Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-4129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Accounting for non-rainfall moisture and temperature improves litter decay model performance in a fog-dominated dryland system
J. Robert Logan
CORRESPONDING AUTHOR
W. K. Kellogg Biological Station, Hickory Corners, MI, USA
Department of Integrative Biology, Michigan State University, East
Lansing, MI, USA
Kathe E. Todd-Brown
Department of Environmental Engineering Sciences, University of
Florida, Gainesville, FL, USA
Kathryn M. Jacobson
Department of Biology, Grinnell College, Grinnell, IA, USA
Peter J. Jacobson
Department of Biology, Grinnell College, Grinnell, IA, USA
Roland Vogt
Institute of Meteorology, Climatology and Remote Sensing, University
of Basel, Basel, Switzerland
Sarah E. Evans
W. K. Kellogg Biological Station, Hickory Corners, MI, USA
Department of Integrative Biology, Michigan State University, East
Lansing, MI, USA
Related authors
No articles found.
Deepanshu Malik, Hendrik Andersen, Jan Cermak, Roland Vogt, and Bianca Adler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2645, https://doi.org/10.5194/egusphere-2025-2645, 2025
Short summary
Short summary
We investigated cloud base height changes in the Namib Desert and developed a method to estimate it using ground-based humidity data. This improves fog monitoring by distinguishing fog from low clouds, which satellites alone cannot reliably do. Our results reveal diurnal patterns and linkages to coastal proximity in the vertical dynamics of fog and low clouds, highlighting key atmospheric processes with potential importance for future research.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Cited articles
Adair, C., Parton, W., Del Grosso, S., Silver, W., Harmon, M., Hall, S.,
Burke, I., and Hart, S.: Simple three-pool model accurately describes
patterns of long-term litter decomposition in diverse climates, Glob. Chang.
Biol., 14, 2636–2660, https://doi.org/10.1111/j.1365-2486.2008.01674.x,
2008.
Adair, E. C., Parton, W. J., King, J. Y., Brandt, L. A., and Lin, Y.:
Accounting for photodegradation dramatically improves prediction of carbon
losses in dryland systems, Ecosphere, 8, 1–16, https://doi.org/10.1002/ecs2.1892,
2017.
Aho, K., Derryberry, D., and Peterson, T.: Model selection for ecologists:
the worldviews of AIC and BIC, Ecology, 95, 631–636, 2014.
Austin, A. T.: Has water limited our imagination for aridland
biogeochemistry?, Trends Ecol. Evol., 26, 229–35,
https://doi.org/10.1016/j.tree.2011.02.003, 2011.
Austin, A. T. and Vivanco, L.: Plant litter decomposition in a semi-arid
ecosystem controlled by photodegradation, Nature, 442, 555–558,
https://doi.org/10.1038/nature05038, 2006.
Barnes, P. W., Throop, H. L., Hewins, D. B., Abbene, M. L., and Archer, S.
R.: Soil Coverage Reduces Photodegradation and Promotes the Development of
Soil-Microbial Films on Dryland Leaf Litter, Ecosystems, 15, 311–321,
https://doi.org/10.1007/s10021-011-9511-1, 2012.
Barnes, P. W., Throop, H. L., Archer, S. R., Breshears, D. D., Mcculley, R.
L., and Tobler, M. A.: Sunlight and Soil–Litter Mixing: Drivers of Litter
Decomposition in Drylands, in: Progress in Botany, vol. 76, 273–302,
https://doi.org/10.1038/1941023a0, 2015.
Bear, A. D. A., Jones, T. H., Kandeler, E., and Boddy, L.: Interactive
effects of temperature and soil moisture on fungal-mediated wood
decomposition and extracellular enzyme activity, Soil Biol. Biochem., 70,
151–158, https://doi.org/10.1016/j.soilbio.2013.12.017, 2014.
Birk, M. A.: respirometry: Tools for Conducting and Analyzing Respirometry
Experiments, R package version 1.3.0., 2021.
Bolker, B. M., Pacala, S. W., and Parton, W. J.: Linear Analysis of Soil
Decomposition: Insights from the CENTURY Model, Ecol. Appl., 8, 425–439,
1998.
Bonan, G. B., Hartman, M. D., Parton, W. J., and Wieder, W. R.: Evaluating
litter decomposition in earth system models with long-term litterbag
experiments: an example using the Community Land Model version 4 (CLM4),
Glob. Chang. Biol., 19, 957–974, https://doi.org/10.1111/gcb.12031, 2013.
Byrne, M. P. and O'Gorman, P. A.: Understanding Decreases in Land Relative
Humidity with Global Warming: Conceptual Model and GCM Simulations, J.
