Articles | Volume 20, issue 9
https://doi.org/10.5194/bg-20-1759-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1759-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Information content in time series of litter decomposition studies and the transit time of litter in arid lands
Agustín Sarquis
Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía de la Universidad de Buenos Aires, CONICET, 1417 Buenos Aires, Argentina
Department of Biogeochemical Processes, Max-Planck-Institut für Biogeochemie, 07745 Jena, Germany
Related authors
Agustín Sarquis, Ignacio Andrés Siebenhart, Amy Theresa Austin, and Carlos A. Sierra
Earth Syst. Sci. Data, 14, 3471–3488, https://doi.org/10.5194/essd-14-3471-2022, https://doi.org/10.5194/essd-14-3471-2022, 2022
Short summary
Short summary
Plant litter breakdown in aridlands is driven by processes different from those in more humid ecosystems. A better understanding of these processes will allow us to make better predictions of future carbon cycling. We have compiled aridec, a database of plant litter decomposition studies in aridlands and tested some modeling applications for potential users. Aridec is open for use and collaboration, and we hope it will help answer newer and more important questions as the database develops.
Carlos A. Sierra and Estefanía Muñoz
Geosci. Model Dev., 18, 6701–6716, https://doi.org/10.5194/gmd-18-6701-2025, https://doi.org/10.5194/gmd-18-6701-2025, 2025
Short summary
Short summary
We propose an approach to obtain weights for calculating averages of variables from Earth system models (ESM) based on concepts from information theory. It quantifies a relative distance between model output and reality, even though it is impossible to know the absolute distance from model predictions to reality. The relative ranking among models is based on concepts of model selection and multi-model averages previously developed for simple statistical models, but adapted here for ESMs.
Valentina Lara, Carlos A. Sierra, Miguel A. Peña, Sebastián Ramirez, Diego Navarrete, Juan F. Phillips, and Álvaro Duque
EGUsphere, https://doi.org/10.5194/egusphere-2025-2959, https://doi.org/10.5194/egusphere-2025-2959, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Impacts of deforestation on the soil level are commonly overlooked. Conversion of Amazon rainforest to pastures increases soil compaction and decreases soil carbon storage, with lasting effects over time and across soil depth. After decades, pasture accumulated soil carbon doesn't match the original forest stocks. These changes may worsen climate change by reducing the Amazon basin ability to store carbon, highlighting the need to protect these ecosystems, from canopy to soil.
Carlos A. Sierra, Ingrid Chanca, Meinrat Andreae, Alessandro Carioca de Araújo, Hella van Asperen, Lars Borchardt, Santiago Botía, Luiz Antonio Candido, Caio S. C. Correa, Cléo Quaresma Dias-Junior, Markus Eritt, Annica Fröhlich, Luciana V. Gatti, Marcus Guderle, Samuel Hammer, Martin Heimann, Viviana Horna, Armin Jordan, Steffen Knabe, Richard Kneißl, Jost Valentin Lavric, Ingeborg Levin, Kita Macario, Juliana Menger, Heiko Moossen, Carlos Alberto Quesada, Michael Rothe, Christian Rödenbeck, Yago Santos, Axel Steinhof, Bruno Takeshi, Susan Trumbore, and Sönke Zaehle
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-151, https://doi.org/10.5194/essd-2025-151, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We present here a unique dataset of atmospheric observations of greenhouse gases and isotopes that provide key information on land-atmosphere interactions for the Amazon forests of central Brazil. The data show a relatively large level of variability, but also important trends in greenhouse gases, and signals from fires as well as seasonal biological activity.
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos A. Sierra
Biogeosciences, 22, 455–472, https://doi.org/10.5194/bg-22-455-2025, https://doi.org/10.5194/bg-22-455-2025, 2025
Short summary
Short summary
Assessing the net carbon (C) budget of the Amazon entails considering the magnitude and timing of C absorption and losses through respiration (transit time of C). Radiocarbon-based estimates of the transit time of C in the Amazon Tall Tower Observatory (ATTO) suggest a change in the transit time from 6 ± 2 years and 18 ± 4 years within 2 years (October 2019 and December 2021, respectively). This variability indicates that only a fraction of newly fixed C can be stored for decades or longer.
