Articles | Volume 19, issue 16
https://doi.org/10.5194/bg-19-3727-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3727-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ideas and perspectives: Allocation of carbon from net primary production in models is inconsistent with observations of the age of respired carbon
Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
Department of Ecology, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
Verónika Ceballos-Núñez
Institute of Biology, Leipzig University, 04103 Leipzig, Germany
Henrik Hartmann
Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
David Herrera-Ramírez
Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
Holger Metzler
Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
Related authors
Valentina Lara, Carlos A. Sierra, Miguel A. Peña, Sebastián Ramirez, Diego Navarrete, Juan F. Phillips, and Álvaro Duque
EGUsphere, https://doi.org/10.5194/egusphere-2025-2959, https://doi.org/10.5194/egusphere-2025-2959, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Impacts of deforestation on the soil level are commonly overlooked. Conversion of Amazon rainforest to pastures increases soil compaction and decreases soil carbon storage, with lasting effects over time and across soil depth. After decades, pasture accumulated soil carbon doesn't match the original forest stocks. These changes may worsen climate change by reducing the Amazon basin ability to store carbon, highlighting the need to protect these ecosystems, from canopy to soil.
Carlos A. Sierra and Estefanía Muñoz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1640, https://doi.org/10.5194/egusphere-2025-1640, 2025
Short summary
Short summary
We propose an approach to obtain weights for calculating averages of variables from Earth system models (ESM) based on concepts from information theory. It quantifies a relative distance between model output and reality, even though it is impossible to know the absolute distance from model predictions to reality. The relative ranking among models is based on concepts of model selection and multi-model averages previously developed for simple statistical models, but adapted here for ESMs.
Carlos A. Sierra, Ingrid Chanca, Meinrat Andreae, Alessandro Carioca de Araújo, Hella van Asperen, Lars Borchardt, Santiago Botía, Luiz Antonio Candido, Caio S. C. Correa, Cléo Quaresma Dias-Junior, Markus Eritt, Annica Fröhlich, Luciana V. Gatti, Marcus Guderle, Samuel Hammer, Martin Heimann, Viviana Horna, Armin Jordan, Steffen Knabe, Richard Kneißl, Jost Valentin Lavric, Ingeborg Levin, Kita Macario, Juliana Menger, Heiko Moossen, Carlos Alberto Quesada, Michael Rothe, Christian Rödenbeck, Yago Santos, Axel Steinhof, Bruno Takeshi, Susan Trumbore, and Sönke Zaehle
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-151, https://doi.org/10.5194/essd-2025-151, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We present here a unique dataset of atmospheric observations of greenhouse gases and isotopes that provide key information on land-atmosphere interactions for the Amazon forests of central Brazil. The data show a relatively large level of variability, but also important trends in greenhouse gases, and signals from fires as well as seasonal biological activity.
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos A. Sierra
Biogeosciences, 22, 455–472, https://doi.org/10.5194/bg-22-455-2025, https://doi.org/10.5194/bg-22-455-2025, 2025
Short summary
Short summary
Assessing the net carbon (C) budget of the Amazon entails considering the magnitude and timing of C absorption and losses through respiration (transit time of C). Radiocarbon-based estimates of the transit time of C in the Amazon Tall Tower Observatory (ATTO) suggest a change in the transit time from 6 ± 2 years and 18 ± 4 years within 2 years (October 2019 and December 2021, respectively). This variability indicates that only a fraction of newly fixed C can be stored for decades or longer.
Maximiliano González-Sosa, Carlos A. Sierra, J. Andrés Quincke, Walter E. Baethgen, Susan Trumbore, and M. Virginia Pravia
SOIL, 10, 467–486, https://doi.org/10.5194/soil-10-467-2024, https://doi.org/10.5194/soil-10-467-2024, 2024
Short summary
Short summary
Based on an approach that involved soil organic carbon (SOC) monitoring, radiocarbon measurement in bulk soil, and incubations from a long-term 60-year experiment, it was concluded that the avoidance of old carbon losses in the integrated crop–pasture systems is the main reason that explains their greater carbon storage capacities compared to continuous cropping. A better understanding of these processes is essential for making agronomic decisions to increase the carbon sequestration capacity.
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024, https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Short summary
Soil organic matter stability depends on future temperature and precipitation scenarios. We used radiocarbon (14C) data and model predictions to understand how the transit time of carbon varies under environmental change in grasslands and peatlands. Soil moisture affected the Δ14C of peatlands, while temperature did not have any influence. Our models show the correspondence between Δ14C and transit time and could allow understanding future interactions between terrestrial and atmospheric carbon
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Agustín Sarquis and Carlos A. Sierra
Biogeosciences, 20, 1759–1771, https://doi.org/10.5194/bg-20-1759-2023, https://doi.org/10.5194/bg-20-1759-2023, 2023
Short summary
Short summary
Although plant litter is chemically and physically heterogenous and undergoes multiple transformations, models that represent litter dynamics often ignore this complexity. We used a multi-model inference framework to include information content in litter decomposition datasets and studied the time it takes for litter to decompose as measured by the transit time. In arid lands, the median transit time of litter is about 3 years and has a negative correlation with mean annual temperature.
