4181–4195, https://doi.org/10.1111/gcb.15721, 2021. a
Kelly, R., Chipman, M. L., Higuera, P. E., Stefanova, I., Brubaker, L. B., and
Hu, F. S.: Recent burning of boreal forests exceeds fire regime limits of the
past 10,000 years, P. Natl. Acad. Sci. USA, 110,
13055–13060, https://doi.org/10.1073/pnas.1305069110,
2013. a
Kohl, L., Philben, M., Edwards, K. A., Podrebarac, F. A., Warren, J., and
Ziegler, S. E.: The origin of soil organic matter controls its composition
and bioreactivity across a mesic boreal forest latitudinal gradient, Glob.
Change Biol., 24, e458–e473,
https://doi.org/10.1111/gcb.13887, 2018. a
Kristensen, T., Ohlson, M., Bolstad, P., and Nagy, Z.: Spatial variability of
organic layer thickness and carbon stocks in mature boreal forest
stands—implications and suggestions for sampling designs, Environ.
Monit. Assess., 187, 1–19, https://doi.org/10.1007/s10661-015-4741-x, 2015. a
Kukavskaya, E., Buryak, L., Kalenskaya, O., and Zarubin, D.: Transformation of
the ground cover after surface fires and estimation of pyrogenic carbon
emissions in the dark-coniferous forests of Central Siberia, Contemp.
Probl. Ecol., 10, 62–70, https://doi.org/10.1134/S1995425517010073, 2017. a, b
Lantmäteriet: Markhöjdmodell Nedladdning, grid 50+,
https://www.lantmateriet.se/sv/Kartor-och-geografisk-information/geodataprodukter/produktlista/markhojdmodell-nedladdning-grid-50/#steg=1 (last access: 10 May 2022),
2021. a
Lemprière, T., Kurz, W., Hogg, E., Schmoll, C., Rampley, G., Yemshanov, D.,
McKenney, D., Gilsenan, R., Beatch, A., Blain, D., Bhatti, J., and Krcmar,
E.: Canadian boreal forests and climate change mitigation, Environ.
Rev., 21, 293–321, https://doi.org/10.1139/er-2013-0039,
2013. a
Li, F., Lawrence, D. M., and Bond-Lamberty, B.: Impact of fire on global land
surface air temperature and energy budget for the 20th century due to changes
within ecosystems, Environ. Res. Lett., 12, 044014,
https://doi.org/10.1088/1748-9326/aa6685, 2017. a
Ludwig, S. M., Alexander, H. D., Kielland, K., Mann, P. J., Natali, S. M., and
Ruess, R. W.: Fire severity effects on soil carbon and nutrients and
microbial processes in a Siberian larch forest, Glob. Change Biol., 24,
5841–5852, https://doi.org/10.1111/gcb.14455, 2018. a
Makoto, K. and Koike, T.: Charcoal ecology: Its function as a hub for plant
succession and soil nutrient cycling in boreal forests, Ecol. Res.,
36, 4–12, https://doi.org/10.1111/1440-1703.12179, 2021. a
Makoto, K., Choi, D., Hashidoko, Y., and Koike, T.: The growth of Larix
gmelinii seedlings as affected by charcoal produced at two different
temperatures, Biol. Fert. Soils, 47, 467–472,
https://doi.org/10.1007/s00374-010-0518-0, 2011. a
Makoto, K., Shibata, H., Kim, Y., Satomura, T., Takagi, K., Nomura, M., Satoh,
F., and Koike, T.: Contribution of charcoal to short-term nutrient dynamics
after surface fire in the humus layer of a dwarf bamboo-dominated forest,
Biol. Fert. Soils, 48, 569–577,
https://doi.org/10.1007/s00374-011-0657-y, 2012. a
Malhi, Y., Baldocchi, D., and Jarvis, P.: The carbon balance of tropical,
temperate and boreal forests, Plant Cell Environ., 22, 715–740,
https://doi.org/10.1046/j.1365-3040.1999.00453.x, 1999. a
Marklund, L.: Biomass functions for Norway spruce (Picea abies (L.) Karst.) in
Sweden [biomass determination, dry weight], Rapport-Sveriges
Lantbruksuniversitet, Institutionen foer Skogstaxering, Sweden, ISBN 91-576-3207-3, 1987. a
Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F., and Rogers,
B. M.: Expansion of high-latitude deciduous forests driven by interactions
between climate warming and fire, Nat. Plants, 5, 952–958,
https://doi.org/10.1038/s41477-019-0495-8, 2019. a
Murphy, P. N., Ogilvie, J., Connor, K., and Arp, P. A.: Mapping wetlands: a
comparison of two different approaches for New Brunswick, Canada, Wetlands,
27, 846–854, https://doi.org/10.1672/0277-5212(2007)27[846:MWACOT]2.0.CO;2, 2007. a
Naturvårdsverket: Markfuktighetsindex producerat som del av Nationella
marktäckedata, NMD,
https://metadatakatalogen.naturvardsverket.se/metadatakatalogen/GetMetaDataById?id=cae71f45-b463-447f-804f-2847869b19b0 (last access: 15 July 2019),
2018. a
Neary, D. G., Klopatek, C. C., DeBano, L. F., and Ffolliott, P. F.: Fire
effects on belowground sustainability: a review and synthesis, Forest Ecol. Manage., 122, 51–71,
https://doi.org/10.1016/S0378-1127(99)00032-8, 1999. a
Neff, J., Harden, J., and Gleixner, G.: Fire effects on soil organic matter
content, composition, and nutrients in boreal interior Alaska, Can.