Maximiliano González-Sosa, Carlos A. Sierra, J. Andrés Quincke, Walter E. Baethgen, Susan Trumbore, and M. Virginia Pravia
SOIL, 10, 467–486, https://doi.org/10.5194/soil-10-467-2024, https://doi.org/10.5194/soil-10-467-2024, 2024
Short summary
Short summary
Based on an approach that involved soil organic carbon (SOC) monitoring, radiocarbon measurement in bulk soil, and incubations from a long-term 60-year experiment, it was concluded that the avoidance of old carbon losses in the integrated crop–pasture systems is the main reason that explains their greater carbon storage capacities compared to continuous cropping. A better understanding of these processes is essential for making agronomic decisions to increase the carbon sequestration capacity.
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024, https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Short summary
Soil organic matter stability depends on future temperature and precipitation scenarios. We used radiocarbon (14C) data and model predictions to understand how the transit time of carbon varies under environmental change in grasslands and peatlands. Soil moisture affected the Δ14C of peatlands, while temperature did not have any influence. Our models show the correspondence between Δ14C and transit time and could allow understanding future interactions between terrestrial and atmospheric carbon
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Song Wang, Carlos Sierra, Yiqi Luo, Jinsong Wang, Weinan Chen, Yahai Zhang, Aizhong Ye, and Shuli Niu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-33, https://doi.org/10.5194/bg-2023-33, 2023
Manuscript not accepted for further review
Short summary
Short summary
Nitrogen is important for plant growth and carbon uptake, which is uaually limited in nature and can constrain carbon storage and impact efforts to combat climate change. We developed a new method of combining data and models to determine if and how much an ecosystem is nitrogen limited. This new method can help determine if and to what extent an ecosystem is nitrogen-limited, providing insight into nutrient limitations on a global scale and guiding ecosystem management decisions.
Andrea Scheibe, Carlos A. Sierra, and Marie Spohn
Biogeosciences, 20, 827–838, https://doi.org/10.5194/bg-20-827-2023, https://doi.org/10.5194/bg-20-827-2023, 2023
Short summary
Short summary
We explored carbon cycling in soils in three climate zones in Chile down to a depth of 6 m, using carbon isotopes. Our results show that microbial activity several meters below the soil surface is mostly fueled by recently fixed carbon and that strong decomposition of soil organic matter only occurs in the upper decimeters of the soils. The study shows that different layers of the critical zone are tightly connected and that processes in the deep soil depend on recently fixed carbon.
Carlos A. Sierra, Verónika Ceballos-Núñez, Henrik Hartmann, David Herrera-Ramírez, and Holger Metzler
Biogeosciences, 19, 3727–3738, https://doi.org/10.5194/bg-19-3727-2022, https://doi.org/10.5194/bg-19-3727-2022, 2022
Short summary
Short summary
Empirical work that estimates the age of respired CO2 from vegetation tissue shows that it may take from years to decades to respire previously produced photosynthates. However, many ecosystem models represent respiration processes in a form that cannot reproduce these observations. In this contribution, we attempt to provide compelling evidence, based on recent research, with the aim to promote a change in the predominant paradigm implemented in ecosystem models.
Agustín Sarquis, Ignacio Andrés Siebenhart, Amy Theresa Austin, and Carlos A. Sierra
Earth Syst. Sci. Data, 14, 3471–3488, https://doi.org/10.5194/essd-14-3471-2022, https://doi.org/10.5194/essd-14-3471-2022, 2022
Short summary
Short summary
Plant litter breakdown in aridlands is driven by processes different from those in more humid ecosystems. A better understanding of these processes will allow us to make better predictions of future carbon cycling. We have compiled aridec, a database of plant litter decomposition studies in aridlands and tested some modeling applications for potential users. Aridec is open for use and collaboration, and we hope it will help answer newer and more important questions as the database develops.