Climate, 29, 9045–9061, https://doi.org/10.1175/JCLI-D-16-0351.1, 2016.
Chen, M., Parton, W. J., Adair, E. C., Asao, S., Hartman, M. D., and Gao,
W.: Simulation of the effects of photodecay on long-term litter decay using
DayCent, Ecosphere, 7, 1–22, https://doi.org/10.1002/ecs2.1631, 2016.
GrassBase – The Online World Grass Flora:
http://www.kew.org/data/grasses-db.html, last access: 10 December 2021.
Collins, S. L., Sinsabaugh, R. L., Crenshaw, C., Green, L., Porras-Alfaro,
A., Stursova, M., and Zeglin, L. H.: Pulse dynamics and microbial processes
in aridland ecosystems, J. Ecol., 96, 413–420,
https://doi.org/10.1111/j.1365-2745.2008.01362.x, 2008.
Dai, A.: Increasing drought under global warming in observations and models,
Nat. Clim. Chang., 3, 52–58, https://doi.org/10.1038/nclimate1633, 2013.
Dirks, I., Navon, Y., Kanas, D., Dumbur, R., and Grüenzweig, J.:
Atmospheric water vapor as driver of litter decomposition in Mediterranean
shrubland and grassland during rainless seasons, Glob. Chang. Biol., 16,
2799–2812, https://doi.org/10.1111/j.1365-2486.2010.02172.x, 2010.
Eckardt, F. D., Soderberg, K., Coop, L. J., Muller, A. A., Vickery, K. J.,
Grandin, R. D., Jack, C., Kapalanga, T. S., and Henschel, J.: The nature of
moisture at Gobabeb, in the central Namib Desert, J. Arid Environ., 93,
7–19, https://doi.org/10.1016/j.jaridenv.2012.01.011, 2013.
Emery, N. C., D'Antonio, C. M., and Still, C. J.: Fog and live fuel moisture
in coastal California shrublands, Ecosphere, 9, 1–19,
https://doi.org/10.1002/ecs2.2167, 2018.
Evans, S. E., Todd-brown, K. E. O., Jacobson, K. M., and Jacobson, P. J.:
Non-rainfall moisture: A key driver of microbial respiration from standing
litter in arid, semiarid, and mesic grasslands, Ecosystems, 23, 1154–1169,
https://doi.org/10.1007/s10021-019-00461-y, 2020.
Forthun, G. M., Johnson, M. B., Schmitz, W. G., Blume, J., and Caldwell, R.
J.: Trends in fog frequency and duration in the southeast United States,
Phys. Geogr., 27, 206–222, https://doi.org/10.2747/0272-3646.27.3.206,
2006.
Gliksman, D., Rey, A., Seligmann, R., Dumbur, R., Sperling, O., Navon, Y.,
Haenel, S., De Angelis, P., Arnone III, J. A., and Grüenzweig, J. M.:
Biotic degradation at night, abiotic degradation at day: positive feedbacks
on litter decomposition in drylands, Glob. Chang. Biol., 23, 1564–1574,
https://doi.org/10.1111/gcb.13465, 2017.
Gliksman, D., Navon, Y., Dumbar, R., Haenel, S., and Grüenzweig, J. M.:
Higher rates of decomposition in standing vs. surface litter in a
Mediterranean ecosystem during the dry and the wet seasons, Plant Soil, 428,
427–439, 2018.
Gunawardhana, L. N., Al-Rawas, G. A., and Kazama, S.: An alternative method
for predicting relative humidity for climate change, Meteorol. Appl., 24,
551–559, https://doi.org/10.1002/met.1641, 2017.
Haensler, A., Cermak, J., Hagemann, S., and Jacob, D.: Will the southern
african west coast fog be affected by future climate change?, Erdkunde, 65,
261–275, https://doi.org/10.3112/erdkunde.2011.03.04, 2011.
Hewins, D. B., Archer, S. R., Okin, G. S., Mcculley, R. L., and Throop, H.
L.: Soil–Litter Mixing Accelerates Decomposition in a Chihuahuan Desert
Grassland, Ecosystems, 16, 183–195,
https://doi.org/10.1007/s10021-012-9604-5, 2013.
Jacobson, K. M. and Jacobson, P. J.: Rainfall regulates decomposition of
buried cellulose in the Namib Desert, J. Arid Environ., 38, 571–583,
https://doi.org/10.1006/jare.1997.0358, 1998.
