Articles | Volume 19, issue 15
https://doi.org/10.5194/bg-19-3625-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3625-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of brackish water inflow on methane-cycling microbial communities in a freshwater rewetted coastal fen
Cordula Nina Gutekunst
CORRESPONDING AUTHOR
Landscape Ecology, University of Rostock, Rostock, 18059, Germany
Susanne Liebner
Geomicrobiology Section, German Research Centre for Geosciences (GFZ),
Potsdam, 14473, Germany
Institute of Biochemistry and Biology, University of Potsdam, Potsdam,
14476, Germany
Anna-Kathrina Jenner
Geochemistry and Stable Isotope Biogeochemistry, Leibniz Institute for
Baltic Sea Research (IOW), Warnemünde, 18119, Germany
Klaus-Holger Knorr
Institute of Landscape Ecology, Ecohydrology and Biogeochemistry
Group, University of Münster, Münster, 48149, Germany
Viktoria Unger
Institute of Plant Science and Microbiology, Applied Plant Ecology,
University of Hamburg, Hamburg, 22609, Germany
Franziska Koebsch
Bioclimatology, University of Göttingen, Göttingen, 37073,
Germany
Erwin Don Racasa
Soil Physics, University of Rostock, Rostock, 18059, Germany
Sizhong Yang
Geomicrobiology Section, German Research Centre for Geosciences (GFZ),
Potsdam, 14473, Germany
Michael Ernst Böttcher
Geochemistry and Stable Isotope Biogeochemistry, Leibniz Institute for
Baltic Sea Research (IOW), Warnemünde, 18119, Germany
Marine Geochemistry, University of Greifswald, Greifswald, 17489,
Germany
Department of Maritime Systems, University of Rostock, Rostock,
18059, Germany
Manon Janssen
Soil Physics, University of Rostock, Rostock, 18059, Germany
Jens Kallmeyer
Geomicrobiology Section, German Research Centre for Geosciences (GFZ),
Potsdam, 14473, Germany
Denise Otto
Geochemistry and Stable Isotope Biogeochemistry, Leibniz Institute for
Baltic Sea Research (IOW), Warnemünde, 18119, Germany
Iris Schmiedinger
Geochemistry and Stable Isotope Biogeochemistry, Leibniz Institute for
Baltic Sea Research (IOW), Warnemünde, 18119, Germany
Lucas Winski
Geochemistry and Stable Isotope Biogeochemistry, Leibniz Institute for
Baltic Sea Research (IOW), Warnemünde, 18119, Germany
present address: Institute for Technical Chemistry and Environmental Chemistry, University of Jena, Jena, 07743, Germany
Gerald Jurasinski
Landscape Ecology, University of Rostock, Rostock, 18059, Germany
Department of Maritime Systems, University of Rostock, Rostock,
18059, Germany
Related authors
Daniel L. Pönisch, Anne Breznikar, Cordula N. Gutekunst, Gerald Jurasinski, Maren Voss, and Gregor Rehder
Biogeosciences, 20, 295–323, https://doi.org/10.5194/bg-20-295-2023, https://doi.org/10.5194/bg-20-295-2023, 2023
Short summary
Short summary
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however, short-term nutrient leaching and high CH4 emissions shortly after rewetting are likely to occur. We investigated the rewetting of a coastal peatland with brackish water and its effects on nutrient release and greenhouse gas fluxes. Nutrient concentrations were higher in the peatland than in the adjacent bay, leading to an export. CH4 emissions did not increase, which is in contrast to freshwater rewetting.
Fabian Seemann, Michael Zech, Maren Jenrich, Guido Grosse, Benjamin M. Jones, Claire Treat, Lutz Schirrmeister, Susanne Liebner, and Jens Strauss
EGUsphere, https://doi.org/10.5194/egusphere-2025-3727, https://doi.org/10.5194/egusphere-2025-3727, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Arctic coastal landscapes, like those in northernmost Alaska, often contain saline sediments that are more prone to thawing. We studied six sediment cores to understand how thawing and salinity affect organic carbon breakdown and land change. Our results show that salinity speeds up organic matter loss when permafrost thaws. This highlights the overlooked risk of salinity in shaping Arctic landscapes and carbon release as the climate continues to warm.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
Earth Syst. Dynam., 16, 891–914, https://doi.org/10.5194/esd-16-891-2025, https://doi.org/10.5194/esd-16-891-2025, 2025
Short summary
Short summary
The Holocene Peatland Model (HPM) is a widely used peatland model to understand and predict long-term peatland dynamics. Here, we test whether the HPM can predict Sphagnum litterbag decomposition rates from oxic to anoxic conditions. Our results indicate that decomposition rates change more gradually from oxic to anoxic conditions and may be underestimated under anoxic conditions, possibly because the effect of water table fluctuations on decomposition rates is not considered.
Maren Jenrich, Juliane Wolter, Susanne Liebner, Christian Knoblauch, Guido Grosse, Fiona Giebeler, Dustin Whalen, and Jens Strauss
Biogeosciences, 22, 2069–2086, https://doi.org/10.5194/bg-22-2069-2025, https://doi.org/10.5194/bg-22-2069-2025, 2025
Short summary
Short summary
Climate warming in the Arctic is causing the erosion of permafrost coasts and the transformation of permafrost lakes into lagoons. To understand how this affects greenhouse gas (GHG) emissions, we studied carbon dioxide (CO₂) and methane (CH₄) production in lagoons with varying sea connections. Younger lagoons produce more CH₄, while CO₂ increases under more marine conditions. Flooding of permafrost lowlands due to rising sea levels may lead to higher GHG emissions from Arctic coasts in future.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
Biogeosciences, 22, 417–433, https://doi.org/10.5194/bg-22-417-2025, https://doi.org/10.5194/bg-22-417-2025, 2025
Short summary
Short summary
Decomposition rates for Sphagnum mosses, the main peat-forming plants in northern peatlands, are often derived from litterbag experiments. Here, we estimate initial leaching losses from available Sphagnum litterbag experiments and analyze how decomposition rates are biased when initial leaching losses are ignored. Our analyses indicate that initial leaching losses range between 3 to 18 mass-% and that this may result in overestimated mass losses when extrapolated to several decades.
