Articles | Volume 20, issue 9
https://doi.org/10.5194/bg-20-1789-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1789-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Continuous ground monitoring of vegetation optical depth and water content with GPS signals
Vincent Humphrey
CORRESPONDING AUTHOR
Division of Geological and Planetary Sciences, California Institute of
Technology, Pasadena, CA, USA
Department of Geography, University of Zürich, Zurich,
Switzerland
Christian Frankenberg
Division of Geological and Planetary Sciences, California Institute of
Technology, Pasadena, CA, USA
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Related authors
Seppe Lampe, Lukas Gudmundsson, Basil Kraft, Stijn Hantson, Douglas Kelley, Vincent Humphrey, Bertrand Le Saux, Emilio Chuvieco, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2025-3550, https://doi.org/10.5194/egusphere-2025-3550, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce BuRNN, a model which estimates monthly burned area based on satellite observations and climate, vegetation, and socio-economic data using machine learning. BuRNN outperforms existing process-based fire models. However, the model tends to underestimate burned area in parts of Africa and Australia. We identify the extent of bare ground, the presence of grasses, and fire weather conditions (long periods of warm and dry weather) as key regional drivers of fire activity in BuRNN.
Sean P. Burns, Vincent Humphrey, Ethan D. Gutmann, Mark S. Raleigh, David R. Bowling, and Peter D. Blanken
EGUsphere, https://doi.org/10.5194/egusphere-2025-1755, https://doi.org/10.5194/egusphere-2025-1755, 2025
Short summary
Short summary
We compared two techniques that are affected by the amount of liquid water in a forest canopy. One technique relies on remote sensing (a pair of GPS systems) and the other uses tree motion generated by the wind. Though completely different, these two techniques show strikingly similar changes when rain falls on an evergreen forest. We combine these measurements with eddy-covariance fluxes of water vapor to provide some insight into the evaporation of canopy-intercepted precipitation.
Luna Bloin-Wibe, Robin Noyelle, Vincent Humphrey, Urs Beyerle, Reto Knutti, and Erich Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2025-525, https://doi.org/10.5194/egusphere-2025-525, 2025
Short summary
Short summary
Weather extremes have become more frequent due to climate change. It is therefore crucial to understand them, but since they are rarer than average weather, they are challenging to study. Ensemble Boosting (EB) is a tool that generates extreme climate model events efficiently, but without directly estimating their probability. Here, we present a method to recover these probabilities for a global climate model. EB can thus now be used to find extremes with meaningful statistical information.
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Seppe Lampe, Lukas Gudmundsson, Basil Kraft, Stijn Hantson, Douglas Kelley, Vincent Humphrey, Bertrand Le Saux, Emilio Chuvieco, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2025-3550, https://doi.org/10.5194/egusphere-2025-3550, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce BuRNN, a model which estimates monthly burned area based on satellite observations and climate, vegetation, and socio-economic data using machine learning. BuRNN outperforms existing process-based fire models. However, the model tends to underestimate burned area in parts of Africa and Australia. We identify the extent of bare ground, the presence of grasses, and fire weather conditions (long periods of warm and dry weather) as key regional drivers of fire activity in BuRNN.
Sean P. Burns, Vincent Humphrey, Ethan D. Gutmann, Mark S. Raleigh, David R. Bowling, and Peter D. Blanken
EGUsphere, https://doi.org/10.5194/egusphere-2025-1755, https://doi.org/10.5194/egusphere-2025-1755, 2025
Short summary
Short summary
We compared two techniques that are affected by the amount of liquid water in a forest canopy. One technique relies on remote sensing (a pair of GPS systems) and the other uses tree motion generated by the wind. Though completely different, these two techniques show strikingly similar changes when rain falls on an evergreen forest. We combine these measurements with eddy-covariance fluxes of water vapor to provide some insight into the evaporation of canopy-intercepted precipitation.
Luna Bloin-Wibe, Robin Noyelle, Vincent Humphrey, Urs Beyerle, Reto Knutti, and Erich Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2025-525, https://doi.org/10.5194/egusphere-2025-525, 2025
Short summary
Short summary
Weather extremes have become more frequent due to climate change. It is therefore crucial to understand them, but since they are rarer than average weather, they are challenging to study. Ensemble Boosting (EB) is a tool that generates extreme climate model events efficiently, but without directly estimating their probability. Here, we present a method to recover these probabilities for a global climate model. EB can thus now be used to find extremes with meaningful statistical information.
