Articles | Volume 19, issue 16
https://doi.org/10.5194/bg-19-3739-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3739-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variability and uncertainty in flux-site-scale net ecosystem exchange simulations based on machine learning and remote sensing: a systematic evaluation
Haiyang Shi
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi,
Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Department of Geography, Ghent University, Ghent 9000, Belgium
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Geping Luo
CORRESPONDING AUTHOR
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi,
Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Research Center for Ecology and Environment of Central Asia,
Chinese Academy of Sciences, Ürümqi, 830011, China
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Olaf Hellwich
CORRESPONDING AUTHOR
Department of Computer Vision & Remote Sensing, Technische
Universität Berlin, 10587 Berlin, Germany
Mingjuan Xie
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi,
Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Department of Geography, Ghent University, Ghent 9000, Belgium
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Chen Zhang
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi,
Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Yu Zhang
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi,
Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Yuangang Wang
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi,
Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Xiuliang Yuan
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi,
Xinjiang, 830011, China
Xiaofei Ma
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi,
Xinjiang, 830011, China
Wenqiang Zhang
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi,
Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Department of Geography, Ghent University, Ghent 9000, Belgium
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Alishir Kurban
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi,
Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Research Center for Ecology and Environment of Central Asia,
Chinese Academy of Sciences, Ürümqi, 830011, China
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Philippe De Maeyer
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi,
Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Department of Geography, Ghent University, Ghent 9000, Belgium
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Tim Van de Voorde
Department of Geography, Ghent University, Ghent 9000, Belgium
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Related authors
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023, https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Short summary
Using evidence from meteorological stations, this study assessed the climatic, hydrological, and ecological aridity changes in global drylands and their associated mechanisms. A decoupling between atmospheric, hydrological, and vegetation aridity was found. This highlights the added value of using station-scale data to assess dryland change as a complement to results based on coarse-resolution reanalysis data and land surface models.
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 26, 4603–4618, https://doi.org/10.5194/hess-26-4603-2022, https://doi.org/10.5194/hess-26-4603-2022, 2022
Short summary
Short summary
There have been many machine learning simulation studies based on eddy-covariance observations for water flux and evapotranspiration. We performed a meta-analysis of such studies to clarify the impact of different algorithms and predictors, etc., on the reported prediction accuracy. It can, to some extent, guide future global water flux modeling studies and help us better understand the terrestrial ecosystem water cycle.
Haiyang Shi, Geping Luo, Hongwei Zheng, Chunbo Chen, Olaf Hellwich, Jie Bai, Tie Liu, Shuang Liu, Jie Xue, Peng Cai, Huili He, Friday Uchenna Ochege, Tim Van de Voorde, and Philippe de Maeyer
Hydrol. Earth Syst. Sci., 25, 901–925, https://doi.org/10.5194/hess-25-901-2021, https://doi.org/10.5194/hess-25-901-2021, 2021
Short summary
Short summary
Some river basins are considered to be very similar because they have a similar background such as a transboundary, facing threats of human activities. But we still lack understanding of differences under their general similarities. Therefore, we proposed a framework based on a Bayesian network to group watersheds based on similarity levels and compare the causal and systematic differences within the group. We applied it to the Amu and Syr Darya River basin and discussed its universality.
Philippe de Maeyer and Jan Vandersmissen
Abstr. Int. Cartogr. Assoc., 10, 55, https://doi.org/10.5194/ica-abs-10-55-2025, https://doi.org/10.5194/ica-abs-10-55-2025, 2025
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023, https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Short summary
Using evidence from meteorological stations, this study assessed the climatic, hydrological, and ecological aridity changes in global drylands and their associated mechanisms. A decoupling between atmospheric, hydrological, and vegetation aridity was found. This highlights the added value of using station-scale data to assess dryland change as a complement to results based on coarse-resolution reanalysis data and land surface models.