Seyed Reza Saghravani, Michael Ernst Böttcher, Wei-Li Hong, Karol Kuliński, Aivo Lepland, Arunima Sen, and Beata Szymczycha
Earth Syst. Sci. Data, 16, 3419–3431, https://doi.org/10.5194/essd-16-3419-2024, https://doi.org/10.5194/essd-16-3419-2024, 2024
Short summary
Short summary
A comprehensive study conducted in 2021 examined the distributions of dissolved nutrients and carbon in the western Spitsbergen fjords during the high-melting season. Significant spatial variability was observed in the water column and pore water concentrations of constituents, highlighting the unique biogeochemical characteristics of each fjord and their potential impact on ecosystem functioning and oceanographic processes.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Mélissa Laurent, Matthias Fuchs, Tanja Herbst, Alexandra Runge, Susanne Liebner, and Claire C. Treat
Biogeosciences, 20, 2049–2064, https://doi.org/10.5194/bg-20-2049-2023, https://doi.org/10.5194/bg-20-2049-2023, 2023
Short summary
Short summary
In this study we investigated the effect of different parameters (temperature, landscape position) on the production of greenhouse gases during a 1-year permafrost thaw experiment. For very similar carbon and nitrogen contents, our results show a strong heterogeneity in CH4 production, as well as in microbial abundance. According to our study, these differences are mainly due to the landscape position and the hydrological conditions established as a result of the topography.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Daniel L. Pönisch, Anne Breznikar, Cordula N. Gutekunst, Gerald Jurasinski, Maren Voss, and Gregor Rehder
Biogeosciences, 20, 295–323, https://doi.org/10.5194/bg-20-295-2023, https://doi.org/10.5194/bg-20-295-2023, 2023
Short summary
Short summary
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however, short-term nutrient leaching and high CH4 emissions shortly after rewetting are likely to occur. We investigated the rewetting of a coastal peatland with brackish water and its effects on nutrient release and greenhouse gas fluxes. Nutrient concentrations were higher in the peatland than in the adjacent bay, leading to an export. CH4 emissions did not increase, which is in contrast to freshwater rewetting.
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022, https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Henning Teickner and Klaus-Holger Knorr
SOIL, 8, 699–715, https://doi.org/10.5194/soil-8-699-2022, https://doi.org/10.5194/soil-8-699-2022, 2022
Short summary
Short summary
The chemical quality of biomass can be described with holocellulose (relatively easily decomposable by microorganisms) and Klason lignin (relatively recalcitrant) contents. Measuring both is laborious. In a recent study, models have been proposed which can predict both quicker from mid-infrared spectra. However, it has not been analyzed if these models make correct predictions for biomass in soils and how to improve them. We provide such a validation and a strategy for their improvement.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Bryce Van Dam, Nele Lehmann, Mary A. Zeller, Andreas Neumann, Daniel Pröfrock, Marko Lipka, Helmuth Thomas, and Michael Ernst Böttcher
Biogeosciences, 19, 3775–3789, https://doi.org/10.5194/bg-19-3775-2022, https://doi.org/10.5194/bg-19-3775-2022, 2022
Short summary
Short summary
We quantified sediment–water exchange at shallow sites in the North and Baltic seas. We found that porewater irrigation rates in the former were approximately twice as high as previously estimated, likely driven by relatively high bioirrigative activity. In contrast, we found small net fluxes of alkalinity, ranging from −35 µmol m−2 h−1 (uptake) to 53 µmol m−2 h−1 (release). We attribute this to low net denitrification, carbonate mineral (re-)precipitation, and sulfide (re-)oxidation.
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022, https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Florian Beyer, Florian Jansen, Gerald Jurasinski, Marian Koch, Birgit Schröder, and Franziska Koebsch
Biogeosciences, 18, 917–935, https://doi.org/10.5194/bg-18-917-2021, https://doi.org/10.5194/bg-18-917-2021, 2021
Short summary
Short summary
Increasing drought frequency can jeopardize the restoration of the CO2 sink function in degraded peatlands. We explored the effect of the summer drought in 2018 on vegetation development and CO2 exchange in a rewetted fen. Drought triggered a rapid spread of new vegetation whose CO2 assimilation could partially outweigh the drought-related rise in respiratory CO2 loss. Our study shows important regulatory mechanisms of a rewetted fen to maintain its net CO2 sink function even in a very dry year.
Leandra Stephanie Emilia Praetzel, Nora Plenter, Sabrina Schilling, Marcel Schmiedeskamp, Gabriele Broll, and Klaus-Holger Knorr
Biogeosciences, 17, 5057–5078, https://doi.org/10.5194/bg-17-5057-2020, https://doi.org/10.5194/bg-17-5057-2020, 2020
Short summary
Short summary
Small lakes are important but variable sources of greenhouse gas emissions. We performed lab experiments to determine spatial patterns and drivers of CO2 and CH4 emission and sediment gas production within a lake. The observed high spatial variability of emissions and production could be explained by the degradability of the sediment organic matter. We did not see correlations between production and emissions and suggest on-site flux measurements as the most accurate way for determing emissions.
Wolfgang Knierzinger, Ruth Drescher-Schneider, Klaus-Holger Knorr, Simon Drollinger, Andreas Limbeck, Lukas Brunnbauer, Felix Horak, Daniela Festi, and Michael Wagreich
E&G Quaternary Sci. J., 69, 121–137, https://doi.org/10.5194/egqsj-69-121-2020, https://doi.org/10.5194/egqsj-69-121-2020, 2020
Short summary
Short summary
We present multi-proxy analyses of a 14C-dated peat core covering the past ⁓5000 years from the ombrotrophic Pürgschachen Moor. Pronounced increases in cultural indicators suggest significant human activity in the Bronze Age and in the period of the late La Tène culture. We found strong, climate-controlled interrelations between the pollen record, the humification degree and the ash content. Human activity is reflected in the pollen record and by heavy metals.
Fabian Schwichtenberg, Johannes Pätsch, Michael Ernst Böttcher, Helmuth Thomas, Vera Winde, and Kay-Christian Emeis
Biogeosciences, 17, 4223–4245, https://doi.org/10.5194/bg-17-4223-2020, https://doi.org/10.5194/bg-17-4223-2020, 2020
Short summary
Short summary
Ocean acidification has a range of potentially harmful consequences for marine organisms. It is related to total alkalinity (TA) mainly produced in oxygen-poor situations like sediments in tidal flats. TA reduces the sensitivity of a water body to acidification. The decomposition of organic material and subsequent TA release in the tidal areas of the North Sea (Wadden Sea) is responsible for reduced acidification in the southern North Sea. This is shown with the results of an ecosystem model.
Cited articles
Abdalla, M., Hastings, A., Truu, J., Espenberg, M., Mander, Ü., and
Smith, P.: Emissions of methane from northern peatlands: a review of
management impacts and implications for future management options, Ecol.
Evol., 6, 7080–7102, https://doi.org/10.1002/ece3.2469, 2016.