J. Forest Res., 35, 2178–2187,
https://doi.org/10.1139/x05-154, 2005. a
Olsson, J., Södling, J., and Wetterhall, F.: Högupplösta nederbördsdata
för hydrologisk modellering: en förstudie, SMHI [data set],
https://www.smhi.se/publikationer/hogupplosta-nederbordsdata-for-hydrologisk-modellering-en-forstudie-1.32746 (last access: 15 July 2019),
2013. a
Olsson, M. T., Erlandsson, M., Lundin, L., Nilsson, T., Nilsson, Å., and
Stendahl, J.: Organic carbon stocks in Swedish Podzol soils in
relation to soil hydrology and other site characteristics, Silva Fenn., 43,
209–222, https://doi.org/10.14214/sf.207, 2009. a
Palviainen, M., Pumpanen, J., Berninger, F., Ritala, K., Duan, B., Heinonsalo,
J., Sun, H., Köster, E., and Köster, K.: Nitrogen balance along a
northern boreal forest fire chronosequence, PloS one, 12, e0174720,
https://doi.org/10.1371/journal.pone.0174720, 2017. a
Pellegrini, A. F., Harden, J., Georgiou, K., Hemes, K. S., Malhotra, A., Nolan,
C. J., and Jackson, R. B.: Fire effects on the persistence of soil organic
matter and long-term carbon storage, Nat. Geosci., 15, 5–13,
https://doi.org/10.1038/s41561-021-00867-1, 2021. a, b
Ponomarev, E. I., Kharuk, V. I., and Ranson, K. J.: Wildfires Dynamics in
Siberian Larch Forests, Forests, 7, 125, https://doi.org/10.3390/f7060125, 2016. a
Preston, C. M. and Schmidt, M. W. I.: Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions, Biogeosciences, 3, 397–420, https://doi.org/10.5194/bg-3-397-2006, 2006. a
QGIS Development Team: QGIS Geographic Information System, QGIS Association, https://www.qgis.org, last access: 15 July 2019. a
Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voulgarakis, A., Kelley, D. I., Prentice, I. C., Sitch, S., Harrison, S., and Arneth, A.: The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, 2017. a
Rapalee, G., Trumbore, S. E., Davidson, E. A., Harden, J. W., and Veldhuis, H.:
Soil carbon stocks and their rates of accumulation and loss in a boreal
forest landscape, Global Biogeochem. Cy., 12, 687–701,
https://doi.org/10.1029/98GB02336, 1998. a
Rogers, B. M., Soja, A. J., Goulden, M. L., and Randerson, J. T.: Influence of
tree species on continental differences in boreal fires and climate
feedbacks, Nat. Geosci., 8, 228–234,
https://doi.org/10.1038/ngeo2352, 2015. a, b, c
Ruiz, J. A. M., Riaño, D., Arbelo, M., French, N. H., Ustin, S. L., and
Whiting, M. L.: Burned area mapping time series in Canada (1984–1999) from
NOAA-AVHRR LTDR: A comparison with other remote sensing products and fire
perimeters, Remote Sens. Environ., 117, 407–414,
https://doi.org/10.1016/j.rse.2011.10.017, 2012. a
Santín, C., Doerr, S. H., Preston, C. M., and González-Rodríguez, G.:
Pyrogenic organic matter production from wildfires: a missing sink in the
global carbon cycle, Glob. Change Biol., 21, 1621–1633,
https://doi.org/10.1111/gcb.12800, 2015. a
Schmidt, M. W. and Noack, A. G.: Black carbon in soils and sediments: analysis,
distribution, implications, and current challenges, Global Biogeochem.