Song Wang, Carlos Sierra, Yiqi Luo, Jinsong Wang, Weinan Chen, Yahai Zhang, Aizhong Ye, and Shuli Niu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-33, https://doi.org/10.5194/bg-2023-33, 2023
Manuscript not accepted for further review
Short summary
Short summary
Nitrogen is important for plant growth and carbon uptake, which is uaually limited in nature and can constrain carbon storage and impact efforts to combat climate change. We developed a new method of combining data and models to determine if and how much an ecosystem is nitrogen limited. This new method can help determine if and to what extent an ecosystem is nitrogen-limited, providing insight into nutrient limitations on a global scale and guiding ecosystem management decisions.
Andrea Scheibe, Carlos A. Sierra, and Marie Spohn
Biogeosciences, 20, 827–838, https://doi.org/10.5194/bg-20-827-2023, https://doi.org/10.5194/bg-20-827-2023, 2023
Short summary
Short summary
We explored carbon cycling in soils in three climate zones in Chile down to a depth of 6 m, using carbon isotopes. Our results show that microbial activity several meters below the soil surface is mostly fueled by recently fixed carbon and that strong decomposition of soil organic matter only occurs in the upper decimeters of the soils. The study shows that different layers of the critical zone are tightly connected and that processes in the deep soil depend on recently fixed carbon.
Agustín Sarquis, Ignacio Andrés Siebenhart, Amy Theresa Austin, and Carlos A. Sierra
Earth Syst. Sci. Data, 14, 3471–3488, https://doi.org/10.5194/essd-14-3471-2022, https://doi.org/10.5194/essd-14-3471-2022, 2022
Short summary
Short summary
Plant litter breakdown in aridlands is driven by processes different from those in more humid ecosystems. A better understanding of these processes will allow us to make better predictions of future carbon cycling. We have compiled aridec, a database of plant litter decomposition studies in aridlands and tested some modeling applications for potential users. Aridec is open for use and collaboration, and we hope it will help answer newer and more important questions as the database develops.
Carlos A. Sierra, Susan E. Crow, Martin Heimann, Holger Metzler, and Ernst-Detlef Schulze
Biogeosciences, 18, 1029–1048, https://doi.org/10.5194/bg-18-1029-2021, https://doi.org/10.5194/bg-18-1029-2021, 2021
Short summary
Short summary
The climate benefit of carbon sequestration (CBS) is a metric developed to quantify avoided warming by two separate processes: the amount of carbon drawdown from the atmosphere and the time this carbon is stored in a reservoir. This metric can be useful for quantifying the role of forests and soils for climate change mitigation and to better quantify the benefits of carbon removals by sinks.
Valentina Lara, Carlos A. Sierra, Miguel A. Peña, Sebastián Ramirez, Diego Navarrete, Juan F. Phillips, and Álvaro Duque
EGUsphere, https://doi.org/10.5194/egusphere-2025-2959, https://doi.org/10.5194/egusphere-2025-2959, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Impacts of deforestation on the soil level are commonly overlooked. Conversion of Amazon rainforest to pastures increases soil compaction and decreases soil carbon storage, with lasting effects over time and across soil depth. After decades, pasture accumulated soil carbon doesn't match the original forest stocks. These changes may worsen climate change by reducing the Amazon basin ability to store carbon, highlighting the need to protect these ecosystems, from canopy to soil.
Carlos A. Sierra and Estefanía Muñoz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1640, https://doi.org/10.5194/egusphere-2025-1640, 2025
Short summary
Short summary
We propose an approach to obtain weights for calculating averages of variables from Earth system models (ESM) based on concepts from information theory. It quantifies a relative distance between model output and reality, even though it is impossible to know the absolute distance from model predictions to reality. The relative ranking among models is based on concepts of model selection and multi-model averages previously developed for simple statistical models, but adapted here for ESMs.
Carlos A. Sierra, Ingrid Chanca, Meinrat Andreae, Alessandro Carioca de Araújo, Hella van Asperen, Lars Borchardt, Santiago Botía, Luiz Antonio Candido, Caio S. C. Correa, Cléo Quaresma Dias-Junior, Markus Eritt, Annica Fröhlich, Luciana V. Gatti, Marcus Guderle, Samuel Hammer, Martin Heimann, Viviana Horna, Armin Jordan, Steffen Knabe, Richard Kneißl, Jost Valentin Lavric, Ingeborg Levin, Kita Macario, Juliana Menger, Heiko Moossen, Carlos Alberto Quesada, Michael Rothe, Christian Rödenbeck, Yago Santos, Axel Steinhof, Bruno Takeshi, Susan Trumbore, and Sönke Zaehle
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-151, https://doi.org/10.5194/essd-2025-151, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We present here a unique dataset of atmospheric observations of greenhouse gases and isotopes that provide key information on land-atmosphere interactions for the Amazon forests of central Brazil. The data show a relatively large level of variability, but also important trends in greenhouse gases, and signals from fires as well as seasonal biological activity.
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos A. Sierra
Biogeosciences, 22, 455–472, https://doi.org/10.5194/bg-22-455-2025, https://doi.org/10.5194/bg-22-455-2025, 2025
Short summary
Short summary
Assessing the net carbon (C) budget of the Amazon entails considering the magnitude and timing of C absorption and losses through respiration (transit time of C). Radiocarbon-based estimates of the transit time of C in the Amazon Tall Tower Observatory (ATTO) suggest a change in the transit time from 6 ± 2 years and 18 ± 4 years within 2 years (October 2019 and December 2021, respectively). This variability indicates that only a fraction of newly fixed C can be stored for decades or longer.