Jacobson, K. M., van Diepeningen, A., Evans, S. E., Fritts, R., Gemmel, P.,
Marsho, C., Seely, M., Wenndt, A., Yang, X., and Jacobson, P.: Non-rainfall
moisture activates fungal decomposition of surface litter in the Namib Sand
Sea, PLoS One, 10, e0126977, https://doi.org/10.1371/journal.pone.0126977,
2015.
King, J. Y., Brandt, L. A., and Adair, E. C.: Shedding light on plant litter
decomposition: advances, implications and new directions in understanding
the role of photodegradation, Biogeochemistry, 111, 57–81,
https://doi.org/10.1007/s10533-012-9737-9, 2012.
Lee, H., Fitzgerald, J., Hewins, D. B., McCulley, R. L., Archer, S. R.,
Rahn, T., and Throop, H. L.: Soil moisture and soil-litter mixing effects on
surface litter decomposition: A controlled environment assessment, Soil
Biol. Biochem., 72, 123–132, https://doi.org/10.1016/j.soilbio.2014.01.027,
2014.
Liu, G., Cornwell, W. K., Pan, X., Ye, D., Liu, F., Huang, Z., Dong, M., and
Cornelissen, J. H. C.: Decomposition of 51 semidesert species from
wide-ranging phylogeny is faster in standing and sand-buried than in surface
leaf litters: implications for carbon and nutrient dynamics, Plant Soil,
396, 175–187, https://doi.org/10.1007/s11104-015-2595-1, 2015.
Logan, J. R. and Brown, K. T.: NRM Gradient Project, Github [code and data set], https://github.com/loganja3/NRM-Gradient-Project, last access: 19 June 2022.
Logan, J. R., Jacobson, K. M., Jacobson, P. J., and Evans, S. E.: Fungal
Communities on Standing Litter Are Structured by Moisture Type and Constrain
Decomposition in a Hyper-Arid Grassland Site Descriptions and Climatic Data,
Front. Microbiol., 12, 1–15, https://doi.org/10.3389/fmicb.2021.596517,
2021.
Logan, J. R., Barnes, P. W., and Evans, S. E.: Photodegradation of plant
litter cuticles enhances microbial decomposition by increasing uptake of
non-rainfall moisture, Funct. Ecol., 36, 1727–1738,
https://doi.org/10.1111/1365-2435.14053, 2022.
Louw, G. N. and Seely, M. K.: Ecology of Desert Organisms, Longman Group
Limited, Essex, UK, 194 pp., 1982.
Low-Décarie, E., Boatman, T. G., Bennett, N., Passfield, W.,
Gavalás-olea, A., Siegel, P., and Geider, R. J.: Predictions of response
to temperature are contingent on model choice and data quality, Ecol. Evol.,
7, 10467–10481, https://doi.org/10.1002/ece3.3576, 2017.
Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,
Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A.,
Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F.,
Jiang, L., Koven, C., Jackson, R. B., Jones, C. D., Lara, M. J., Liang, J.,
Mcguire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra,
C. A., Smith, M. J., Tian, H., Todd-brown, K. E. O., Torn, M., Groenigen, K.
J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., Xia, J., Xu, X., Xu,
X., and Zhou, T.: Toward more realistic projections of soil carbon dynamics
by Earth system models, Global Biogeochem. Cy., 30, 40–56,
https://doi.org/10.1002/2015GB005239.Received, 2015.
Necpálová, M., Anex, R. P., Fienen, M. N., Del Grosso, S. J.,
Castellano, M. J., Sawyer, J. E., Iqbal, J., Pantoja, J. L., and Barker, D.
W.: Understanding the DayCent model: Calibration, sensitivity , and
identifiability through inverse modeling, Environ. Model. Softw., 66,
110–130, https://doi.org/10.1016/j.envsoft.2014.12.011, 2015.
Newell, S. Y., Fallon, R. D., Rodriguez, R. M. C., and Groene, L. C.:
Influence of rain, tidal wetting and relative humidity on release of carbon
dioxide by standing-dead salt-marsh plants, Oecologia, 68, 73–79, 1985.
Noy-Meir, I.: Desert Ecosystems: Environment and Producers, in: Annual
Review of Ecology and Systematics Vol. 4, edited by: Johnston, R., Frank,
P., and Michener, C., Annual Reviews Inc., Palo Alto., 1973.
Parton, W., Silver, W. L., Burke, I. C., Grassens, L., Harmon, M. E.,
Currie, W. S., King, J. Y., Adair, E. C., Brandt, L. A., Hart, S. C., and
Fasth, B.: Global-Scale Similarities in Nitrogen Release Patterns During
Long-Term Decomposition, Science, 315, 361–364, 2007.