Yitong Yao, Philippe Ciais, Emilie Joetzjer, Wei Li, Lei Zhu, Yujie Wang, Christian Frankenberg, and Nicolas Viovy
Earth Syst. Dynam., 15, 763–778, https://doi.org/10.5194/esd-15-763-2024, https://doi.org/10.5194/esd-15-763-2024, 2024
Short summary
Short summary
Elevated CO2 concentration (eCO2) is critical for shaping the future path of forest carbon uptake, while uncertainties remain about concurrent carbon loss. Here, we found that eCO2 might amplify competition-induced carbon loss, while the extent of drought-induced carbon loss hinges on the balance between heightened biomass density and water-saving benefits. This is the first time that such carbon loss responses to ongoing climate change have been quantified separately over the Amazon rainforest.
Juliëtte C. S. Anema, Klaas Folkert Boersma, Piet Stammes, Gerbrand Koren, William Woodgate, Philipp Köhler, Christian Frankenberg, and Jacqui Stol
Biogeosciences, 21, 2297–2311, https://doi.org/10.5194/bg-21-2297-2024, https://doi.org/10.5194/bg-21-2297-2024, 2024
Short summary
Short summary
To keep the Paris agreement goals within reach, negative emissions are necessary. They can be achieved with mitigation techniques, such as reforestation, which remove CO2 from the atmosphere. While governments have pinned their hopes on them, there is not yet a good set of tools to objectively determine whether negative emissions do what they promise. Here we show how satellite measurements of plant fluorescence are useful in detecting carbon uptake due to reforestation and vegetation regrowth.
Russell Doughty, Yujie Wang, Jennifer Johnson, Nicholas Parazoo, Troy Magney, Zoe Pierrat, Xiangming Xiao, Luis Guanter, Philipp Köhler, Christian Frankenberg, Peter Somkuti, Shuang Ma, Yuanwei Qin, Sean Crowell, and Berrien Moore III
EGUsphere, https://doi.org/10.22541/essoar.168167172.20799710/v1, https://doi.org/10.22541/essoar.168167172.20799710/v1, 2024
Preprint archived
Short summary
Short summary
Here we present a novel model of global photosynthesis, ChloFluo, which uses spaceborne chlorophyll fluorescence to estimate the amount of photosynthetically active radiation absorbed by chlorophyll. Potential uses of our model are to advance our understanding of the timing and magnitude of photosynthesis, its effect on atmospheric carbon dioxide fluxes, and vegetation response to climate events and change.
Ke Liu, Yujie Wang, Troy S. Magney, and Christian Frankenberg
Biogeosciences, 21, 1501–1516, https://doi.org/10.5194/bg-21-1501-2024, https://doi.org/10.5194/bg-21-1501-2024, 2024
Short summary
Short summary
Stomata are pores on leaves that regulate gas exchange between plants and the atmosphere. Existing land models unrealistically assume stomata can jump between steady states when the environment changes. We implemented dynamic modeling to predict gradual stomatal responses at different scales. Results suggested that considering this effect on plant behavior patterns in diurnal cycles was important. Our framework also simplified simulations and can contribute to further efficiency improvements.
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Yujie Wang and Christian Frankenberg
Biogeosciences, 19, 4705–4714, https://doi.org/10.5194/bg-19-4705-2022, https://doi.org/10.5194/bg-19-4705-2022, 2022
Short summary
Short summary
Plant hydraulics is often misrepresented in topical research. We highlight the commonly seen ambiguities and/or mistakes, with equations and figures to help visualize the potential biases. We recommend careful thinking when using or modifying existing plant hydraulic terms, methods, and models.
Yujie Wang and Christian Frankenberg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-172, https://doi.org/10.5194/bg-2022-172, 2022
Revised manuscript not accepted
Short summary
Short summary
Leaf light absorption coefficient is often not measured along with leaf gas exchange, but assumed to be constant. This potentially causes biases in estimated photosynthetic capacity and modeled photosynthetic rates. We explored how leaf light absorption features and light source may impact the photosynthesis modeling, and found that the biases are dependent of model assumptions. Researchers need to be more cautious with these inaccurate assumptions in photosynthesis models.