Carlos A. Sierra, Susan E. Crow, Martin Heimann, Holger Metzler, and Ernst-Detlef Schulze
Biogeosciences, 18, 1029–1048, https://doi.org/10.5194/bg-18-1029-2021, https://doi.org/10.5194/bg-18-1029-2021, 2021
Short summary
Short summary
The climate benefit of carbon sequestration (CBS) is a metric developed to quantify avoided warming by two separate processes: the amount of carbon drawdown from the atmosphere and the time this carbon is stored in a reservoir. This metric can be useful for quantifying the role of forests and soils for climate change mitigation and to better quantify the benefits of carbon removals by sinks.
Cited articles
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.:
TerraClimate, a high-resolution global dataset of monthly climate and
climatic water balance from 1958–2015, Sci. Data, 5, 170191,
https://doi.org/10.1038/sdata.2017.191, 2018.
Adair, E. C., Parton, W. J., Del Grosso, S. J., Silver, W. L., Harmon, M.
E., Hall, S. A., Burke, I. C., and Hart, S. C.: Simple three-pool model
accurately describes patterns of long-term litter decomposition in diverse
climates, Glob. Change Biol., 14, 2636–2660,
https://doi.org/10.1111/j.1365-2486.2008.01674.x, 2008.
Adair, E. C., Hobbie, S. E., and Hobbie, R. K.: Single-pool exponential
decomposition models: potential pitfalls in their use in ecological studies,
Ecology, 91, 1225–1236, https://doi.org/10.1890/09-0430.1, 2010.
Adair, E. C., Parton, W. J., King, J. Y., Brandt, L. A., and Lin, Y.:
Accounting for photodegradation dramatically improves prediction of carbon
losses in dryland systems, Ecosphere, 8, e01892, https://doi.org/10.1002/ecs2.1892,
2017.
Anderson, D. R.: Model Based Inference in the Life Sciences: A Primer on
Evidence, Springer, New York, ISBN: 9780387740737, 2008.
Austin, A. T.: Has water limited our imagination for aridland
biogeochemistry, Trends Ecol. Evol., 26, 229–235,
https://doi.org/10.1016/j.tree.2011.02.003, 2011.
Austin, A. T. and Vivanco, L.: Plant litter decomposition in a semi-arid
ecosystem controlled by photodegradation, Nature, 442, 555–558,
https://doi.org/10.1038/nature05038, 2006.
Austin, A. T., Sala, O. E., and Jackson, R. B.: Inhibition of Nitrification
Alters Carbon Turnover in the Patagonian Steppe, Ecosystems, 9,
1257–1265, https://doi.org/10.1007/s10021-005-0039-0, 2006.
Berenstecher, P., Araujo, P. I., and Austin, A. T.: Worlds apart: Location
above- or below-ground determines plant litter decomposition in a semi-arid
Patagonian steppe, J. Ecol., 109, 1365–2745,
https://doi.org/10.1111/1365-2745.13688, 2021.
Bradford, M. A., Veen, G. F. (Ciska), Bonis, A., Bradford, E. M., Classen,
A. T., Cornelissen, J. H. C., Crowther, T. W., De Long, J. R., Freschet, G.
T., Kardol, P., Manrubia-Freixa, M., Maynard, D. S., Newman, G. S.,
Logtestijn, R. S. P., Viketoft, M., Wardle, D. A., Wieder, W. R., Wood, S.
A., and Van Der Putten, W. H.: A test of the hierarchical model of litter
decomposition, Nat. Ecol. Evol., 1, 1836–1845, https://doi.org/10.1038/s41559-017-0367-4, 2017.