Cy., 14, 777–793, https://doi.org/10.1029/1999GB001208,
2000. a, b, c
Schultz, M. G., Heil, A., Hoelzemann, J. J., Spessa, A., Thonicke, K.,
Goldammer, J. G., Held, A. C., Pereira, J. M. C., and van het Bolscher, M.:
Global wildland fire emissions from 1960 to 2000, Global Biogeochem.
Cy., 22, GB2002, https://doi.org/10.1029/2007GB003031, 2008. a
Schweiger, A. H., Irl, S. D. H., Steinbauer, M. J., Dengler, J., and
Beierkuhnlein, C.: Optimizing sampling approaches along ecological gradients,
Methods Ecol. Evol., 7, 463–471,
https://doi.org/10.1111/2041-210X.12495, 2016. a, b
Seabold, S. and Perktold, J.: statsmodels: Econometric and statistical modeling
with python, in: 9th Python in Science Conference, edited by: van der Walt, S. and Millman, J., SciPy.org,
https://doi.org/10.25080/Majora-92bf1922-011, 2010. a
Sidoroff, K., Kuuluvainen, T., Tanskanen, H., and Vanha-Majamaa, I.: Tree
mortality after low-intensity prescribed fires in managed Pinus sylvestris
stands in southern Finland, Scand. J. Forest Res., 22,
2–12, https://doi.org/10.1080/02827580500365935, 2007. a, b
Soja, A. J., Cofer, W. R., Shugart, H. H., Sukhinin, A. I., Stackhouse, P. W.,
McRae, D. J., and Conard, S. G.: Estimating fire emissions and disparities in
boreal Siberia (1998–2002), J. Geophys. Res.-Atmos.,
109, D14S06, https://doi.org/10.1029/2004JD004570, 2004. a
Stocks, B. J., Mason, J. A., Todd, J. B., Bosch, E. M., Wotton, B. M., Amiro,
B. D., Flannigan, M. D., Hirsch, K. G., Logan, K. A., Martell, D. L., and
Skinner, W. R.: Large forest fires in Canada, 1959–1997, J.
Geophys. Res.-Atmos., 107, FFR 5-1–FFR 5-12,
https://doi.org/10.1029/2001JD000484, 2002. a
Tagesson, T., Schurgers, G., Horion, S., Ciais, P., Tian, F., Brandt, M.,
Ahlström, A., Wigneron, J.-P., Ardö, J., Olin, S., Fan, L., Wu, Z., and
Fensholt, R.: Recent divergence in the contributions of tropical and boreal
forests to the terrestrial carbon sink, Nat. Ecol. Evol., 4, 202–209,
https://doi.org/10.1038/s41559-019-1090-0, 2020. a
Valendik, E.: Temporal and spatial distribution of forest fires in Siberia, in:
Fire in Ecosystems of Boreal Eurasia, edited by: Goldammer, J. G. and Furyaev, V. V., 129–138, Springer,
https://doi.org/10.1007/978-94-015-8737-2_9, 1996. a
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017. a, b, c
van Leeuwen, T. T., van der Werf, G. R., Hoffmann, A. A., Detmers, R. G., Rücker, G., French, N. H. F., Archibald, S., Carvalho Jr., J. A., Cook, G. D., de Groot, W. J., Hély, C., Kasischke, E. S., Kloster, S., McCarty, J. L., Pettinari, M. L., Savadogo, P., Alvarado, E. C., Boschetti, L., Manuri, S., Meyer, C. P., Siegert, F., Trollope, L. A., and Trollope, W. S. W.: Biomass burning fuel consumption rates: a field measurement database, Biogeosciences, 11, 7305–7329, https://doi.org/10.5194/bg-11-7305-2014, 2014. a
Van Wagner, C.: Development and structure of the canadian forest fire weather
index system, in: Can. For. Serv., Forestry Tech. Rep, Citeseer, ISBN 0-662-15198-4, 1987. a
Vanhala, P., Karhu, K., Tuomi, M., Björklöf, K., Fritze, H., and Liski,
J.: Temperature sensitivity of soil organic matter decomposition in southern
and northern areas of the boreal forest zone, Soil Biol. Biochem.,
40, 1758–1764,
https://doi.org/10.1016/j.soilbio.2008.02.021, 2008. a
Veraverbeke, S., Rogers, B. M., and Randerson, J. T.: Daily burned area and carbon emissions from boreal fires in Alaska, Biogeosciences, 12, 3579–3601, https://doi.org/10.5194/bg-12-3579-2015, 2015. a