Achtnich, C., Bak, F., and Conrad, R.: Competition for electron donors among
nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in
anoxic paddy soil, Biol. Fert. Soils, 19, 65–72,
https://doi.org/10.1007/BF00336349, 1995.
Alm, J., Schulman, L., Walden, J., Nykänen, H., Martikainen, P. J., and
Silvola, J.: Carbon balance of a boreal bog during a year with an
exceptionally dry summer, Ecology, 80, 161–174, https://doi.org/10.1890/0012-9658(1999)080[0161:CBOABB]2.0.CO;2,
1999.
Angle, J. C., Morin, T. H., Solden, L. M., Narrowe, A. B., Smith, G. J.,
Borton, M. A., Rey-Sanchez, C., Daly, R. A., Mirfenderesgi, G., Hoyt, D. W.,
Riley, W. J., Miller, C. S., Bohrer, G., and Wrighton, K. C.: Methanogenesis
in oxygenated soils is a substantial fraction of wetland methane emissions,
Nat. Commun., 8, 1–9, https://doi.org/10.1038/s41467-017-01753-4, 2017.
Arnold, J. B.: ggthemes: Extra Themes, Scales and Geoms for “ggplot2”, R
package version 4.2.4, https://CRAN.R-project.org/package=ggthemes (last access: 15 June 2022), 2021.
Bani, A., Pioli, S., Ventura, M., Panzacchi, P., Borruso, L., Tognetti, R.,
Tonon, G., and Brusetti, L: The role of microbial community in the
decomposition of leaf litter and deadwood, Appl. Soil Ecol., 126, 75–84,
https://doi.org/10.1016/j.apsoil.2018.02.017, 2018.
Bartlett, K. B., Bartlett, D. S., Harriss, R. C., and Sebacher, D. I.:
Methane emissions along a salt marsh salinity gradient, Biogeochemistry, 4,
183–202, https://doi.org/10.1007/BF02187365, 1987.
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Eur.
J. Soil Sci., 47, 151–163, 1996.
Boehme, S. E., Blair, N. E., Chanton, J. P., and Martens, C. S.: A mass
balance of 13C and 12C in an organic-rich methane-producing marine
sediment, Geochim. Cosmochim. Ac., 60, 3835–3848,
https://doi.org/10.1016/0016-7037(96)00204-9, 1996.
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., and
Gleseke, A.: A marine microbial consortium apparently mediating anaerobic
oxidation methane, Nature, 407, 623–626, https://doi.org/10.1038/35036572, 2000.
Bohne, B. and Bohne, K.: Monitoring zum Wasserhaushalt einer auf
litoralem Versumpfungsmoor gewachsenen Regenmoorkalotte –
Beispiel Naturschutzgebiet “Hütelmoor” bei Rostock, in: Aspekte
der Geoökologie, edited by: Stüdemann, O., Weißensee Verlag, Berlin, 313–338, ISBN: 978-3-89998-127-8, 2008.
Boman, A., Åström, M., and Fröjdö, S.: Sulfur dynamics in
boreal acid sulfate soils rich in metastable iron sulfide. The role of
artificial drainage, Chem. Geol., 255, 68–77,
https://doi.org/10.1016/j.chemgeo.2008.06.006, 2008.
Boman, A., Fröjdö, S., Backlund, K., and Åström, M.: Impact
of isostatic land uplift and artificial drainage on oxidation of
brackish-water sediments rich in metastable iron sulfide, Geochim.
Cosmochim. Ac., 74, 1268–1281, https://doi.org/10.1016/j.gca.2009.11.026, 2010.
Brand, W. and Coplen, T.: Stable isotope deltas: Tiny, yet robust
signatures in nature, Isot. Environ. Health S., 48,
393–409, https://doi.org/10.1080/10256016.2012.666977, 2012.
Bräuer, S. L., Basiliko, N., Siljanen, H. M. P., and Zinder, S. H.:
Methanogenic archaea in peatlands, FEMS Microbiol. Lett., 367, 1–17,
https://doi.org/10.1093/femsle/fnaa172, 2020.
Bushnell, B.: BBTools software package,
https://www.sourceforge.net/projects/bbmap (last access: 18 January 2021), 2014.
Callahan, B. J., Mcmurdie, P. J, Rosen, M. J., Han, A. W., Johnson, A. J.
A., and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina
amplicon data, Nat. Methods, 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.
D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J., Gordon, J.
I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E.,
Lozupone, C., Mcdonald, D., Muegge, B. D., Pirrung, M., Reeder, J.,
Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko,
T., Zaneveld, J., and Knight, R.: QIIME allows analysis of high-throughput
community sequencing data, Nat. Methods, 7, 335–336,
https://doi.org/10.1038/nmeth.f.303, 2010.
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C.
A., Turnbaugh, P. J., Fierer, N., and Knight, R.: Global patterns of 16S
rRNA diversity at a depth of millions of sequences per sample, P. Natl. Acad. Sci. USA, 108,
4516–4522, https://doi.org/10.1073/pnas.1000080107, 2011.
Chamberlain, S. D., Hemes, K. S., Eichelmann, E., Szutu, D. J., Verfaillie,
J. G., and Baldocchi, D. D.: Effect of drought-induced salinization on
wetland methane emissions, gross ecosystem productivity, and their
interactions, Ecosystems, 23, 675–688, https://doi.org/10.1007/s10021-019-00430-5,
2020.
Church, J. A. White, N. J., Domingues, C. M., Monselesan, D. P., and Miles,
E. R.: Sea-level and ocean heat-content change, International Geophysics,
103, 697–725, https://doi.org/10.1016/B978-0-12-391851-2.00027-1, 2013.
Cline, J.: Spectrophotometric Determination of Hydrogen Sulfide in Natural
Waters, Limnol. Oceanogr., 14, 454–458,
https://doi.org/10.4319/lo.1969.14.3.0454, 1969.
Conrad, R.: The global methane cycle: Recent advances in understanding the
microbial processes involved, Env. Microbiol. Rep., 1,
285–292, https://doi.org/10.1111/j.1758-2229.2009.00038.x, 2009.
Corbett, J. E., Tfaily, M. M., Burdige, D. J., Cooper, W. T., Glaser, P. H.,
and Chanton, J. P.: Partitioning pathways of CO2 production in
peatlands with stable carbon isotopes, Biogeochemistry, 114, 327–340,
https://doi.org/10.1007/s10533-012-9813-1, 2013.
Damman, A. W. H.: Distribution and movement of elements in ombrotrophic peat
bogs, Oikos, 30, 480–495, 1978.
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E.,
Bocko, Y. E., and Ifo, S. A.: Age, extent and carbon storage of the central
Congo Basin peatland complex, Nature Letter, 542, 86–90,
https://doi.org/10.1038/nature21048, 2017.