Maximiliano González-Sosa, Carlos A. Sierra, J. Andrés Quincke, Walter E. Baethgen, Susan Trumbore, and M. Virginia Pravia
SOIL, 10, 467–486, https://doi.org/10.5194/soil-10-467-2024, https://doi.org/10.5194/soil-10-467-2024, 2024
Short summary
Short summary
Based on an approach that involved soil organic carbon (SOC) monitoring, radiocarbon measurement in bulk soil, and incubations from a long-term 60-year experiment, it was concluded that the avoidance of old carbon losses in the integrated crop–pasture systems is the main reason that explains their greater carbon storage capacities compared to continuous cropping. A better understanding of these processes is essential for making agronomic decisions to increase the carbon sequestration capacity.
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024, https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Short summary
Soil organic matter stability depends on future temperature and precipitation scenarios. We used radiocarbon (14C) data and model predictions to understand how the transit time of carbon varies under environmental change in grasslands and peatlands. Soil moisture affected the Δ14C of peatlands, while temperature did not have any influence. Our models show the correspondence between Δ14C and transit time and could allow understanding future interactions between terrestrial and atmospheric carbon
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Agustín Sarquis and Carlos A. Sierra
Biogeosciences, 20, 1759–1771, https://doi.org/10.5194/bg-20-1759-2023, https://doi.org/10.5194/bg-20-1759-2023, 2023
Short summary
Short summary
Although plant litter is chemically and physically heterogenous and undergoes multiple transformations, models that represent litter dynamics often ignore this complexity. We used a multi-model inference framework to include information content in litter decomposition datasets and studied the time it takes for litter to decompose as measured by the transit time. In arid lands, the median transit time of litter is about 3 years and has a negative correlation with mean annual temperature.
Song Wang, Carlos Sierra, Yiqi Luo, Jinsong Wang, Weinan Chen, Yahai Zhang, Aizhong Ye, and Shuli Niu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-33, https://doi.org/10.5194/bg-2023-33, 2023
Manuscript not accepted for further review
Short summary
Short summary
Nitrogen is important for plant growth and carbon uptake, which is uaually limited in nature and can constrain carbon storage and impact efforts to combat climate change. We developed a new method of combining data and models to determine if and how much an ecosystem is nitrogen limited. This new method can help determine if and to what extent an ecosystem is nitrogen-limited, providing insight into nutrient limitations on a global scale and guiding ecosystem management decisions.
Andrea Scheibe, Carlos A. Sierra, and Marie Spohn
Biogeosciences, 20, 827–838, https://doi.org/10.5194/bg-20-827-2023, https://doi.org/10.5194/bg-20-827-2023, 2023
Short summary
Short summary
We explored carbon cycling in soils in three climate zones in Chile down to a depth of 6 m, using carbon isotopes. Our results show that microbial activity several meters below the soil surface is mostly fueled by recently fixed carbon and that strong decomposition of soil organic matter only occurs in the upper decimeters of the soils. The study shows that different layers of the critical zone are tightly connected and that processes in the deep soil depend on recently fixed carbon.
Agustín Sarquis, Ignacio Andrés Siebenhart, Amy Theresa Austin, and Carlos A. Sierra
Earth Syst. Sci. Data, 14, 3471–3488, https://doi.org/10.5194/essd-14-3471-2022, https://doi.org/10.5194/essd-14-3471-2022, 2022
Short summary
Short summary
Plant litter breakdown in aridlands is driven by processes different from those in more humid ecosystems. A better understanding of these processes will allow us to make better predictions of future carbon cycling. We have compiled aridec, a database of plant litter decomposition studies in aridlands and tested some modeling applications for potential users. Aridec is open for use and collaboration, and we hope it will help answer newer and more important questions as the database develops.
Carlos A. Sierra, Susan E. Crow, Martin Heimann, Holger Metzler, and Ernst-Detlef Schulze
Biogeosciences, 18, 1029–1048, https://doi.org/10.5194/bg-18-1029-2021, https://doi.org/10.5194/bg-18-1029-2021, 2021
Short summary
Short summary
The climate benefit of carbon sequestration (CBS) is a metric developed to quantify avoided warming by two separate processes: the amount of carbon drawdown from the atmosphere and the time this carbon is stored in a reservoir. This metric can be useful for quantifying the role of forests and soils for climate change mitigation and to better quantify the benefits of carbon removals by sinks.