Daniel J. Jacob, Daniel J. Varon, Daniel H. Cusworth, Philip E. Dennison, Christian Frankenberg, Ritesh Gautam, Luis Guanter, John Kelley, Jason McKeever, Lesley E. Ott, Benjamin Poulter, Zhen Qu, Andrew K. Thorpe, John R. Worden, and Riley M. Duren
Atmos. Chem. Phys., 22, 9617–9646, https://doi.org/10.5194/acp-22-9617-2022, https://doi.org/10.5194/acp-22-9617-2022, 2022
Short summary
Short summary
We review the capability of satellite observations of atmospheric methane to quantify methane emissions on all scales. We cover retrieval methods, precision requirements, inverse methods for inferring emissions, source detection thresholds, and observations of system completeness. We show that current instruments already enable quantification of regional and national emissions including contributions from large point sources. Coverage and resolution will increase significantly in coming years.
Russell Doughty, Thomas P. Kurosu, Nicholas Parazoo, Philipp Köhler, Yujie Wang, Ying Sun, and Christian Frankenberg
Earth Syst. Sci. Data, 14, 1513–1529, https://doi.org/10.5194/essd-14-1513-2022, https://doi.org/10.5194/essd-14-1513-2022, 2022
Short summary
Short summary
We describe and compare solar-induced chlorophyll fluorescence data produced by NASA from the Greenhouse Gases Observing Satellite (GOSAT) and the Orbiting Carbon Observatory-2 (OCO-2) and OCO-3 platforms.
Johannes Gensheimer, Alexander J. Turner, Philipp Köhler, Christian Frankenberg, and Jia Chen
Biogeosciences, 19, 1777–1793, https://doi.org/10.5194/bg-19-1777-2022, https://doi.org/10.5194/bg-19-1777-2022, 2022
Short summary
Short summary
We develop a convolutional neural network, named SIFnet, that increases the spatial resolution of SIF from TROPOMI by a factor of 10 to a spatial resolution of 0.005°. SIFnet utilizes coarse SIF observations, together with a broad range of high-resolution auxiliary data. The insights gained from interpretable machine learning techniques allow us to make quantitative claims about the relationships between SIF and other common parameters related to photosynthesis.
Yujie Wang and Christian Frankenberg
Biogeosciences, 19, 29–45, https://doi.org/10.5194/bg-19-29-2022, https://doi.org/10.5194/bg-19-29-2022, 2022
Short summary
Short summary
Modeling vegetation canopy is important in predicting whether the land remains a carbon sink to mitigate climate change in the near future. Vegetation canopy model complexity, however, impacts the model-predicted carbon and water fluxes as well as canopy fluorescence, even if the same suite of model inputs is used. Given the biases caused by canopy model complexity, we recommend not misusing parameters inverted using different models or assumptions.
Alexander J. Turner, Philipp Köhler, Troy S. Magney, Christian Frankenberg, Inez Fung, and Ronald C. Cohen
Biogeosciences, 18, 6579–6588, https://doi.org/10.5194/bg-18-6579-2021, https://doi.org/10.5194/bg-18-6579-2021, 2021
Short summary
Short summary
This work builds a high-resolution estimate (500 m) of gross primary productivity (GPP) over the US using satellite measurements of solar-induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI) between 2018 and 2020. We identify ecosystem-specific scaling factors for estimating gross primary productivity (GPP) from TROPOMI SIF. Extreme precipitation events drive four regional GPP anomalies that account for 28 % of year-to-year GPP differences across the US.
Siraput Jongaramrungruang, Georgios Matheou, Andrew K. Thorpe, Zhao-Cheng Zeng, and Christian Frankenberg
Atmos. Meas. Tech., 14, 7999–8017, https://doi.org/10.5194/amt-14-7999-2021, https://doi.org/10.5194/amt-14-7999-2021, 2021
Short summary
Short summary
This study shows how precision error and bias in column methane retrieval change with different instrument specifications and the impact of spectrally complex surface albedos on retrievals. We show how surface interferences can be mitigated with an optimal spectral resolution and a higher polynomial degree in a retrieval process. The findings can inform future satellite instrument designs to have robust observations capable of separating real CH4 plume enhancements from surface interferences.