Philippe De Maeyer
Abstr. Int. Cartogr. Assoc., 6, 49, https://doi.org/10.5194/ica-abs-6-49-2023, https://doi.org/10.5194/ica-abs-6-49-2023, 2023
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 26, 4603–4618, https://doi.org/10.5194/hess-26-4603-2022, https://doi.org/10.5194/hess-26-4603-2022, 2022
Short summary
Short summary
There have been many machine learning simulation studies based on eddy-covariance observations for water flux and evapotranspiration. We performed a meta-analysis of such studies to clarify the impact of different algorithms and predictors, etc., on the reported prediction accuracy. It can, to some extent, guide future global water flux modeling studies and help us better understand the terrestrial ecosystem water cycle.
Philippe De Maeyer
Abstr. Int. Cartogr. Assoc., 5, 3, https://doi.org/10.5194/ica-abs-5-3-2022, https://doi.org/10.5194/ica-abs-5-3-2022, 2022
Jana Ameye, Philippe De Maeyer, Mario Hernandez, and Luc Zwartjes
Abstr. Int. Cartogr. Assoc., 3, 5, https://doi.org/10.5194/ica-abs-3-5-2021, https://doi.org/10.5194/ica-abs-3-5-2021, 2021
Sara Top, Lola Kotova, Lesley De Cruz, Svetlana Aniskevich, Leonid Bobylev, Rozemien De Troch, Natalia Gnatiuk, Anne Gobin, Rafiq Hamdi, Arne Kriegsmann, Armelle Reca Remedio, Abdulla Sakalli, Hans Van De Vyver, Bert Van Schaeybroeck, Viesturs Zandersons, Philippe De Maeyer, Piet Termonia, and Steven Caluwaerts
Geosci. Model Dev., 14, 1267–1293, https://doi.org/10.5194/gmd-14-1267-2021, https://doi.org/10.5194/gmd-14-1267-2021, 2021
Short summary
Short summary
Detailed climate data are needed to assess the impact of climate change on human and natural systems. The performance of two high-resolution regional climate models, ALARO-0 and REMO2015, was investigated over central Asia, a vulnerable region where detailed climate information is scarce. In certain subregions the produced climate data are suitable for impact studies, but bias adjustment is required for subregions where significant biases have been identified.
Haiyang Shi, Geping Luo, Hongwei Zheng, Chunbo Chen, Olaf Hellwich, Jie Bai, Tie Liu, Shuang Liu, Jie Xue, Peng Cai, Huili He, Friday Uchenna Ochege, Tim Van de Voorde, and Philippe de Maeyer
Hydrol. Earth Syst. Sci., 25, 901–925, https://doi.org/10.5194/hess-25-901-2021, https://doi.org/10.5194/hess-25-901-2021, 2021
Short summary
Short summary
Some river basins are considered to be very similar because they have a similar background such as a transboundary, facing threats of human activities. But we still lack understanding of differences under their general similarities. Therefore, we proposed a framework based on a Bayesian network to group watersheds based on similarity levels and compare the causal and systematic differences within the group. We applied it to the Amu and Syr Darya River basin and discussed its universality.
Cited articles
Abbasian, H., Solgi, E., Mohsen Hosseini, S., and Hossein Kia, S.: Modeling
terrestrial net ecosystem exchange using machine learning techniques based
on flux tower measurements, Ecol. Model., 466, 109901,
https://doi.org/10.1016/j.ecolmodel.2022.109901, 2022.
Adams, D. C., Gurevitch, J., and Rosenberg, M. S.: Resampling tests for
meta analysis of ecological data, Ecology, 78, 1277–1283, 1997.
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating
carbon dioxide exchange rates of ecosystems: past, present and future, Global Change Biol., 9,
479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003.
Berryman, E. M., Vanderhoof, M. K., Bradford, J. B., Hawbaker, T. J., Henne,
P. D., Burns, S. P., Frank, J. M., Birdsey, R. A., and Ryan, M. G.:
Estimating soil respiration in a subalpine landscape using point, terrain,
climate, and greenness data, J. Geophys. Res.-Biogeo., 123, 3231–3249, 2018.
Borenstein, M., Hedges, L. V., Higgins, J. P., and Rothstein, H. R.:
Introduction to meta-analysis, John Wiley & Sons, https://doi.org/10.1002/9780470743386, 2011.