Petraglia, A., Cacciatori, C., Chelli, S., Fenu, G., Calderisi, G., Gargano,
D., Abeli, T., Orsenigo, S., and Carbognani, M.: Litter decomposition:
effects of temperature driven by soil moisture and vegetation type, Plant
Soil, 455, 187–200, 2019.
R Core Team: R: A language and environment for statistical computing, https://www.R-project.org/, last access: 10 October 2020.
Roth-Nebelsick, A., Ebner, M., Miranda, T., Gottschalk, V., Voigt, D., Gorb,
S., Stegmaier, T., Sarsour, J., Linke, M., and Konrad, W.: Leaf surface
structures enable the endemic Namib desert grass Stipagrostis sabulicola to
irrigate itself with fog water, J. R. Soc. Interface, 9, rsif20110847,
https://doi.org/10.1098/rsif.2011.0847, 2012.
Seely, M. K. and Louw, G. N.: First approximation of the effects of rainfall
on the ecology of a Namib Desert dune ecosystem, J. Arid Environ., 3,
25–54, 1980.
Sentelhas, P. C., Marta, A. D., Orlandini, S., Santos, E. A., Gillespie, T.
J., and Gleason, M. L.: Suitability of relative humidity as an estimator of
leaf wetness duration, Agric. For. Meteorol., 148, 392–400,
https://doi.org/10.1016/j.agrformet.2007.09.011, 2008.
Sierra, C. A.: Temperature sensitivity of organic matter decomposition in
the Arrhenius equation: some theoretical considerations, Biogeochemistry,
1–15, https://doi.org/10.1007/s10533-011-9596-9, 2012.
Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S., and Janssens,
I.: Sensitivity of decomposition rates of soil organic matter with respect
to simultaneous changes in temperature and moisture, J. Adv. Model. Earth
Syst., 335–356, https://doi.org/10.1002/2014MS000358.Received, 2015.
Sokolov, A., Kicklighter, D., Schlosser, A., Wang, C., Monier, E.,
Brown-Steiner, B., Primm, R., Forest, C., Gao, X., Libardoni, A., and
Eastham, S.: Description and Evaluation of the MIT Earth System Model
(MESM), J. Adv. Model. Earth Syst., 10, 1759–1789,
https://doi.org/10.1029/2018MS001277, 2018.
Tschinkel, W. R.: The sorption of water vapor by windborne plant debris in
the Namib Desert, 2, 21–24, 1973.
Wang, J., Liu, L., Wang, X., and Chen, Y.: The interaction between abiotic
photodegradation and microbial decomposition under ultraviolet radiation,
Glob. Chang. Biol., 21, 2095–2104, https://doi.org/10.1111/gcb.12812, 2015.
Wang, J., Liu, L., Wang, X., Yang, S., Zhang, B., Li, P., Qiao, C., Deng,
M., and Liu, W.: High night-time humidity and dissolved organic carbon
content support rapid decomposition of standing litter in a semi-arid
landscape, Funct. Ecol., 31, 1659–1668,
https://doi.org/10.1111/1365-2435.12854, 2017.
Weathers, K. C.: The importance of cloud and fog in the maintenance of
ecosystems, Trends Ecol. Evol., 14, 214–215,
https://doi.org/10.1016/S0169-5347(99)01635-3, 1999.
Wenndt, A. J., Evans, S. E., Diepeningen, A. D. van, Logan, J. R., Jacobson,
P. J., Seely, M. K., and Jacobson, K. M.: Why plants harbor complex
endophytic fungal communities: Insights from perennial bunchgrass
Stipagrostis sabulicola in the Namib Sand Sea, Front. Microbiol., 12, 1–13,
https://doi.org/10.3389/fmicb.2021.691584, 2021.
Xie, Y.: A meta-analysis of critique of litterbag method used in examining
decomposition of leaf litters, J. Soils Sediments, 20, 1881–1886,
https://doi.org/10.1007/s11368-020-02572-9, 2020.
Zhang, D., Hui, D., Luo, Y., and Zhou, G.: Rates of litter decomposition in
terrestrial ecosystems: global patterns and controlling factors, J. Plant
Ecol., 1, 85–93, https://doi.org/10.1093/jpe/rtn002, 2008.
Short summary
Understanding how plants decompose is important for understanding where the atmospheric CO2 they absorb ends up after they die. In forests, decomposition is controlled by rain but not in deserts. We performed a 2.5-year study in one of the driest places on earth (the Namib desert in southern Africa) and found that fog and dew, not rainfall, closely controlled how quickly plants decompose. We also created a model to help predict decomposition in drylands with lots of fog and/or dew.
Understanding how plants decompose is important for understanding where the atmospheric CO2 they...
Altmetrics
Final-revised paper
Preprint