Luis Guanter, Cédric Bacour, Andreas Schneider, Ilse Aben, Tim A. van Kempen, Fabienne Maignan, Christian Retscher, Philipp Köhler, Christian Frankenberg, Joanna Joiner, and Yongguang Zhang
Earth Syst. Sci. Data, 13, 5423–5440, https://doi.org/10.5194/essd-13-5423-2021, https://doi.org/10.5194/essd-13-5423-2021, 2021
Short summary
Short summary
Sun-induced chlorophyll fluorescence (SIF) is an electromagnetic signal emitted by plants in the red and far-red parts of the spectrum. It has a functional link to photosynthesis and can be measured by satellite instruments, which makes it an important variable for the remote monitoring of the photosynthetic activity of vegetation ecosystems around the world. In this contribution we present a SIF dataset derived from the new Sentinel-5P TROPOMI missions.
Yujie Wang, Philipp Köhler, Liyin He, Russell Doughty, Renato K. Braghiere, Jeffrey D. Wood, and Christian Frankenberg
Geosci. Model Dev., 14, 6741–6763, https://doi.org/10.5194/gmd-14-6741-2021, https://doi.org/10.5194/gmd-14-6741-2021, 2021
Short summary
Short summary
We present the first step in testing a new land model as part of a new Earth system model. Our model links plant hydraulics, stomatal optimization theory, and a comprehensive canopy radiation scheme. We compared model-predicted carbon and water fluxes to flux tower observations and model-predicted sun-induced chlorophyll fluorescence to satellite retrievals. Our model quantitatively predicted the carbon and water fluxes as well as the canopy fluorescence yield.
Yi Yin, Frederic Chevallier, Philippe Ciais, Philippe Bousquet, Marielle Saunois, Bo Zheng, John Worden, A. Anthony Bloom, Robert J. Parker, Daniel J. Jacob, Edward J. Dlugokencky, and Christian Frankenberg
Atmos. Chem. Phys., 21, 12631–12647, https://doi.org/10.5194/acp-21-12631-2021, https://doi.org/10.5194/acp-21-12631-2021, 2021
Short summary
Short summary
The growth of methane, the second-most important anthropogenic greenhouse gas after carbon dioxide, has been accelerating in recent years. Using an ensemble of multi-tracer atmospheric inversions constrained by surface or satellite observations, we show that global methane emissions increased by nearly 1 % per year from 2010–2017, with leading contributions from the tropics and East Asia.
Jakob Borchardt, Konstantin Gerilowski, Sven Krautwurst, Heinrich Bovensmann, Andrew K. Thorpe, David R. Thompson, Christian Frankenberg, Charles E. Miller, Riley M. Duren, and John Philip Burrows
Atmos. Meas. Tech., 14, 1267–1291, https://doi.org/10.5194/amt-14-1267-2021, https://doi.org/10.5194/amt-14-1267-2021, 2021
Short summary
Short summary
The AVIRIS-NG hyperspectral imager has been used successfully to identify and quantify anthropogenic methane sources utilizing different retrieval and inversion methods. Here, we examine the adaption and application of the WFM-DOAS algorithm to AVIRIS-NG measurements to retrieve local methane column enhancements, compare the results with other retrievals, and quantify the uncertainties resulting from the retrieval method. Additionally, we estimate emissions from five detected methane plumes.
Rui Cheng, Troy S. Magney, Debsunder Dutta, David R. Bowling, Barry A. Logan, Sean P. Burns, Peter D. Blanken, Katja Grossmann, Sophia Lopez, Andrew D. Richardson, Jochen Stutz, and Christian Frankenberg
Biogeosciences, 17, 4523–4544, https://doi.org/10.5194/bg-17-4523-2020, https://doi.org/10.5194/bg-17-4523-2020, 2020
Short summary
Short summary
We measured reflected sunlight from an evergreen canopy for a year to detect changes in pigments that play an important role in regulating the seasonality of photosynthesis. Results show a strong mechanistic link between spectral reflectance features and pigment content, which is validated using a biophysical model. Our results show spectrally where, why, and when spectral features change over the course of the season and show promise for estimating photosynthesis remotely.
Cited articles
Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O.
L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., Berry,
N. J., Boeckx, P., Jong, B. H. J., DeVries, B., Girardin, C. A. J.,
Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y.,
Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C.
M., Ferry, S. J. W., Sunderland, T., Laurin, G. V., Gatti, R. C., Valentini,
R., Verbeeck, H., Wijaya, A., and Willcock, S.: An integrated pan-tropical
biomass map using multiple reference datasets, Global Change Biol., 22,
1406–1420, https://doi.org/10.1111/gcb.13139, 2016.