Brandt, L. A., King, J. Y., and Milchunas, D. G.: Effects of ultraviolet
radiation on litter decomposition depend on precipitation and litter
chemistry in a shortgrass steppe ecosystem, Glob. Change Biol., 13,
2193–2205, https://doi.org/10.1111/j.1365-2486.2007.01428.x, 2007.
Brandt, L. A., King, J. Y., Hobbie, S. E., Milchunas, D. G., and Sinsabaugh,
R. L.: The Role of Photodegradation in Surface Litter Decomposition Across a
Grassland Ecosystem Precipitation Gradient, Ecosystems, 13, 765–781,
https://doi.org/10.1007/s10021-010-9353-2, 2010.
Brun, R., Reichert, P., and Künsch, H. R.: Practical identifiability
analysis of large environmental simulation models, Water Resour. Res.,
37, 1015–1030, https://doi.org/10.1029/2000WR900350, 2001.
Burnham, K. P. and Anderson, D. R.: Model Selection and Multimodel
Inference, edited by: Burnham, K. P. and Anderson, D. R., Springer New York,
New York, NY, ISBN: 978-0-387-95364-9, 2002.
Chappelle, G., Hastings, A., and Rasmussen, M.: Pool dynamics of
time-dependent compartmental systems with application to the terrestrial
carbon cycle, J. R. Soc. Interface, 20, 200, https://doi.org/10.1098/rsif.2022.0843,
2023.
Cornwell, W. K. and Weedon, J. T.: Decomposition trajectories of diverse
litter types: a model selection analysis, edited by: Oksanen, J., Method.
Ecol. Evol., 5, 173–182, https://doi.org/10.1111/2041-210X.12138, 2014.
Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E.,
Eviner, V. T., Godoy, O., Hobbie, S. E., Hoorens, B., Kurokawa, H.,
Pérez-Harguindeguy, N., Quested, H. M., Santiago, L. S., Wardle, D. A.,
Wright, I. J., Aerts, R., Allison, S. D., van Bodegom, P., Brovkin, V.,
Chatain, A., Callaghan, T. V., Díaz, S., Garnier, E., Gurvich, D. E.,
Kazakou, E., Klein, J. A., Read, J., Reich, P. B., Soudzilovskaia, N. A.,
Vaieretti, M. V., and Westoby, M.: Plant species traits are the predominant
control on litter decomposition rates within biomes worldwide, Ecol. Lett.,
11, 1065–1071, https://doi.org/10.1111/j.1461-0248.2008.01219.x, 2008.
Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L.,
Wall, D. H., and Parton, W. J.: Formation of soil organic matter via
biochemical and physical pathways of litter mass loss, Nat. Geosci., 8,
776–779, https://doi.org/10.1038/ngeo2520, 2015.
D'Odorico, P., Porporato, A., and Runyan, C. W.: Dryland Ecohydrology, edited
by: D'Odorico, P., Porporato, A., and Wilkinson Runyan, C., Springer
International Publishing, Cham, ISBN: 978-3-030-23268-9, 2019.
Day, T. A. and Bliss, M. S.: Solar Photochemical Emission of CO2 From Leaf
Litter: Sources and Significance to C Loss, Ecosystems, 23, 1344–1361,
https://doi.org/10.1007/s10021-019-00473-8, 2020.
Day, T. A., Bliss, M. S., Tomes, A. R., Ruhland, C. T., and Guénon, R.:
Desert leaf litter decay: Coupling of microbial respiration, water-soluble
fractions and photodegradation, Glob. Change Biol., 24, 5454–5470,
https://doi.org/10.1111/gcb.14438, 2018.
Derrien, D. and Amelung, W.: Computing the mean residence time of soil
carbon fractions using stable isotopes: impacts of the model framework, Eur.
J. Soil Sci., 62, 237–252, https://doi.org/10.1111/j.1365-2389.2010.01333.x, 2011.
Evans, S., Todd-Brown, K. E. O., Jacobson, K., and Jacobson, P.: Non-rainfall
Moisture: A Key Driver of Microbial Respiration from Standing Litter in
Arid, Semiarid, and Mesic Grasslands, Ecosystems, 23, 1154–1169,
https://doi.org/10.1007/s10021-019-00461-y, 2020.