Dean, J. F., Middelburg, J. J., Röckmann, T., Aerts, R., Blauw, L. G.,
Egger, M., Jetten, M. S. M., de Jong, A. E. E., Meisel, O. H., Rasigraf, O.,
Slomp, C. P., in't Zandt, M. H., and Dolman, A. J.: Methane feedbacks to the
global climate system in a warmer world, Rev. Geophys., 56,
207–250, https://doi.org/10.1002/2017RG000559, 2018.
Dettling, M. D., Yavitt, J. B., and Zinder, S. H.: Control of organic carbon
mineralization by alternative electron acceptors in four peatlands, central
New York state, USA, Wetlands, 26, 917–927,
https://doi.org/10.1672/0277-5212(2006)26[917:COOCMB]2.0.CO;2, 2006.
De Vleeschouwer, F., Chambers, F. M., and Swindles, G. T.: Coring and sub-sampling
of peatlands for palaeoenvironmental research, Mires Peat, 7, 1–10,
2010.
DIN 19683-14 (Deutsches Institut für Normung e.V.), Bodenbeschaffenheit
– Physikalische Laboruntersuchungen – Teil 14: Bestimmung des
Substanzanteils von Moorböden, Beuth-Verlag, Berlin, https://doi.org/10.31030/9848020, 2007.
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S.,
Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., De Beer, D.,
Gloerich, J., Wessels, H. J. C. T., Van Alen, T., Luesken, F., Wu, M. L.,
Van De Pas-Schoonen, K. T., Op Den Camp, H. J. M., Janssen-Megens, E. M.,
Francoijs, K. J., Stunnenberg, H., Weissenbach, J., Jetten, M. S. M., and
Strous, M.: Nitrite-driven anaerobic methane oxidation by oxygenic bacteria,
Nature, 464, 543–548, https://doi.org/10.1038/nature08883, 2010.
Fabian, P.: Leben im Treibhaus. Unser Klimasystem – und was wir daraus
machen, Springer-Verlag, Berlin, Germany, https://doi.org/10.1007/978-3-642-56154-2, 2002.
Fiedler, S., Höll, B. S., Freibauer, A., Stahr, K., Drösler, M., Schloter, M., and Jungkunst, H. F.: Particulate organic carbon (POC) in relation to other pore water carbon fractions in drained and rewetted fens in Southern Germany, Biogeosciences, 5, 1615–1623, https://doi.org/10.5194/bg-5-1615-2008, 2008.
Frolking, S., Talbot, J., Jones, M. C., Treat, C. C., Kauffman, J. B.,
Tuittila, E.-S., and Roulet, N.: Peatlands in the Earth's 21st century
climate system, Environ. Rev., 19, 371–396, https://doi.org/10.1139/a11-014,
2011.
Gauci, V., Matthews, E., Dise, N., Walter, B., Koch, D., Granberg, G., and
Vile, M.: Sulfur pollution suppression of the wetland methane source in the
20th and 21st centuries, P. Natl. Acad. Sci. USA, 101, 12583–12587,
https://doi.org/10.1073/pnas.0404412101, 2004.
Glatzel, S., Koebsch, F., Beetz, S., Hahn, J., Richter, P., and Jurasinski,
G.: Maßnahmen zur Minderung der Treibhausgasfreisetzung aus Mooren im
Mittleren Mecklenburg, TELMA, 4, 85–106,
https://doi.org/10.23689/fidgeo-2976, 2011.
Gorham, E.: Northern peatlands – Role in the carbon-cycle and probable
responses to climatic warming, Ecol. Appl., 1, 182–195,
https://doi.org/10.2307/1941811, 1991.
Günther, A., Huth, V., Jurasinski, G., and Glatzel, S.: The effect of
biomass harvesting on greenhouse gas emissions from a rewetted temperate
fen, GCB Bioenergy, 7, 1092–1106, https://doi.org/10.1111/gcbb.12214, 2015.
Günther, A., Barthelmes, A., Huth, V., Joosten, H., Jurasinski, G.,
Koebsch, F., and Couwenberg, J.: Prompt rewetting of drained peatlands
reduces climate warming despite methane emissions, Nat. Commun.,
11, 1–5, https://doi.org/10.1038/s41467-020-15499-z, 2020.
Hahn-Schöfl, M., Zak, D., Minke, M., Gelbrecht, J., Augustin, J., and Freibauer, A.: Organic sediment formed during inundation of a degraded fen grassland emits large fluxes of CH4 and CO2, Biogeosciences, 8, 1539–1550, https://doi.org/10.5194/bg-8-1539-2011, 2011.
Hahn, J., Köhler, S., Glatzel, S., and Jurasinski, G.: Methane exchange
in a coastal fen in the first year after flooding – A systems shift, PLoS
ONE, 10, 1–25, https://doi.org/10.1371/journal.pone.0140657, 2015.
Hansen, L. B., Finster, K., Fossing, H., and Iversen, N.: Anaerobic methane
oxidation in sulfate depleted sediments: Effects of sulfate and molybdate
additions, Aquat. Microb. Ecol., 14, 195–204, https://doi.org/10.3354/ame014195,
1998.
Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiol.
Rev., 60, 439–471, https://doi.org/10.1002/0471263397.env316, 1996.
He, Z. Cai, C., Wang, J., Xu, X., Zheng, P., Jetten, M. S. M., and Hu, B.: A
novel denitrifying methanotroph of the NC10 phylum and its microcolony,
Sci. Rep.-UK, 6, 32241, https://doi.org/10.1038/srep32241, 2016.
Henckel, T., Jäckel, U., and Conrad, R.: Vertical distribution of the
methanotrophic community after drainage of rice field soil, FEMS
Microbiol. Ecol., 34, 279–291, https://doi.org/10.1016/S0168-6496(00)00105-7, 2001.
Hoehler, T. M., Alperin, M. J., Albert, D. B., and Martens, C. S.: Field and
laboratory studies of methane oxidation in an anoxic marine sediment:
evidence for a methanogen-sulfate reducer consortium, Global Biogeochem.
Cy., 8, 451–463, https://doi.org/10.1029/94GB01800, 1994.
Höpner, T.: Design and use of a diffusion sampler for interstitial water
from fine grained sediments, Environ. Technol. Lett., 2, 187–196,
https://doi.org/10.1080/09593338109384040, 1981.
Holler, T., Widdel, F., Knittel, K., Amann, R., Kellermann, M. Y., Hinrichs,
K. U., Teske, A., Boetius, A., and Wegener, G.: Thermophilic anaerobic
oxidation of methane by marine microbial consortia, ISME J., 5,
1946–1956, https://doi.org/10.1038/ismej.2011.77, 2011.