Cited articles
Amthor, J. S.: The McCree-de Wit-Penning de Vries-Thornley Respiration
Paradigms: 30 Years Later, Ann. Bot., 86, 1–20,
https://doi.org/10.1006/anbo.2000.1175, 2000. a, b
Arora, V. K. and Boer, G. J.: A parameterization of leaf phenology for the
terrestrial ecosystem component of climate models, Global Change Biol., 11,
39–59, https://doi.org/10.1111/j.1365-2486.2004.00890.x, 2005. a
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N.,
Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A.,
Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis,
H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C.,
Woodward, F. I., and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake:
Global Distribution and Covariation with Climate, Science, 329, 834–838,
https://doi.org/10.1126/science.1184984, 2010. a
Bolin, B. and Rodhe, H.: A note on the concepts of age distribution and transit
time in natural reservoirs, Tellus, 25, 58–62,
https://doi.org/10.1111/j.2153-3490.1973.tb01594.x, 1973. a, b
Carbone, M. S. and Trumbore, S. E.: Contribution of new photosynthetic
assimilates to respiration by perennial grasses and shrubs: residence times
and allocation patterns, New Phytol., 176, 124–135,
https://doi.org/10.1111/j.1469-8137.2007.02153.x, 2007. a, b, c
Carbone, M. S., Czimczik, C. I., McDuffee, K. E., and Trumbore, S. E.:
Allocation and residence time of photosynthetic products in a boreal forest
using a low-level 14C pulse-chase labeling technique, Global Change Biol., 13, 466–477, https://doi.org/10.1111/j.1365-2486.2006.01300.x, 2007. a
Carbone, M. S., Czimczik, C. I., Keenan, T. F., Murakami, P. F., Pederson, N.,
Schaberg, P. G., Xu, X., and Richardson, A. D.: Age, allocation and
availability of nonstructural carbon in mature red maple trees, New
Phytol., 200, 1145–1155, https://doi.org/10.1111/nph.12448, 2013. a, b
Ceballos-Núñez, V., Richardson, A. D., and Sierra, C. A.: Ages and transit times as important diagnostics of model performance for predicting carbon dynamics in terrestrial vegetation models, Biogeosciences, 15, 1607–1625, https://doi.org/10.5194/bg-15-1607-2018, 2018. a, b
Ceballos-Núñez, V., Müller, M., and Sierra, C. A.: Towards better
representations of carbon allocation in vegetation: a conceptual framework
and mathematical tool, Theor. Ecol., 13, 317–332,
https://doi.org/10.1007/s12080-020-00455-w, 2020. a
Collalti, A. and Prentice, I. C.: Is NPP proportional to GPP?, Waring's
hypothesis 20 years on, Tree Physiol., 39, 1473–1483,
https://doi.org/10.1093/treephys/tpz034, 2019. a, b
Collalti, A., Tjoelker, M. G., Hoch, G., Mäkelä, A., Guidolotti, G.,
Heskel, M., Petit, G., Ryan, M. G., Battipaglia, G., Matteucci, G., and
Prentice, I. C.: Plant respiration: Controlled by photosynthesis or biomass?,
Global Change Biol., 26, 1739–1753, https://doi.org/10.1111/gcb.14857, 2020. a
Comins, H. N. and McMurtrie, R. E.: Long-Term Response of Nutrient-Limited
Forests to CO2 Enrichment; Equilibrium Behavior of Plant-Soil Models,
Ecol. Appl., 3, 666–681,
https://doi.org/10.2307/1942099, 1993. a
Czimczik, C., C. I., Trumbore, S. E., Carbone, M. S., and Winston, G. C.:
Changing sources of soil respiration with time since fire in a boreal forest,
Global Change Biol., 12, 957–971, https://doi.org/10.1111/j.1365-2486.2006.01107.x,
2006. a
DeAngelis, D., Ju, S., Liu, R., Bryant, J., and Gourley, S.: Plant allocation
of carbon to defense as a function of herbivory, light and nutrient
availability, Theor. Ecol., 5, 445–456,
https://doi.org/10.1007/s12080-011-0135-z, 2012. a
DeLucia, E. H., Drake, J. E., Thomas, R. B., and Gonzalez-Meler, M.: Forest
carbon use efficiency: is respiration a constant fraction of gross primary
production?, Global Change Biol., 13, 1157–1167,
https://doi.org/10.1111/j.1365-2486.2007.01365.x, 2007. a
Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch,
S., and Haxeltine, A.: An integrated biosphere model of land surface
processes, terrestrial carbon balance, and vegetation dynamics, Global Biogeochem. Cy., 10, 603–628, https://doi.org/10.1029/96GB02692, 1996. a
Franklin, O., Johansson, J., Dewar, R. C., Dieckmann, U., McMurtrie, R. E.,
Brännström, Å., and Dybzinski, R.: Modeling carbon allocation in
trees: a search for principles, Tree Physiol., 32, 648–666,
https://doi.org/10.1093/treephys/tpr138, 2012. a
Frischknecht, T., Ekici, A., and Joos, F.: Radiocarbon in the Land and Ocean
Components of the Community Earth System Model, Global Biogeochem. Cy.,
36, e2021GB007042, https://doi.org/10.1029/2021GB007042,
2022. a, b, c
Giraldo, J. A., del Valle, J. I., González-Caro, S., and Sierra, C. A.:
Intra-annual isotope variations in tree rings reveal growth rhythms within
the least rainy season of an ever-wet tropical forest, Trees, 36, 1039–1052,
https://doi.org/10.1007/s00468-022-02271-7, 2022. a
Gu, F., Zhang, Y., Tao, B., Wang, Q., and Yu, G.: Modeling the effects of
nitrogen deposition on carbon budget in two temperate forests, Ecol.