Feng, S. and Fu, Q.: Expansion of global drylands under a warming climate,
Atmos. Chem. Phys., 13, 10081–10094, https://doi.org/10.5194/acp-13-10081-2013,
2013.
García-Palacios, P., Maestre, F. T., Kattge, J., and Wall, D. H.:
Climate and litter quality differently modulate the effects of soil fauna on
litter decomposition across biomes, edited by: Klironomos, J., Ecol. Lett.,
16, 1045–1053, https://doi.org/10.1111/ele.12137, 2013.
Gholz, H. L., Wedin, D. A., Smitherman, S. M., Harmon, M. E., and Parton, W.
J.: Long-term dynamics of pine and hardwood litter in contrasting
environments: toward a global model of decomposition, Glob. Change Biol.,
6, 751–765, https://doi.org/10.1046/j.1365-2486.2000.00349.x, 2000.
Giese, M., Gao, Y. Z., Zhao, Y., Pan, Q., Lin, S., Peth, S., and Brueck, H.:
Effects of grazing and rainfall variability on root and shoot decomposition
in a semi-arid grassland, Appl. Soil Ecol., 41, 8–18,
https://doi.org/10.1016/j.apsoil.2008.08.002, 2009.
Grueber, C. E., Nakagawa, S., Laws, R. J., and Jamieson, I. G.: Multimodel
inference in ecology and evolution: challenges and solutions, J. Evol.
Biol., 24, 699–711, https://doi.org/10.1111/j.1420-9101.2010.02210.x, 2011.
Grünzweig, J. M., De Boeck, H. J., Rey, A., Santos, M. J., Adam, O.,
Bahn, M., Belnap, J., Deckmyn, G., Dekker, S. C., Flores, O., Gliksman, D.,
Helman, D., Hultine, K. R., Liu, L., Meron, E., Michael, Y., Sheffer, E.,
Throop, H. L., Tzuk, O., and Yakir, D.: Dryland mechanisms could widely
control ecosystem functioning in a drier and warmer world, Nat. Ecol. Evol.,
6, 1064–1076, https://doi.org/10.1038/s41559-022-01779-y, 2022.
Guttal, V. and Jayaprakash, C.: Self-organization and productivity in
semi-arid ecosystems: Implications of seasonality in rainfall, J. Theor.
Biol., 248, 490–500, https://doi.org/10.1016/j.jtbi.2007.05.020, 2007.
Huang, G., Zhao, H., and Li, Y.: Litter decomposition in hyper-arid deserts:
Photodegradation is still important, Sci. Total Environ., 601–602,
784–792, https://doi.org/10.1016/j.scitotenv.2017.05.213, 2017.
Kattge, J., Bönisch, G., Díaz, S.,
et al.: TRY plant trait database – enhanced coverage and open access, Glob.
Change Biol., 26, 119–188, https://doi.org/10.1111/gcb.14904, 2020.
Li, Y., Ning, Z., Cui, D., Mao, W., Bi, J., and Zhao, X.: Litter
Decomposition in a Semiarid Dune Grassland: Neutral Effect of Water Supply
and Inhibitory Effect of Nitrogen Addition, edited by: Hui, D., PLoS One,
11, e0162663, https://doi.org/10.1371/journal.pone.0162663, 2016.
Lu, X., Wang, Y.-P., Luo, Y., and Jiang, L.: Ecosystem carbon transit versus
turnover times in response to climate warming and rising atmospheric CO2
concentration, Biogeosciences, 15, 6559–6572,
https://doi.org/10.5194/bg-15-6559-2018, 2018.
Lukacs, P. M., Burnham, K. P., and Anderson, D. R.: Model selection bias and
Freedman's paradox, Ann. Inst. Stat. Math., 62, 117–125,
https://doi.org/10.1007/s10463-009-0234-4, 2010.