Huth, V., Jurasinski, G., and Glatzel, S.: Winter emissions of carbon
dioxide, methane and nitrous oxide from a minerotrophic fen under nature
conservation management in north-east Germany, Mires Peat, 10, 1–13,
http://www.mires-and-peat.net/pages/volumes/map10/map1004.php (last access: 10 January 2019), 2012.
Huth, V., Günther, A., Bartel, A., Gutekunst, C., Heinze, S., Hofer, B.,
Jacobs, O., Koebsch, F., Rosinski, E., Tonn, C., Ullrich, K., and
Jurasinski, G.: The climate benefits of topsoil removal and Sphagnum
introduction in raised bog restoration, Restor. Ecol., 30, 1–9,
https://doi.org/10.1111/rec.13490, 2021.
Ibenthal, M.: Marine and terrestrial influence on submarine groundwater discharge in coastal waters connected to a peatland, Ph.D. thesis, Georg-August-Universität Göttingen, Germany, 169 pp., 2020.
Joosten, H. and Couwenberg, J.: Are emission reductions from peatlands
MRV-able? IMCG, 1–14,
http://www.imcg.net/docum/09/joosten_couwenberg_2009.pdf (last access: 14 March 2022), 2009.
Jørgensen, B. B.: Mineralization of organic matter in the
sea bed-the role of sulphate reduction, Nature, 296, 643–645,
https://doi.org/10.1038/296643a0, 1982.
Jurasinski, G. and Retzer, V.: simba: A Collection of
functions for similarity analysis of vegetation data, R package version
0.3-5, https://CRAN.R-project.org/package=simba (last access: 15 June 2022), 2012.
Jurasinski, G., Koebsch, F., Guenther, A., and Beetz, S.: flux: Flux rate
calculation from dynamic closed chamber measurements, R package version
0.3-0, https://CRAN.R-project.org/package=flux (last access: 29 April 2021), 2014.
Jurasinski, G., Janssen, M., Voss, M., Böttcher, M. E., Brede, M.,
Burchard, H., Forster, S., Gosch, L., Gräwe, U., Gründling-Pfaff,
S., Haider, F., Ibenthal, M., Karow, N., Karsten, U., Kreuzburg, M., Lange,
X., Leinweber, P., Massmann, G., Ptak, T., Rezanezhad, F., Rehder, G.,
Romoth, K., Schade, H., Schubert, H., Schulz-Vogt, H., Sokolova, I. M.,
Strehse, R., Unger, V., Westphal, J., and Lennartz, B.: Understanding the
coastal ecocline: Assessing sea-land interactions at non-tidal, low-lying
coasts through interdisciplinary research, Front. Mar. Sci., 5,
1–22, https://doi.org/10.3389/fmars.2018.00342, 2018.
Kassambara, A.: ggpubr: “ggplot2” Based Publication Ready Plots, R package
version 0.4.0, https://CRAN.R-project.org/package=ggpubr (last access: 15 June 2022), 2020.
Kim, S. Y., Lee, S. H., Freeman, C., Fenner, N., and Kang, H.: Comparative
analysis of soil microbial communities and their responses to the short-term
drought in bog, fen, and riparian wetlands, Soil Biol. Biochem.,
40, 2874–2880, https://doi.org/10.1016/j.soilbio.2008.08.004, 2008.
Kinney, E. L., Quigg, A., and Armitage, A. R.: Acute effects of drought on
emergent and aquatic communities in a brackish marsh, Estuar. Coast.,
37, 636–645, https://doi.org/10.1007/s12237-013-9721-1, 2014.
Kirkby, C. A., Richardson, A. E., Wade, L. J., Batten, G. D., Blanchard, C., and Kirkegaard, J. A.: Carbon-nutrient stoichiometry to increase soil carbon sequestration, Soil Biology and Biochemistry, 60, 77–86, https://doi.org/10.1016/j.soilbio.2013.01.011, 2013.
Knittel, K., Wegener, G., and Boetius, A.: Anaerobic methane oxidizers,
Handbook of Hydrocarbon and Lipid Microbiology, 2023–2032.
https://doi.org/10.1007/978-3-540-77587-4_147, 2018.
Knorr, K.-H., Glaser, B., and Blodau, C.: Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought, Biogeosciences, 5, 1457–1473, https://doi.org/10.5194/bg-5-1457-2008, 2008.
Koch, M., Koebsch, F., Hahn, J., and Jurasinski, G.: From meadow to shallow
lake: Monitoring secondary succession in a coastal fen after rewetting by
flooding based on aerial imagery and plot data, Mires Peat, 19, 1–17,
https://doi.org/10.19189/MaP.2015.OMB.188, 2017.
Koch, S., Jurasinski, G., Koebsch, F., Koch, M., and Glatzel, S.: Spatial
variability of annual estimates of methane emissions in a phragmites
australis (cav.) trin. ex steud. dominated restored coastal brackish fen,
Wetlands, 34, 593–602, https://doi.org/10.1007/s13157-014-0528-z, 2014.
Koebsch, F., Glatzel, S., Hofmann, J., Forbrich, I., and Jurasinski, G.:
CO2 exchange of a temperate fen during the conversion from moderately
rewetting to flooding, J. Geophys. Res.-Biogeo., 118,
940–950, https://doi.org/10.1002/jgrg.20069, 2013.
Koebsch, F., Jurasinski, G., Koch, M., Hofmann, J., and Glatzel, S.:
Controls for multi-scale temporal variation in ecosystem methane exchange
during the growing season of a permanently inundated fen, Agr.
Forest Meteorol., 204, 94–105, https://doi.org/10.1016/j.agrformet.2015.02.002, 2015.
Koebsch, F., Winkel, M., Liebner, S., Liu, B., Westphal, J., Schmiedinger, I., Spitzy, A., Gehre, M., Jurasinski, G., Köhler, S., Unger, V., Koch, M., Sachs, T., and Böttcher, M. E.: Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland, Biogeosciences, 16, 1937–1953, https://doi.org/10.5194/bg-16-1937-2019, 2019.
Koebsch, F., Gottschalk, P., Beyer, F., Wille, C., Jurasinski, G., and
Sachs, T.: The impact of occasional drought periods on vegetation spread and
greenhouse gas exchange in rewetted fens: Drought effects on vegetation and
C loss, Philos. T. R. B, 375, 2–7, https://doi.org/10.1098/rstb.2019.0685, 2020.