Complex., 7, 139–148, https://doi.org/10.1016/j.ecocom.2010.04.002, 2010. a
Gu, L., Han, J., Wood, J. D., Chang, C. Y.-Y., and Sun, Y.: Sun-induced Chl
fluorescence and its importance for biophysical modeling of photosynthesis
based on light reactions, New Phytol., 223, 1179–1191,
https://doi.org/10.1111/nph.15796, 2019. a
Hagedorn, F., Joseph, J., Peter, M., Luster, J., Pritsch, K., Geppert, U.,
Kerner, R., Molinier, V., Egli, S., Schaub, M., Liu, J.-F., Li, M., Sever,
K., Weiler, M., Siegwolf, R. T. W., Gessler, A., and Arend, M.: Recovery of
trees from drought depends on belowground sink control, Nat. Plants, 2,
16111, https://doi.org/10.1038/nplants.2016.111, 2016. a
Hartmann, H. and Trumbore, S.: Understanding the roles of nonstructural
carbohydrates in forest trees – from what we can measure to what we want to
know, New Phytol., 211, 386–403, https://doi.org/10.1111/nph.13955, 2016-21190,
2016. a, b
Haverd, V., Smith, B., Raupach, M., Briggs, P., Nieradzik, L., Beringer, J., Hutley, L., Trudinger, C. M., and Cleverly, J.: Coupling carbon allocation with leaf and root phenology predicts tree–grass partitioning along a savanna rainfall gradient, Biogeosciences, 13, 761–779, https://doi.org/10.5194/bg-13-761-2016, 2016. a
Herrera-Ramírez, D., Muhr, J., Hartmann, H., Römermann, C., Trumbore,
S., and Sierra, C. A.: Probability distributions of nonstructural carbon ages
and transit times provide insights into carbon allocation dynamics of mature
trees, New Phytol., 226, 1299–1311, https://doi.org/10.1111/nph.16461, 2020. a, b, c, d
Hilbert, D. W. and Reynolds, J. F.: A Model Allocating Growth Among Leaf
Proteins, Shoot Structure, and Root Biomass to Produce Balanced Activity,
Ann. Bot., 68, 417–425,
https://doi.org/10.1093/oxfordjournals.aob.a088273,
1991. a
Hilman, B., Muhr, J., Helm, J., Kuhlmann, I., Schulze, E.-D., and Trumbore, S.:
The size and the age of the metabolically active carbon in tree roots, Plant,
Cell Environ., 44, 2522–2535, https://doi.org/10.1111/pce.14124, 2021. a, b
Huang, J., Forkelová, L., Unsicker, S. B., Forkel, M., Griffith, D. W.,
Trumbore, S., and Hartmann, H.: Isotope labeling reveals contribution of
newly fixed carbon to carbon storage and monoterpenes production under water
deficit and carbon limitation, Environ. Exp. Bot., 162,
333–344, https://doi.org/10.1016/j.envexpbot.2019.03.010, 2019a. a
Huang, J., Hammerbacher, A., Weinhold, A., Reichelt, M., Gleixner, G.,
Behrendt, T., van Dam, N. M., Sala, A., Gershenzon, J., Trumbore, S., and
Hartmann, H.: Eyes on the future – evidence for trade-offs between growth,
storage and defense in Norway spruce, New Phytol., 222, 144–158,
https://doi.org/10.1111/nph.15522, 2019b. a
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A., O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, 2020. a
King, D. A.: A model analysis of the influence of root and foliage allocation
on forest production and competition between trees, Tree Physiol., 12,
119–135, https://doi.org/10.1093/treephys/12.2.119, 1993. a
Levin, I., Hammer, S., Kromer, B., Preunkert, S., Weller, R., and Worthy,
D. E.: Radiocarbon in global tropospheric carbon dioxide, Radiocarbon,
1–11, https://doi.org/10.1017/RDC.2021.102, 2021. a
Litton, C. M., Raich, J. W., and Ryan, M. G.: Carbon allocation in forest
ecosystems, Global Change Biol., 13, 2089–2109,
https://doi.org/10.1111/j.1365-2486.2007.01420.x, 2007. a, b
Lu, X., Wang, Y.-P., Luo, Y., and Jiang, L.: Ecosystem carbon transit versus turnover times in response to climate warming and rising atmospheric CO2 concentration, Biogeosciences, 15, 6559–6572, https://doi.org/10.5194/bg-15-6559-2018, 2018. a
Luo, Y., Weng, E., and Yang, Y.: Ecosystem Ecology, in: Encyclopedia of
Theoretical Ecology, edited by: Hastings, A. and Gross, L.,
University of California Press, Berkeley, 219–229, 2012. a
Luo, Y., Shi, Z., Lu, X., Xia, J., Liang, J., Jiang, J., Wang, Y., Smith, M. J., Jiang, L., Ahlström, A., Chen, B., Hararuk, O., Hastings, A., Hoffman, F., Medlyn, B., Niu, S., Rasmussen, M., Todd-Brown, K., and Wang, Y.-P.: Transient dynamics of terrestrial carbon storage: mathematical foundation and its applications, Biogeosciences, 14, 145–161, https://doi.org/10.5194/bg-14-145-2017, 2017. a, b, c, d
Luo, Y., Huang, Y., Sierra, C. A., Xia, J., Ahlström, A., Chen, Y., Hararuk,
O., Hou, E., Jiang, L., Liao, C., Lu, X., Shi, Z., Smith, B., Tao, F., and
Wang, Y.-P.: Matrix Approach to Land Carbon Cycle Modeling, J. Adv. Model. Earth Sys., 14, e2022MS003008,
https://doi.org/10.1029/2022MS003008, 2022. a, b, c, d
Malhi, Y., Doughty, C., and Galbraith, D.: The allocation of ecosystem net
primary productivity in tropical forests, Philos. T. Roy. Soc. B, 366, 3225–3245,
https://doi.org/10.1098/rstb.2011.0062, 2011. a
Malhi, Y., Doughty, C. E., Goldsmith, G. R., Metcalfe, D. B., Girardin, C.