Cho, S., Kang, M., Ichii, K., Kim, J., Lim, J.-H., Chun, J.-H., Park, C.-W.,
Kim, H. S., Choi, S.-W., and Lee, S.-H.: Evaluation of forest carbon uptake
in South Korea using the national flux tower network, remote sensing, and
data-driven technology, Agr. Forest Meteorol., 311, 108653, https://doi.org/10.1016/j.agrformet.2021.108653,
2021.
Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn,
M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi,
D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G.,
Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K.,
Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A.,
Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa,
H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T.,
Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick,
K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E.,
Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E.
S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C.,
Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A.,
Ueyama, M., Vargas, R., Wood, J. D., and Zona, D.: Representativeness of
Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites,
Agr. Forest Meteorol., 301–302, 108350,
https://doi.org/10.1016/j.agrformet.2021.108350, 2021.
Cleverly, J., Vote, C., Isaac, P., Ewenz, C., Harahap, M., Beringer, J.,
Campbell, D. I., Daly, E., Eamus, D., He, L., Hunt, J., Grace, P., Hutley,
L. B., Laubach, J., McCaskill, M., Rowlings, D., Rutledge Jonker, S.,
Schipper, L. A., Schroder, I., Teodosio, B., Yu, Q., Ward, P. R., Walker, J.
P., Webb, J. A., and Grover, S. P. P.: Carbon, water and energy fluxes in
agricultural systems of Australia and New Zealand, Agr. Forest Meteorol., 287, 107934,
https://doi.org/10.1016/j.agrformet.2020.107934, 2020.
Cranko Page, J., De Kauwe, M. G., Abramowitz, G., Cleverly, J., Hinko-Najera, N., Hovenden, M. J., Liu, Y., Pitman, A. J., and Ogle, K.: Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems, Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, 2022.
Cui, X., Goff, T., Cui, S., Menefee, D., Wu, Q., Rajan, N., Nair, S.,
Phillips, N., and Walker, F.: Predicting carbon and water vapor fluxes using
machine learning and novel feature ranking algorithms, Sci. Total
Environ., 775, 145130, https://doi.org/10.1016/j.scitotenv.2021.145130, 2021.
Don, A., Schumacher, J., and Freibauer, A.: Impact of tropical land-use
change on soil organic carbon stocks – a meta-analysis, Glob. Change Biol., 17, 1658–1670,
https://doi.org/10.1111/j.1365-2486.2010.02336.x, 2011.
Field, A. P. and Gillett, R.: How to do a meta analysis, British Journal of
Mathematical and Statistical Psychology, 63, 665–694, 2010.
Fu, D., Chen, B., Zhang, H., Wang, J., Black, T. A., Amiro, B. D., Bohrer,
G., Bolstad, P., Coulter, R., and Rahman, A. F.: Estimating landscape net
ecosystem exchange at high spatial–temporal resolution based on Landsat
data, an improved upscaling model framework, and eddy covariance flux
measurements, Remote Sens. Environ., 141, 90–104, 2014.
Fu, Z., Stoy, P. C., Poulter, B., Gerken, T., Zhang, Z., Wakbulcho, G., and
Niu, S.: Maximum carbon uptake rate dominates the interannual variability of
global net ecosystem exchange, Global Change Biology, 25, 3381–3394, 2019.
Hao, Y., Wang, Y., Mei, X., and Cui, X.: The response of ecosystem CO2
exchange to small precipitation pulses over a temperate steppe, Plant Ecol,
209, 335–347, https://doi.org/10.1007/s11258-010-9766-1, 2010.
Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S.,
Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A.,
Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., Saatchi, S. S., Slay, C.
M., Turubanova, S. A., and Tyukavina, A.: Global maps of twenty-first
century forest carbon fluxes, Nat. Clim. Chang., 11, 234–240,
https://doi.org/10.1038/s41558-020-00976-6, 2021.