Krauze, P., Wagner, D., Yang, S., Spinola, D., and Kühn, P.: Influence
of prokaryotic microorganisms on initial soil formation along a glacier
forefield on King George Island, maritime Antarctica, Sci. Rep.-UK,
11, 13135, https://doi.org/10.1038/s41598-021-92205-z, 2021.
Kristjansson, J. K. and Schönheit, P.: Why do sulfate-reducing bacteria
outcompete methanogenic bacteria for substrates?, Oecologia, 60, 264–266,
https://doi.org/10.1007/BF00379530, 1983.
Leifeld, J.: Prologue paper: soil carbon losses from land-use change and the
global agricultural greenhouse gas budget, Sci. Total Environ.,
465, 3–6, https://doi.org/10.1016/j.scitotenv.2013.03.050, 2013.
Leifeld, J. and Menichetti, L.: The underappreciated potential of peatlands
in global climate change mitigation strategies, Nat. Commun., 9,
1071, https://doi.org/10.1038/s41467-018-03406-6, 2018.
Lelieveld, J., Crutzen, P. J., and Dentener, F. J.: Changing concentration,
lifetime and climate forcing of atmospheric methane, Tellus B,
50, 128–150,
https://doi.org/10.3402/tellusb.v50i2.16030, 1998.
Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N., Rydin, H., and Schaepman-Strub, G.: Corrigendum to ”Peatlands and the carbon cycle: from local processes to global implications a synthesis” published in Biogeosciences, 5, 1475–1491, 2008, Biogeosciences, 5, 1739–1739, https://doi.org/10.5194/bg-5-1739-2008, 2008.
Lovley, D. R. and Klug, M. J.: Sulfate reducers can outcompete methanogens
at freshwater sulfate concentrations, Appl. Environ.
Microb., 45, 187–192, https://doi.org/10.1128/aem.45.1.187-192.1983, 1983.
Ma, K., Conrad, R., and Lu, Y.: Dry/wet cycles change the activity and
population dynamics of methanotrophs in rice field soil, Appl.
Environ. Microb., 79, 4932–4939, https://doi.org/10.1128/AEM.00850-13, 2013.
Meister, P., Liu, B., Khalili, A., Böttcher, M. E., and Jørgensen, B.
B.: Factors controlling the carbon isotope composition of dissolved
inorganic carbon and methane in marine porewater: An evaluation by
reaction-transport modelling, J. Marine Syst., 200, 103227,
https://doi.org/10.1016/j.jmarsys.2019.103227, 2019.
Meyers, P. A.: Preservation of elemental and isotopic source identification
of sedimentary organic matter, Chem. Geol., 114, 289–302,
https://doi.org/10.1016/0009-2541(94)90059-0, 1994.
Miegel, K., Graeff, T., Selle, B., Salzmann, T., Franck, C., and Bronstert,
A.: Untersuchung eines renaturierten Niedermoores an der mecklenburgischen
Ostseeküste – Teil I: Systembeschreibung und hydrologische
Grundcharakterisierung, Hydrologie und Wasserbewirtschaftung,
https://doi.org/10.5675/HyWa_2016,4_1, 2016.
Moore, T. R. and Knowles, R.: The influence of water table levels on
methane and carbon dioxide emissions from peatland soils, Can. J.
Soil Sci., 69, 33–38, https://doi.org/10.4141/cjss89-004, 1989.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J.,
Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T.,
Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and
Natural Radiative Forcing, in: Climate change 2013: The physical science
basis. Contribution of working group I to the fifth assessment report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge,
United Kingdom and New York, United States, 56, https://doi.org/10.1017/CBO9781107415324.018, 2013.
Müller-Westermeier, G.: Numerisches Verfahren zur Erstellung
klimatologischer Karten (A numeric method creating climatologic maps),
Berichte des Deutschen Wetterdienstes (Reports of the German Weather
Service), 193, 1–17, 1995.
Nauhaus, K., Albrecht, M., Elvert, M., Boetius, A., and Widdel F.: In vitro
cell growth of marine archaealbacterial consortia during anaerobic oxidation
of methane with sulfate, Environ. Microbiol., 9, 187–196,
https://doi.org/10.1111/j.1462-2920.2006.01127.x, 2007.
Nazaries, L., Murrell, J. C., Millard, P., Baggs, L., and Singh, B. K.:
Methane, microbes and models: Fundamental understanding of the soil methane
cycle for future predictions, Environ. Microbiol., 15, 2395–2417,
https://doi.org/10.1111/1462-2920.12149, 2013.
Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters,
D., and Mitchum, G. T.: Climate-change–driven accelerated sea-level rise
detected in the altimeter era, P. Natl. Acad.
Sci. USA, 115, 2022–2025,
https://doi.org/10.1073/pnas.1717312115, 2018.
Nisbet, E. G., Fisher, R. E., Lowry, D., France, J. L., Allen, G.,
Bakkaloglu, S., Broderick, T. J., Cain, M., Coleman, M., Fernandez, J.,
Forster, G., Griffiths, P. T., Iverach, C. P., Kelly, B. F.J., Manning, M.
R., Nisbet-Jones, P. B. R., Pyle, J. A., Townsend-Small, A., Al-Shalaan, A.,
Warwick, N., and Zazzeri, G.: Methane mitigation: Methods to reduce
emissions, on the path to the Paris agreement, Rev. Geophys., 58,
e2019RG000675, https://doi.org/10.1029/2019RG000675, 2020.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., M.
H. H., Stevens, H., Szoecs, E., and Wagner, H.: vegan: Community Ecology
Package, R package version 2.5-7,
https://CRAN.R-project.org/package=vegan (last access: 15 June 2022), 2020.
Op den Camp, H. J., Islam, T., Stott, M. B., Harhangi, H. R., Hynes, A.,
Schouten, S., Dunfield, P. F.: Environmental, genomic and taxonomic
perspectives on methanotrophic Verrucomicrobia, Env. Microbiol.
Rep., 1, 293–306, https://doi.org/10.1111/j.1758-2229.2009.00022.x, 2009.
Oremland, R. S.: Biogeochemistry of methanogenic bacteria, in: Biology of
anaerobic microorganisms, edited by: Zehnder, A. J. B., John Wiley & Sons,
Inc., 641–690, https://pubs.er.usgs.gov/publication/70198767 (last access 27 July 2022), 1988.
Page, S. E., Rieley, J. O., and Banks, C. J.: Global and regional importance
of the tropical peatland carbon pool, Glob. Change Biol., 17, 798–818,
https://doi.org/10.1111/j.1365-2486.2010.02279.x, 2011.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith,
P.: Climate-smart soils, Nature, 532, 49–57, https://doi.org/10.1038/nature17174, 2016.