A. J., Marthews, T. R., del Aguila-Pasquel, J., Aragão, L. E. O. C.,
Araujo-Murakami, A., Brando, P., da Costa, A. C. L., Silva-Espejo, J. E.,
Farfán Amézquita, F., Galbraith, D. R., Quesada, C. A., Rocha, W.,
Salinas-Revilla, N., Silvério, D., Meir, P., and Phillips, O. L.: The
linkages between photosynthesis, productivity, growth and biomass in lowland
Amazonian forests, Global Change Biol., 21, 2283–2295,
https://doi.org/10.1111/gcb.12859, 2015. a
Masri, B. E., Barman, R., Meiyappan, P., Song, Y., and Liang, M.: Carbon
dynamics in the Amazonian Basin: Integration of eddy covariance and
ecophysiological data with a land surface model, Agr. Forest
Meteorol., 182, 156–167, https://doi.org/10.1016/j.agrformet.2013.03.011, 2013. a
Metzler, H. and Sierra, C. A.: Linear Autonomous Compartmental Models as
Continuous-Time Markov Chains: Transit-Time and Age Distributions,
Math. Geosci., 50, 1–34, https://doi.org/10.1007/s11004-017-9690-1, 2018. a, b, c
Metzler, H., Müller, M., and Sierra, C. A.: Transit-time and age
distributions for nonlinear time-dependent compartmental systems, P. Natl. Acad. Sci. USA, 115, 1150–1155,
https://doi.org/10.1073/pnas.1705296115, 2018. a
Muhr, J., Angert, A., Negrón-Juárez, R. I., Muñoz, W. A., Kraemer,
G., Chambers, J. Q., and Trumbore, S. E.: Carbon dioxide emitted from live
stems of tropical trees is several years old, Tree Physiol., 33, 743–752,
https://doi.org/10.1093/treephys/tpt049, 2013. a, b, c
Muhr, J., Trumbore, S., Higuchi, N., and Kunert, N.: Living on borrowed time –
Amazonian trees use decade-old storage carbon to survive for months after
complete stem girdling, New Phytol., 220, 111–120,
https://doi.org/10.1111/nph.15302, 2018. a, b, c
Murty, D. and McMurtrie, R.: The decline of forest productivity as stands age:
A model-based method for analysing causes for the decline, Ecol. Modell., 134, 185–205, https://doi.org/10.1016/S0304-3800(00)00345-8, 2000. a
Neubauer, S. C. and Megonigal, J. P.: Moving Beyond Global Warming Potentials
to Quantify the Climatic Role of Ecosystems, Ecosystems, 18, 1000–1013,
https://doi.org/10.1007/s10021-015-9879-4, 2015. a
Ogle, K. and Pacala, S. W.: A modeling framework for inferring tree growth and
allocation from physiological, morphological and allometric traits, Tree
Physiol., 29, 587–605, https://doi.org/10.1093/treephys/tpn051, 2009. a, b
Oleson, K., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven,
C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S., Thornton,
P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, J.-F.,
Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S. P., Ricciuto, D. M.,
Sacks, W. J., Sun, Y., Tang, J., and Yang, Z.-L.: Technical description of
version 4.5 of the Community Land Model (CLM), NCAR, Tech. Rep., https://doi.org/10.5065/D6RR1W7M, 2013. a, b
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah,
Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P.,
Polidori, D., Ribeca, A., van Ingen, C., Zhang, L., Amiro, B., Ammann, C.,
Arain, M. A., Arda, J., Arkebauer, T., Arndt, S. K., Arriga, N., Aubinet, M.,
Aurela, M., Baldocchi, D., Barr, A., Beamesderfer, E., Marchesini, L. B.,
Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D.,
Black, T. A., Blanken, P. D., Bohrer, G., Boike, J., Bolstad, P. V., Bonal,
D., Bonnefond, J.-M., Bowling, D. R., Bracho, R., Brodeur, J., Brammer, C.,
Buchmann, N., Burban, B., Burns, S. P., Buysse, P., Cale, P., Cavagna, M.,
Cellier, P., Chen, S., Chini, I., Christensen, T. R., Cleverly, J., Collalti,
A., Consalvo, C., Cook, B. D., Cook, D., Coursolle, C., Cremonese, E.,
Curtis, P. S., DAndrea, E., da Rocha, H., Dai, X., Davis, K. J., De Cinti,
B., de Grandcourt, A., De Ligne, A., De Oliveira, R. C., Delpierre, N.,
Desai, A. R., Di Bella, C. M., di Tommasi, P., Dolman, H., Domingo, F., Dong,
G., Dore, S., Duce, P., Dufrane, E., Dunn, A., Dupek, J., Eamus, D.,
Eichelmann, U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B.,
Famulari, D., Fares, S., Feigenwinter, I., Feitz, A., Fensholt, R., Filippa,
G., Fischer, M., Frank, J., Galvagno, M., Gharun, M., Gianelle, D., Gielen,
B., Gioli, B., Gitelson, A., Goded, I., Goeckede, M., Goldstein, A. H.,