Huemmrich, K. F., Campbell, P., Landis, D., and Middleton, E.: Developing a
common globally applicable method for optical remote sensing of ecosystem
light use efficiency, Remote Sens. Environ., 230, 111190, https://doi.org/10.1016/j.rse.2019.05.009, 2019.
Jongen, M., Pereira, J. S., Aires, L. M. I., and Pio, C. A.: The effects of
drought and timing of precipitation on the inter-annual variation in
ecosystem-atmosphere exchange in a Mediterranean grassland, Agr. Forest Meteorol., 151, 595–606,
https://doi.org/10.1016/j.agrformet.2011.01.008, 2011.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D.,
Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., and Chen, J.: Global
patterns of land atmosphere fluxes of carbon dioxide, latent heat, and
sensible heat derived from eddy covariance, satellite, and meteorological
observations, J. Geophys. Res.-Biogeo., 116, G00J07, https://doi.org/10.1029/2010JG001566, 2011.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S.,
Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein,
P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B.,
Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y.-P.,
Weber, U., Zaehle, S., and Zeng, N.: Compensatory water effects link yearly
global land CO2 sink changes to temperature, Nature, 541, 516–520,
https://doi.org/10.1038/nature20780, 2017.
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A., O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, 2020.
Kaur, H., Pannu, H. S., and Malhi, A. K.: A Systematic Review on Imbalanced
Data Challenges in Machine Learning: Applications and Solutions, ACM Comput.
Surv., 52, 1–36, https://doi.org/10.1145/3343440, 2019.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015.
Liu, Q., Zhang, Y., Liu, B., Amonette, J. E., Lin, Z., Liu, G., Ambus, P.,
and Xie, Z.: How does biochar influence soil N cycle?, A meta-analysis, Plant
Soil, 426, 211–225, 2018.
Luyssaert, S., Janssens, I. A., Sulkava, M., Papale, D., Dolman, A. J.,
Reichstein, M., Hollmén, J., Martin, J. G., Suni, T., Vesala, T.,
Loustau, D., Law, B. E., and Moors, E. J.: Photosynthesis drives anomalies
in net carbon-exchange of pine forests at different latitudes, Glob. Change Biol., 13,
2110–2127, https://doi.org/10.1111/j.1365-2486.2007.01432.x, 2007.
Marcot, B. G. and Hanea, A. M.: What is an optimal value of k in k-fold
cross-validation in discrete Bayesian network analysis?, Comput. Stat., 36,
2009–2031, https://doi.org/10.1007/s00180-020-00999-9, 2021.
Mitchell, S., Beven, K., and Freer, J.: Multiple sources of predictive
uncertainty in modeled estimates of net ecosystem CO2 exchange, Ecol. Model., 220, 3259–3270, https://doi.org/10.1016/j.ecolmodel.2009.08.021,
2009.
Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A.
D., Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R.,
Falge, E., Gove, J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J.,
Noormets, A., and Stauch, V. J.: Comprehensive comparison of gap-filling
techniques for eddy covariance net carbon fluxes, Agr. Forest Meteorol., 147, 209–232,
https://doi.org/10.1016/j.agrformet.2007.08.011, 2007.
Moffat, A. M., Beckstein, C., Churkina, G., Mund, M., and Heimann, M.:
Characterization of ecosystem responses to climatic controls using
artificial neural networks, Glob. Change Biol., 16, 2737–2749,
https://doi.org/10.1111/j.1365-2486.2010.02171.x, 2010.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., and Prisma Group:
Preferred reporting items for systematic reviews and meta-analyses: the
PRISMA statement, PLoS medicine, 6, e1000097, https://doi.org/10.1136/bmj.b2535, 2009.
Moon, T. K.: The expectation-maximization algorithm, IEEE Signal Processing Magazine, 13, 47–60, https://doi.org/10.1109/79.543975, 1996.
Papale, D. and Valentini, R.: A new assessment of European forests carbon
exchanges by eddy fluxes and artificial neural network spatialization, Glob. Change Biol., 9,
525–535, https://doi.org/10.1046/j.1365-2486.2003.00609.x, 2003.