Pedersen, T. L.: patchwork: The Composer of Plots, R package version 1.1.1,
https://CRAN.R-project.org/package=patchwork (last access: 13 April 2022), 2020.
Peltoniemi, K., Laiho, R., Juottonen, H., Bodrossy, L., Kell, D. K.,
Minkkinen, K., Mäkiranta, P., Mehtätalo, L., Penttilä, T.,
Siljanen, H. M. P., Tuittila, E. S., Tuomivirta, T., and Fritze, H.:
Responses of methanogenic and methanotrophic communities to warming in
varying moisture regimes of two boreal fens, Soil Biol. Biochem.,
97, 144–156, https://doi.org/10.1016/j.soilbio.2016.03.007, 2016.
Penning, H., Plugge, C. M., Galand, P. E., and Conrad, R.: Variation of
carbon isotope fractionation in hydrogenotrophic methanogenic microbial
cultures and environmental samples at different energy status, Glob. Change
Biol., 11, 2103–2113, https://doi.org/10.1111/j.1365-2486.2005.01076.x, 2005.
Pester, M., Knorr, K.-H., Friedrich, M. W., Wagner, M., and Loy, A.:
Sulfate-reducing microorganisms in wetlands – fameless actors in carbon
cycling and climate change, Front. Microbiol., 3, 1–19,
https://doi.org/10.3389/fmicb.2012.00072, 2012.
Popp, T. J., Chanton, J. P., Whiting, G. J., and Grant, N.: Methane stable
isotope distribution at a Carex dominated fenin north Central Alberta,
Global Biogeochem. Cy., 13, 1063–1077, https://doi.org/10.1029/1999GB900060,
1999.
QGIS.org: QGIS Geographic Information System. QGIS Association,
https://www.qgis.org, last access: 11 February 2022.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., and Glöckner, F. O.: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res., 41, 590–596, https://doi.org/10.1093/nar/gks1219,
2013.
R Core Team: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, last access: 15 October 2021.
Revelle, W.: psych: Procedures for Personality and Psychological Research,
Northwestern University, Evanston, Illinois, USA, Version = 2.1.3,
https://CRAN.R-project.org/package=psych (last access: 17 March 2022), 2020.
Rheinheimer, G. (Ed.): Meereskunde der Ostsee, Springer, Berlin, Heidelberg, Germany,
https://doi.org/10.1007/978-3-642-85211-4, 2013.
Ruff, S. E., Kuhfuss, H., Wegener, G., Lott, C., Ramette, A., Wiedling, J.,
Knittel, K., and Weber, M.: Methane seep in shallow-water permeable sediment
harbors high diversity of anaerobic methanotrophic communities, Elba, Italy,
Front. Microbiol., 7, 1–20, https://doi.org/10.3389/fmicb.2016.00374, 2016.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M.,
Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson,
C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber, C.
F.: Introducing mothur: Open-source, platform-independent,
community-supported software for describing and comparing microbial
communities, Appl. Environ. Microb., 75, 7537–7541,
https://doi.org/10.1128/AEM.01541-09, 2009.
Scholten, J. C. M., Van Bodegom, P. M., Vogelaar, J., Van Ittersum, A.,
Hordijk, K., Roelofsen, W., and Stams, A. J. M.: Effect of sulfate and nitrate
on acetate conversion by anaerobic microorganisms in a freshwater sediment,
FEMS Microbiol. Ecol., 42, 375–385, https://doi.org/10.1016/S0168-6496(02)00359-8,
2002.
Schönheit, P., Kristjansson, J. K., and Thauer, R. K.: Microbiology,
Arch. Microbiol., 132, 285–288, 1982.
Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., and Kölling, M.:
Rhizon sampling of porewaters near the sediment-water interface of aquatic
systems, Limnol. Oceanogr.-Meth., 3, 361-371,
https://doi.org/10.4319/lom.2005.3.361, 2005.
Segarra, K. E. A., Comerford, C., Slaughter, J., and Joye, S. B.: Impact of
electron acceptor availability on the anaerobic oxidation of methane in
coastal freshwater and brackish wetland sediments, Geochim.
Cosmochim. Ac., 115, 15–30, https://doi.org/10.1016/j.gca.2013.03.029, 2013.
Segarra, K. E. A., Schubotz, F., Samarkin, V., Yoshinaga, M. Y., Hinrichs,
K. U., and Joye, S. B.: High rates of anaerobic methane oxidation in
freshwater wetlands reduce potential atmospheric methane emissions, Nat.
Commun., 6, 1–8, https://doi.org/10.1038/ncomms8477, 2015.
Söhngen, N.: Über Bakterien, welche Methan als Kohlenstoffnahrung
und Energiequelle gebrauchen, Zentrabl. Bakt.
P. Inf., 15, 513–517, 1906.
Söllinger, A. and Urich, T.: Methylotrophic methanogens everywhere –
physiology and ecology of novel players in global methane cycling,
Biochem. Soc. T., 47, 1895–1907, https://doi.org/10.1042/BST20180565,
2019.
Strack, M., Waddington, J. M., Turetsky, M., Roulet, N. T., and Byrne, K. A.:
Northern peatlands, greenhouse gas exchange and climate change, in
Peatland and climate change, edited by: Strack, M., International Peat
Society, Jyväskylä, Finland, 44–69, ISBN 978-952-99401-1-0, 2008.
Takai, K. and Horikoshi, K.: Rapid detection and quantification of members
of the archaeal community by quantitative PCR using fluorogenic probes,
Appl. Environ. Microb., 66, 5066–5072, https://doi.org/10.1128/AEM.66.11.5066-5072.2000, 2000.
Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W., and Hedderich, R.:
Methanogenic archaea: Ecologically relevant differences in energy
conservation, Nat. Rev. Microbiol., 6, 579–591,
https://doi.org/10.1038/nrmicro1931, 2008.
Thurman, E. M.: Organic geochemistry of natural waters, Martinus Nijhoff,
Dr. W. Junk Publishers, Dordrecht, Boston, Lancaster, 497 pp., https://doi.org/10.1007/978-94-009-5095-5, 1985.
Unger, V., Liebner, S., Koebsch, F., Yang, S., Horn, F., Sachs, T.,
Kallmeyer, J., Knorr, K.-H., Rehder, G., Gottschalk, P., and Jurasinski, G.:
Congruent changes in microbial community dynamics and ecosystem methane
fluxes following natural drought in two restored fens, Soil Biol.
Biochem., 160, 108348, https://doi.org/10.1016/j.soilbio.2021.108348, 2021a.