Gough, C. M., Goulden, M. L., Graf, A., Griebel, A., Gruening, C., Gruenwald,
T., Hammerle, A., Han, S., Han, X., Hansen, B. U., Hanson, C., Hatakka, J.,
He, Y., Hehn, M., Heinesch, B., Hinko-Najera, N., Hanagl, L., Hutley, L.,
Ibrom, A., Ikawa, H., Jackowicz-Korczynski, M., Janou, D., Jans, W., Jassal,
R., Jiang, S., Kato, T., Khomik, M., Klatt, J., Knohl, A., Knox, S.,
Kobayashi, H., Koerber, G., Kolle, O., Kosugi, Y., Kotani, A., Kowalski, A.,
Kruijt, B., Kurbatova, J., Kutsch, W. L., Kwon, H., Launiainen, S., Laurila,
T., Law, B., Leuning, R., Li, Y., Liddell, M., Limousin, J.-M., Lion, M.,
Liska, A. J., Lohila, A., Lopez-Ballesteros, A., Lopez-Blanco, E., Loubet,
B., Loustau, D., Lucas-Moffat, A., Laers, J., Ma, S., Macfarlane, C.,
Magliulo, V., Maier, R., Mammarella, I., Manca, G., Marcolla, B., Margolis,
H. A., Marras, S., Massman, W., Mastepanov, M., Matamala, R., Matthes, J. H.,
Mazzenga, F., McCaughey, H., McHugh, I., McMillan, A. M. S., Merbold, L.,
Meyer, W., Meyers, T., Miller, S. D., Minerbi, S., Moderow, U., Monson,
R. K., Montagnani, L., Moore, C. E., Moors, E., Moreaux, V., Moureaux, C.,
Munger, J. W., Nakai, T., Neirynck, J., Nesic, Z., Nicolini, G., Noormets,
A., Northwood, M., Nosetto, M., Nouvellon, Y., Novick, K., Oechel, W.,
Olesen, J. E., Ourcival, J.-M., Papuga, S. A., Parmentier, F.-J.,
Paul-Limoges, E., Pavelka, M., Peichl, M., Pendall, E., Phillips, R. P.,
Pilegaard, K., Pirk, N., Posse, G., Powell, T., Prasse, H., Prober, S. M.,
Rambal, S., Rannik, A., Raz-Yaseef, N., Reed, D., de Dios, V. R.,
Restrepo-Coupe, N., Reverter, B. R., Roland, M., Sabbatini, S., Sachs, T.,
Saleska, S. R., Sanchez-Casete, E. P., Sanchez-Mejia, Z. M., Schmid, H. P.,
Schmidt, M., Schneider, K., Schrader, F., Schroder, I., Scott, R. L., Sedlik,
P., Serrano-Ortiz, P., Shao, C., Shi, P., Shironya, I., Siebicke, L., Aigut,
L., Silberstein, R., Sirca, C., Spano, D., Steinbrecher, R., Stevens, R. M.,
Sturtevant, C., Suyker, A., Tagesson, T., Takanashi, S., Tang, Y., Tapper,
N., Thom, J., Tiedemann, F., Tomassucci, M., Tuovinen, J.-P., Urbanski, S.,
Valentini, R., van der Molen, M., van Gorsel, E., van Huissteden, K.,
Varlagin, A., Verfaillie, J., Vesala, T., Vincke, C., Vitale, D., Vygodskaya,
N., Walker, J. P., Walter-Shea, E., Wang, H., Weber, R., Westermann, S.,
Wille, C., Wofsy, S., Wohlfahrt, G., Wolf, S., Woodgate, W., Li, Y.,
Zampedri, R., Zhang, J., Zhou, G., Zona, D., Agarwal, D., Biraud, S., Torn,
M., and Papale, D.: The FLUXNET2015 dataset and the ONEFlux processing
pipeline for eddy covariance data, Sci. Data, 7, 225,
https://doi.org/10.1038/s41597-020-0534-3, 2020. a
Pavlick, R., Drewry, D. T., Bohn, K., Reu, B., and Kleidon, A.: The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs, Biogeosciences, 10, 4137–4177, https://doi.org/10.5194/bg-10-4137-2013, 2013. a
Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M.,
Mooney, H. A., and Klooster, S. A.: Terrestrial ecosystem production: A
process model based on global satellite and surface data, Global Biogeochem. Cy., 7, 811–841, https://doi.org/10.1029/93GB02725, 1993. a
Randerson, J. T., Enting, I. G., Schuur, E. A. G., Caldeira, K., and Fung,
I. Y.: Seasonal and latitudinal variability of troposphere
Δ14CO2: Post bomb contributions from fossil fuels, oceans, the
stratosphere, and the terrestrial biosphere, Global Biogeochem. Cy.,
16, 1–19, https://doi.org/10.1029/2002GB001876, 2002. a
Rasmussen, M., Hastings, A., Smith, M. J., Agusto, F. B., Chen-Charpentier,
B. M., Hoffman, F. M., Jiang, J., Todd-Brown, K. E. O., Wang, Y., Wang,
Y.-P., and Luo, Y.: Transit times and mean ages for nonautonomous and
autonomous compartmental systems, J. Math. Biol., 73,
1379–1398, https://doi.org/10.1007/s00285-016-0990-8, 2016. a
Richardson, A. D., Hollinger, D. Y., Dail, D. B., Lee, J. T., Munger, J. W.,
and O'keefe, J.: Influence of spring phenology on seasonal and annual carbon
balance in two contrasting New England forests, Tree Physiol., 29,
321–331, https://doi.org/10.1093/treephys/tpn040, 2009. a
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Chen, M., Gray,
J. M., Johnston, M. R., Keenan, T. F., Klosterman, S. T., Kosmala, M.,
Melaas, E. K., Friedl, M. A., and Frolking, S.: Tracking vegetation phenology