Park, S.-B., Knohl, A., Lucas-Moffat, A. M., Migliavacca, M., Gerbig, C.,
Vesala, T., Peltola, O., Mammarella, I., Kolle, O., Lavrič, J. V.,
Prokushkin, A., and Heimann, M.: Strong radiative effect induced by clouds
and smoke on forest net ecosystem productivity in central Siberia,
Agr. Forest Meteorol., 250, 376–387,
https://doi.org/10.1016/j.agrformet.2017.09.009, 2018.
Pearl, J.: Bayesian netwcrks: A model cf self-activated memory for
evidential reasoning, in: Proceedings of the 7th Conference of the Cognitive
Science Society, University of California, Irvine, CA, USA, 15–17, 1985.
Peltola, O., Vesala, T., Gao, Y., Räty, O., Alekseychik, P., Aurela, M., Chojnicki, B., Desai, A. R., Dolman, A. J., Euskirchen, E. S., Friborg, T., Göckede, M., Helbig, M., Humphreys, E., Jackson, R. B., Jocher, G., Joos, F., Klatt, J., Knox, S. H., Kowalska, N., Kutzbach, L., Lienert, S., Lohila, A., Mammarella, I., Nadeau, D. F., Nilsson, M. B., Oechel, W. C., Peichl, M., Pypker, T., Quinton, W., Rinne, J., Sachs, T., Samson, M., Schmid, H. P., Sonnentag, O., Wille, C., Zona, D., and Aalto, T.: Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations, Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, 2019.
Reed, D. E., Poe, J., Abraha, M., Dahlin, K. M., and Chen, J.: Modeled
Surface-Atmosphere Fluxes From Paired Sites in the Upper Great Lakes Region
Using Neural Networks, J. Geophys. Res.-Biogeo., 126, e2021JG006363,
https://doi.org/10.1029/2021JG006363, 2021.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., and Prabhat: Deep learning and process understanding for
data-driven Earth system science, Nature, 566, 195–204,
https://doi.org/10.1038/s41586-019-0912-1, 2019.
Reitz, O., Graf, A., Schmidt, M., Ketzler, G., and Leuchner, M.: Upscaling
Net Ecosystem Exchange Over Heterogeneous Landscapes With Machine Learning,
J. Geophys. Res.-Biogeo., 126, e2020JG005814, https://doi.org/10.1029/2020JG005814, 2021.
Ruppert, J., Mauder, M., Thomas, C., and Lüers, J.: Innovative
gap-filling strategy for annual sums of CO2 net ecosystem exchange, Agr. Forest Meteorol., 138,
5–18, https://doi.org/10.1016/j.agrformet.2006.03.003, 2006.
Shi, H., Luo, G., Zheng, H., Chen, C., Bai, J., Liu, T., Ochege, F. U., and
De Maeyer, P.: Coupling the water-energy-food-ecology nexus into a Bayesian
network for water resources analysis and management in the Syr Darya River
basin, J. Hydrol., 581, 124387,
https://doi.org/10.1016/j.jhydrol.2019.124387, 2020.
Shi, H., Hellwich, O., Luo, G., Chen, C., He, H., Ochege, F. U., Van de
Voorde, T., Kurban, A., and de Maeyer, P.: A global meta-analysis of soil
salinity prediction integrating satellite remote sensing, soil sampling, and
machine learning, IEEE T. Geosci. Remote, 60, 1–15, https://doi.org/10.1109/TGRS.2021.3109819, 2021.
Tian, X., Yan, M., van der Tol, C., Li, Z., Su, Z., Chen, E., Li, X., Li,
L., Wang, X., Pan, X., Gao, L., and Han, Z.: Modeling forest above-ground
biomass dynamics using multi-source data and incorporated models: A case
study over the qilian mountains, Agr. Forest Meteorol., 246,
1–14, https://doi.org/10.1016/j.agrformet.2017.05.026, 2017.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016.
Van Hulse, J., Khoshgoftaar, T. M., and Napolitano, A.: Experimental
perspectives on learning from imbalanced data, in: Proceedings of the 24th
international conference on Machine learning, New York, NY, USA, 935–942,
https://doi.org/10.1145/1273496.1273614, 2007.