Unger, V., Liebner, S., Koebsch, F., Yang, S., Horn, F., Sachs, T., Kallmeyer, J., Knorr, K.-H., Rehder, G., Gottschalk, P., and Jurasinski, G.: Analysis of microbial communities in fens affected by natural drought in the context of methane cycling, ENA, [ERP121549], https://www.ebi.ac.uk/ena/browser/view/PRJEB38162?show=reads (last access: 28 July 2022), 2021b.
van der Gon, H. A. C. D. and Neue, H. U.: Impact of gypsum application on
the methane emission from a wetland rice field, Global Biogeochem.
Cy., 8, 127–134, https://doi.org/10.1029/94GB00386, 1994.
van Dijk, G. Lamers, L. P. M., Loeb, R., Westendorp, P. J., Kuiperij, R.,
van Kleef, H. H., Klinge, M., and Smolders, A. J. P.: Salinization lowers
nutrient availability in formerly brackish freshwater wetlands; unexpected
results from a long-term field experiment, Biogeochemistry, 143, 67–83,
https://doi.org/10.1007/s10533-019-00549-6, 2019.
Voigtländer, U., Schmidt, J., and Scheller, W.: Pflege- und Entwicklungsplan NSG Heiligensee und Hütelmoor, SALIX, Büro für Landschaftsplanung Waren, Teterow, Germany, 1996.
von Ahn C. M. E., Scholten, J. C., Malik, C., Feldens, P., Liu B., Dellwig,
O., Jenner, A.-K., Papenmeier, S., Schmiedinger, I., Zeller, M. A., and
Böttcher, M. E.: A Multi-Tracer Study of Fresh Water Sources for a
Temperate Urbanized Coastal Bay (Southern Baltic Sea), Front.
Environ. Sci., 9, 642346, https://doi.org/10.3389/fenvs.2021.642346, 2021.
Wagner, D.: Effect of varying soil water potentials on methanogenesis in
aerated marshland soils, Sci. Rep.-UK, 7, 1–9,
https://doi.org/10.1038/s41598-017-14980-y, 2017.
Wang, M., Moore, T. R., Talbot, J., and Riley, J. L.: The stoichiometry of
carbon and nutrients in peat formation, Global Biogeochem. Cy., 29,
113–121, https://doi.org/10.1002/2014GB005000, 2015.
Wen, X., Unger, V., Jurasinski, G., Koebsch, F., Horn, F., Rehder, G., Sachs, T., Zak, D., Lischeid, G., Knorr, K.-H., Böttcher, M. E., Winkel, M., Bodelier, P. L. E., and Liebner, S.: Peat metagenome, NCBI [PRJNA356778], https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA356778 (last access: 28 July 2022), 2016.
Wen, X., Unger, V., Jurasinski, G., Koebsch, F., Horn, F., Rehder, G., Sachs, T., Zak, D., Lischeid, G., Knorr, K.-H., Böttcher, M. E., Winkel, M., Bodelier, P. L. E., and Liebner, S.: Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions, Biogeosciences, 15, 6519–6536, https://doi.org/10.5194/bg-15-6519-2018, 2018.
Wickham, H.: reshape: Reshaping data with the reshape package, J.
Stat. Softw., 21, 1–20, https://doi.org/10.18637/jss.v021.i12, 2007.
Wickham, H. (Ed.): ggplot2: Elegant graphics for data analysis,
Springer-Verlag New York, ISBN 978-3-319-24277-4,
2016.
Wickham, H.: forcats: Tools for Working with Categorical Variables
(Factors), R package version 0.5.1,
https://CRAN.R-project.org/package=forcats (last access: 15 June 2022), 2021.
Wickham, H. and Seidel, D.: scales: Scale Functions for Visualization, R
package version 1.1.1., https://CRAN.R-project.org/package=scales (last access: 15 June 2022), 2020.
Wickham, H., François, F., Henry, L., and Müller, K.: dplyr: A
grammar of data manipulation, R package version 1.0.7,
https://CRAN.R-project.org/package=dplyr (last access: 15 June 2022), 2021.
Wilson, D., Blain, D., Couwenberg, J., Evans, C. D., Murdiyarso, D., Page,
S. E., Renou-Wilson, F., Rieley, J.O., Sirin, A., Strack, M., and Tuittila,
E.-S.: Greenhouse gas emission factors associated with rewetting of organic
soils, Mires Peat, 17, 1–28, https://doi.org/10.19189/MaP.2016.OMB.222, 2016.
Winkel, M., Mitzscherling, J., Overduin, P. P., Horn, F., Winterfeld,
M., Rijkers, R., Grigoriev, M. N., Knoblauch, C., Mangelsdorf, K., Wagner, D., and Liebner, S.: Anaerobic methanotrophic communities thrive in deep submarine permafrost, Sci. Rep.-UK, 8, 1–13, https://doi.org/10.1038/s41598-018-19505-9, 2018.
Whiticar, M. J., Faber, E., and Schoell, M.: Biogenic methane formation in
marine and freshwater environments: CO2 reduction vs. acetate
fermentation-Isotope evidence, Geochim. Cosmoch. Ac., 50,
693–709, https://doi.org/10.1016/0016-7037(86)90346-7, 1986.
Whiting, G. J. and Chanton, J. P.: Primary production control of methane
emission from wetlands, Letter to Nature, 364, 794–795, 1993.
Whittenbury, R., Phillips, K. C., and Wilkinson, J. F.: Enrichment,
isolation and some properties of methane-utilizing bacteria, J.
Gen. Microbiol., 61, 205–218, 1970.
Wichtmann, W., Tanneberger, F., Wichmann, S., Joosen, H., and Herold, B.:
Paludiculture is paludifuture. Climate, biodiversity and economic benefits
from agriculture and forestry on rewetted peatland, Peatlands International,
1, 48–51, 2010.
Yang, S., Liebner, S., Svenning, M. M., and Tveit, A. T.: Decoupling of
microbial community dynamics and functions in Arctic peat soil exposed to
short term warming, Mol. Ecol., 30, 5094–5104, https://doi.org/10.1111/mec.16118,
2021.
Yu, Z. C., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.:
Global peatland dynamics since the last glacial maximum, Geophys. Res. Lett., 37, L13402, https://doi.org/10.1029/2010GL043584, 2010.
Zak, D., Roth, C., Unger, V., Goldhammer, T., Fenner, N., Freeman, C., and
Jurasinski, G.: Unraveling the importance of polyphenols for microbial
carbon mineralization in rewetted riparian peatlands, Front.
Environ. Sci., 7, 1–14, https://doi.org/10.3389/fenvs.2019.00147, 2019.
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater...
Altmetrics
Final-revised paper
Preprint