across diverse North American biomes using PhenoCam imagery, Sci. Data,
5, 180028, https://doi.org/10.1038/sdata.2018.28, 2018. a
Running, S. W. and Coughlan, J. C.: A general model of forest ecosystem
processes for regional applications I. Hydrologic balance, canopy gas
exchange and primary production processes, Ecol. Modell., 42,
125–154, https://doi.org/10.1016/0304-3800(88)90112-3, 1988. a
Schuur, E. A. G. and Trumbore, S. E.: Partitioning sources of soil respiration
in boreal black spruce forest using radiocarbon, Global Change Biol., 12,
165–176, https://doi.org/10.1111/j.1365-2486.2005.01066.x, 2006. a
Sierra, C. A., Müller, M., Metzler, H., Manzoni, S., and Trumbore, S. E.:
The muddle of ages, turnover, transit, and residence times in the carbon
cycle, Global Change Biol., 23, 1763–1773, https://doi.org/10.1111/gcb.13556, 2017. a
Sierra, C. A., Crow, S. E., Heimann, M., Metzler, H., and Schulze, E.-D.: The climate benefit of carbon sequestration, Biogeosciences, 18, 1029–1048, https://doi.org/10.5194/bg-18-1029-2021, 2021a. a
Sierra, C. A., Estupinan-Suarez, L. M., and Chanca, I.: The fate and transit
time of carbon in a tropical forest, J. Ecol., 109, 2845–2855,
https://doi.org/10.1111/1365-2745.13723, 2021b. a, b
Sierra, C., Ceballos-Núñez, V., Hartmann, H., Herrera-Ramírez, D., and Metzler, H.: Allocation of carbon from Net Primary Production in models is inconsistent with observations of the age of respired carbon, Zenodo [data set], https://doi.org/10.5281/zenodo.6548611, 2022. a
Thomas, R. Q. and Williams, M.: A model using marginal efficiency of investment to analyze carbon and nitrogen interactions in terrestrial ecosystems (ACONITE Version 1), Geosci. Model Dev., 7, 2015–2037, https://doi.org/10.5194/gmd-7-2015-2014, 2014. a
Thompson, M. V. and Randerson, J. T.: Impulse response functions of terrestrial
carbon cycle models: method and application, Global Change Biol., 5,
371–394, https://doi.org/10.1046/j.1365-2486.1999.00235.x, 1999.
a, b, c, d
Trugman, A. T., Detto, M., Bartlett, M. K., Medvigy, D., Anderegg, W. R. L.,
Schwalm, C., Schaffer, B., and Pacala, S. W.: Tree carbon allocation explains
forest drought-kill and recovery patterns, Ecol. Lett., 21, 1552–1560,
https://doi.org/10.1111/ele.13136, 2018. a
Trumbore, S.: Carbon respired by terrestrial ecosystems – recent progress and
challenges, Global Change Biol., 12, 141–153,
https://doi.org/10.1111/j.1365-2486.2006.01067.x, 2006. a
Trumbore, S., Czimczik, C. I., Sierra, C. A., Muhr, J., and Xu, X.:
Non-structural carbon dynamics and allocation relate to growth rate and leaf
habit in California oaks, Tree Physiol., 35, 1206–1222,
https://doi.org/10.1093/treephys/tpv097, 2015. a, b
Wang, Y. P., Law, R. M., and Pak, B.: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere, Biogeosciences, 7, 2261–2282, https://doi.org/10.5194/bg-7-2261-2010, 2010. a
Wang, Y. P., Lu, X. J., Wright, I. J., Dai, Y. J., Rayner, P. J., and Reich,
P. B.: Correlations among leaf traits provide a significant constraint on the
estimate of global gross primary production, Geophys. Res. Lett.,
39, L19405, https://doi.org/10.1029/2012GL053461, 2012. a
Waring, R. H., Landsberg, J. J., and Williams, M.: Net primary production of
forests: a constant fraction of gross primary production?, Tree Physiol., 18,
129–134, https://doi.org/10.1093/treephys/18.2.129, 1998. a, b, c
Williams, M., Schwarz, P. A., Law, B. E., Irvine, J., and Kurpius, M. R.: An
improved analysis of forest carbon dynamics using data assimilation, Global Change Biol., 11, 89–105, https://doi.org/10.1111/j.1365-2486.2004.00891.x, 2005. a
Short summary
Empirical work that estimates the age of respired CO2 from vegetation tissue shows that it may take from years to decades to respire previously produced photosynthates. However, many ecosystem models represent respiration processes in a form that cannot reproduce these observations. In this contribution, we attempt to provide compelling evidence, based on recent research, with the aim to promote a change in the predominant paradigm implemented in ecosystem models.
Empirical work that estimates the age of respired CO2 from vegetation tissue shows that it may...
Altmetrics
Final-revised paper
Preprint