Virkkala, A.-M., Aalto, J., Rogers, B. M., Tagesson, T., Treat, C. C.,
Natali, S. M., Watts, J. D., Potter, S., Lehtonen, A., Mauritz, M., Schuur,
E. A. G., Kochendorfer, J., Zona, D., Oechel, W., Kobayashi, H., Humphreys,
E., Goeckede, M., Iwata, H., Lafleur, P. M., Euskirchen, E. S., Bokhorst,
S., Marushchak, M., Martikainen, P. J., Elberling, B., Voigt, C., Biasi, C.,
Sonnentag, O., Parmentier, F.-J. W., Ueyama, M., Celis, G., St.Louis, V. L.,
Emmerton, C. A., Peichl, M., Chi, J., Järveoja, J., Nilsson, M. B.,
Oberbauer, S. F., Torn, M. S., Park, S.-J., Dolman, H., Mammarella, I.,
Chae, N., Poyatos, R., López-Blanco, E., Christensen, T. R., Kwon, M.
J., Sachs, T., Holl, D., and Luoto, M.: Statistical upscaling of ecosystem
CO2 fluxes across the terrestrial tundra and boreal domain: Regional
patterns and uncertainties, Global Change Biol., 27, 4040–4059,
https://doi.org/10.1111/gcb.15659, 2021.
Walther, S., Besnard, S., Nelson, J. A., El-Madany, T. S., Migliavacca, M., Weber, U., Carvalhais, N., Ermida, S. L., Brümmer, C., Schrader, F., Prokushkin, A. S., Panov, A. V., and Jung, M.: Technical note: A view from space on global flux towers by MODIS and Landsat: the FluxnetEO data set, Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, 2022.
Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., and Hungate, B. A.:
Responses of terrestrial ecosystems to temperature and precipitation change:
a meta-analysis of experimental manipulation, Glob. Change Biol., 17, 927–942,
https://doi.org/10.1111/j.1365-2486.2010.02302.x, 2011.
Yan, J., Zhang, Y., Yu, G., Zhou, G., Zhang, L., Li, K., Tan, Z., and Sha,
L.: Seasonal and inter-annual variations in net ecosystem exchange of two
old-growth forests in southern China, Agr. Forest Meteorol.,
182, 257–265, https://doi.org/10.1016/j.agrformet.2013.03.002, 2013.
Zeng, J., Matsunaga, T., Tan, Z.-H., Saigusa, N., Shirai, T., Tang, Y.,
Peng, S., and Fukuda, Y.: Global terrestrial carbon fluxes of 1999–2019
estimated by upscaling eddy covariance data with a random forest, Sci. Data, 7, 313,
https://doi.org/10.1038/s41597-020-00653-5, 2020.
Zhang, C., Brodylo, D., Sirianni, M. J., Li, T., Comas, X., Douglas, T. A.,
and Starr, G.: Mapping CO2 fluxes of cypress swamp and marshes in the
Greater Everglades using eddy covariance measurements and Landsat data,
Remote Sens. Environ., 262, 112523,
https://doi.org/10.1016/j.rse.2021.112523, 2021.
Zhou, Y., Li, X., Gao, Y., He, M., Wang, M., Wang, Y., Zhao, L., and Li, Y.:
Carbon fluxes response of an artificial sand-binding vegetation system to
rainfall variation during the growing season in the Tengger Desert, J. Environ. Manage., 266, 110556,
https://doi.org/10.1016/j.jenvman.2020.110556, 2020.
Zhu, S., Clement, R., McCalmont, J., Davies, C. A., and Hill, T.: Stable
gap-filling for longer eddy covariance data gaps: A globally validated
machine-learning approach for carbon dioxide, water, and energy fluxes,
Agr. Forest Meteorol., 314, 108777,
https://doi.org/10.1016/j.agrformet.2021.108777, 2022.
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
A number of studies have been conducted by using machine learning approaches to simulate carbon...
Altmetrics
Final-revised paper
Preprint