Veraverbeke, S., Delcourt, C. J., Kukavskaya, E., Mack, M., Walker, X.,
Hessilt, T., Rogers, B., and Scholten, R. C.: Direct and longer-term carbon
emissions from arctic-boreal fires: A short review of recent advances,
Current Opinion in Environmental Science & Health, 23, 100277,
https://doi.org/10.1016/j.coesh.2021.100277, 2021. a, b, c
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Methods, 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Walker, X. J., Rogers, B. M., Baltzer, J. L., Cumming, S. G., Day, N. J.,
Goetz, S. J., Johnstone, J. F., Schuur, E. A. G., Turetsky, M. R., and Mack,
M. C.: Cross-scale controls on carbon emissions from boreal forest megafires,
Glob. Change Biol., 24, 4251–4265,
https://doi.org/10.1111/gcb.14287, 2018. a, b, c, d, e
Walker, X., Rogers, B., Veraverbeke, S., Johnstone, J., Baltzer, J., Barrett,
K., Bourgeau-Chavez, L., Day, N., Groot, W., Dieleman, C., Goetz, S., Hoy,
E., Jenkins, L., Kane, E., Parisien, M.-A., Potter, S., Schuur, E., Turetsky,
M., Whitman, E., and Mack, M.: Fuel availability not fire weather controls
boreal wildfire severity and carbon emissions, Nat. Clim. Change, 10, 1130–1136,
https://doi.org/10.1038/s41558-020-00920-8,
2020a. a, b, c, d, e, f, g
Walker, X. J., Baltzer, J. L., Bourgeau-Chavez, L., Day, N. J., Dieleman,
C. M., Johnstone, J. F., Kane, E. S., Rogers, B. M., Turetsky, M. R.,
Veraverbeke, S., and Mack, M. C.: Patterns of Ecosystem Structure and
Wildfire Carbon Combustion Across Six Ecoregions of the North American Boreal
Forest, Frontiers in Forests and Global Change, 3, 87,
https://doi.org/10.3389/ffgc.2020.00087, 2020b. a, b, c
Wiggins, E. B., Andrews, A., Sweeney, C., Miller, J. B., Miller, C. E., Veraverbeke, S., Commane, R., Wofsy, S., Henderson, J. M., and Randerson, J. T.: Boreal forest fire CO and CH4 emission factors derived from tower observations in Alaska during the extreme fire season of 2015, Atmos. Chem. Phys., 21, 8557–8574, https://doi.org/10.5194/acp-21-8557-2021, 2021. a
Wilcke, R. A. I., Kjellström, E., Lin, C., Matei, D., Moberg, A., and Tyrlis, E.: The extremely warm summer of 2018 in Sweden – set in a historical context, Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, 2020. a
Wooster, M. J. and Zhang, Y. H.: Boreal forest fires burn less intensely in
Russia than in North America, Geophys. Res. Lett., 31, L20505,
https://doi.org/10.1029/2004GL020805, 2004. a
Zackrisson, O., Nilsson, M.-C., and Wardle, D. A.: Key ecological function of
charcoal from wildfire in the Boreal forest, Oikos, 77, 10–19,
https://doi.org/10.2307/3545580, 1996. a
Zoltai, S., Morrissey, L., Livingston, G., and Groot, W. D.: Effects of fires
on carbon cycling in North American boreal peatlands, Environ. Rev.,
6, 13–24, https://doi.org/10.1139/a98-002, 1998. a
Short summary
This study found climate to be a driving force for increasing per area emissions of greenhouse gases and removal of important nutrients from high-latitude forests due to wildfire. It used detailed direct measurements over a large area to uncover patterns and mechanisms of restructuring of forest carbon and nitrogen pools that are extrapolatable to larger regions. It also takes a step forward in filling gaps in global knowledge of northern forest response to climate-change-strengthened wildfires.
This study found climate to be a driving force for increasing per area emissions of greenhouse...
Altmetrics
Final-revised paper
Preprint