Manlay, R. J., Masse, D., Chevallier, T., Russell-Smith, A., Friot, D., and
Feller, C.: Post-fallow decomposition of woody roots in the West African
savanna, Plant Soil, 260, 123–136,
https://doi.org/10.1023/B:PLSO.0000030176.41624.d7, 2004.
Manzoni, S., Piñeiro, G., Jackson, R. B., Jobbágy, E. G., Kim, J. H., and Porporato, A.: Analytical models of soil and litter decomposition:
Solutions for mass loss and time-dependent decay rates, Soil Biol. Biochem.,
50, 66–76, https://doi.org/10.1016/j.soilbio.2012.02.029, 2012.
Meentemeyer, V.: Macroclimate and Lignin Control of Litter Decomposition
Rates, Ecology, 59, 465–472, https://doi.org/10.2307/1936576, 1978.
Méndez, M. S., Ballaré, C. L., and Austin, A. T.: Dose–responses for
solar radiation exposure reveal high sensitivity of microbial decomposition
to changes in plant litter quality that occur during photodegradation, New
Phytol., 235, 2022–2033, https://doi.org/10.1111/nph.18253, 2022.
Olson, J. S.: Energy Storage and the Balance of Producers and Decomposers in
Ecological Systems, Ecology, 44, 322–331, https://doi.org/10.2307/1932179, 1963.
Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: Analysis of
Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands,
Soil Sci. Soc. Am. J., 51, 1173–1179,
https://doi.org/10.2136/sssaj1987.03615995005100050015x, 1987.
Prescott, C. E. and Vesterdal, L.: Decomposition and transformations along
the continuum from litter to soil organic matter in forest soils, Forest Ecol.
Manag., 498, 119522, https://doi.org/10.1016/j.foreco.2021.119522, 2021.
Qu, H., Zhao, X., Lian, J., Tang, X., Wang, X., and Medina-Roldán, E.:
Increasing Precipitation Interval Has More Impacts on Litter Mass Loss Than
Decreasing Precipitation Amount in Desert Steppe, Front. Environ. Sci.,
8, 1–11, https://doi.org/10.3389/fenvs.2020.00088, 2020.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 9 May 2023), 2020.
Safriel, U. and Adeel, Z.: Dryland Systems, in: Ecosystems and Human
Well-being: Current State and Trends, Volume 1, edited by: Hassan, R.,
Scholes, R., and Ash, N., 623–662, Island Press, Washington, ISBN: 1559632283, 2005.
Santonja, M., Fernandez, C., Proffit, M., Gers, C., Gauquelin, T., Reiter,
I. M., Cramer, W., and Baldy, V.: Plant litter mixture partly mitigates the
negative effects of extended drought on soil biota and litter decomposition
in a Mediterranean oak forest, edited by: McCulley, R., J. Ecol., 105,
801–815, https://doi.org/10.1111/1365-2745.12711, 2017.
Sarquis, A. and Sierra, C. A.: Supplementary Material for Sarquis & Sierra 2023 (v1.0.1), Zenodo [data set and code], https://doi.org/10.5281/zenodo.7799585, 2023.
Sarquis, A., Siebenhart, I. A., Austin, A. T., and Sierra, C. A.: Aridec: an
open database of litter mass loss from aridlands worldwide with
recommendations on suitable model applications, Earth Syst. Sci. Data,
14, 3471–3488, https://doi.org/10.5194/essd-14-3471-2022, 2022a.
Sarquis, A., Siebenhart, I. A., Austin, A. T., and Sierra, C. A.: AgustinSarquis/aridec: aridec (v1.0.2), Zenodo [data set and code], https://doi.org/10.5281/zenodo.6600345, 2022b.
Shumway, R. H. and Stoffer, D. S.: Time Series Analysis and Its
Applications, 4th Edn., edited by: DeVeaux, R., Fienberg, S. E., and Olkin, I.,
Springer International Publishing, Cham, ISBN: 978-3-319-52451-1, 2017.
Sierra, C. A. and Müller, M.: A general mathematical framework for
representing soil organic matter dynamics, Ecol. Monogr., 85, 505–524,
https://doi.org/10.1890/15-0361.1, 2015.
Sierra, C. A., Müller, M., and Trumbore, S. E.: Models of soil organic
matter decomposition: the SoilR package, version 1.0, Geosci. Model Dev.,
5, 1045–1060, https://doi.org/10.5194/gmd-5-1045-2012, 2012.
Sierra, C. A., Malghani, S., and Müller, M.: Model structure and
parameter identification of soil organic matter models, Soil Biol. Biochem.,
90, 197–203, https://doi.org/10.1016/j.soilbio.2015.08.012, 2015.
Sierra, C. A., Müller, M., Metzler, H., Manzoni, S., and Trumbore, S. E.:
The muddle of ages, turnover, transit, and residence times in the carbon
cycle, Glob. Change Biol., 23, 1763–1773, https://doi.org/10.1111/gcb.13556, 2017.
Sierra, C. A., Hoyt, A. M., He, Y., and Trumbore, S. E.: Soil Organic Matter
Persistence as a Stochastic Process: Age and Transit Time Distributions of
Carbon in Soils, Global Biogeochem. Cy., 32, 1574–1588,
https://doi.org/10.1029/2018GB005950, 2018.
Sinsabaugh, R. L., Antibus, R. K., and Linkins, A. E.: An enzymic approach to
the analysis of microbial activity during plant litter decomposition, Agr.
Ecosyst. Environ., 34, 43–54, https://doi.org/10.1016/0167-8809(91)90092-C, 1991.
Smith, J. G. and Throop, H. L.: Animal generation of green leaf litter in an
arid shrubland enhances decomposition by altering litter quality and
location, J. Arid Environ., 151, 15–22,
https://doi.org/10.1016/j.jaridenv.2017.11.003, 2018.
Soetaert, K. and Petzoldt, T.: Inverse Modelling, Sensitivity and Monte
Carlo Analysis in R Using Package FME, J. Stat. Softw., 33, 1–28,
https://doi.org/10.18637/jss.v033.i03, 2010.
Tuomi, M., Thum, T., Järvinen, H., Fronzek, S., Berg, B., Harmon, M.,
Trofymow, J. A., Sevanto, S., and Liski, J.: Leaf litter
decomposition-Estimates of global variability based on Yasso07 model, Ecol.
Modell., 220, 3362–3371, https://doi.org/10.1016/j.ecolmodel.2009.05.016, 2009.
Wang, Y., Li, F. Y., Song, X., Wang, X., Suri, G., and Baoyin, T.: Changes in
litter decomposition rate of dominant plants in a semi-arid steppe across
different land-use types: Soil moisture, not home-field advantage, plays a
dominant role, Agr. Ecosyst. Environ., 303, 107119,
https://doi.org/10.1016/j.agee.2020.107119, 2020.
Zanne, A. E., Flores-Moreno, H., Powell, J. R., et
al.: Termite sensitivity to temperature affects global wood decay rates,
Science, 377, 1440–1444, https://doi.org/10.1126/science.abo3856, 2022.
Zhang, X. and Wang, W.: Control of climate and litter quality on leaf litter
decomposition in different climatic zones, J. Plant Res., 128, 791–802,
https://doi.org/10.1007/s10265-015-0743-6, 2015.
Short summary
Although plant litter is chemically and physically heterogenous and undergoes multiple transformations, models that represent litter dynamics often ignore this complexity. We used a multi-model inference framework to include information content in litter decomposition datasets and studied the time it takes for litter to decompose as measured by the transit time. In arid lands, the median transit time of litter is about 3 years and has a negative correlation with mean annual temperature.
Although plant litter is chemically and physically heterogenous and undergoes multiple...
Altmetrics
Final-revised paper
Preprint