Bilich, A., Axelrad, P., and Larson, K. M.: Scientific Utility of the
Signal-to-Noise Ratio (SNR) Reported by Geodetic GPS Receivers, Proceedings
of the 20th International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GNSS 2007), 1999–2010, 2007.
Brandt, M., Wigneron, J.-P., Chave, J., Tagesson, T., Penuelas, J., Ciais,
P., Rasmussen, K., Tian, F., Mbow, C., Al-Yaari, A., Rodriguez-Fernandez,
N., Schurgers, G., Zhang, W., Chang, J., Kerr, Y., Verger, A., Tucker, C.,
Mialon, A., Rasmussen, L. V., Fan, L., and Fensholt, R.: Satellite passive
microwaves reveal recent climate-induced carbon losses in African drylands,
Nat. Ecol. Evol., 2, 827–835, https://doi.org/10.1038/s41559-018-0530-6, 2018.
Camps, A., Alonso-Arroyo, A., Park, H., Onrubia, R., Pascual, D., and
Querol, J.: L-Band Vegetation Optical Depth Estimation Using Transmitted
GNSS Signals: Application to GNSS-Reflectometry and Positioning, Remote
Sens., 12, 2352, https://doi.org/10.3390/rs12152352, 2020.
Carreno-Luengo, H., Luzi, G., and Crosetto, M.: Above-Ground Biomass
Retrieval over Tropical Forests: A Novel GNSS-R Approach with CyGNSS, Remote
Sens., 12, 1368, https://doi.org/10.3390/rs12091368, 2020.
Cermak, J., Kucera, J., Bauerle, W. L., Phillips, N., and Hinckley, T. M.:
Tree water storage and its diurnal dynamics related to sap flow and changes
in stem volume in old-growth Douglas-fir trees, Tree Physiol., 27,
181–198, https://doi.org/10.1093/treephys/27.2.181, 2007.
Chan, S., Bindlish, R., Hunt, R., Jackson, T., and Kimball, J.: Ancillary
Data Report Vegetation Water Content, in: SMAP Science Document no. 047, Jet
Propulsion Laboratory, California Institute of Technology, 2013.
Chaubell, M. J., Yueh, S. H., Dunbar, R. S., Colliander, A., Chen, F., Chan,
S. K., Entekhabi, D., Bindlish, R., O'Neill, P. E., Asanuma, J., Berg, A.
A., Bosch, D. D., Caldwell, T., Cosh, M. H., Holifield Collins, C.,
Martinez-Fernandez, J., Seyfried, M., Starks, P. J., Su, Z., Thibeault, M.,
and Walker, J.: Improved SMAP Dual-Channel Algorithm for the Retrieval of
Soil Moisture, IEEE T. Geosci. Remote, 58, 3894–3905,
https://doi.org/10.1109/tgrs.2019.2959239, 2020.
Chew, C. C. and Small, E. E.: Soil Moisture Sensing Using Spaceborne GNSS
Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture,
Geophys. Res. Lett., 45, 4049–4057, https://doi.org/10.1029/2018gl077905, 2018.
Chew, C. C., Small, E. E., Larson, K. M., and Zavorotny, V. U.: Effects of
Near-Surface Soil Moisture on GPS SNR Data: Development of a Retrieval
Algorithm for Soil Moisture, IEEE T. Geosci. Remote, 52, 537–543,
https://doi.org/10.1109/tgrs.2013.2242332, 2014.
Chuah, H. T., Lee, K. Y., and Lau, T. W.: Dielectric constants of rubber and
oil palm leaf samples at X-band, IEEE T. Geosci. Remote, 33, 221–223,
https://doi.org/10.1109/36.368205, 1995.
Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger,
J.-C., Skakun, S. V., and Justice, C.: The Harmonized Landsat and Sentinel-2
surface reflectance data set, Remote Sens. Environ., 219, 145–161,
https://doi.org/10.1016/j.rse.2018.09.002, 2018.
Egido, A., Paloscia, S., Motte, E., Guerriero, L., Pierdicca, N., Caparrini,
M., Santi, E., Fontanelli, G., and Floury, N.: Airborne GNSS-R Polarimetric
Measurements for Soil Moisture and Above-Ground Biomass Estimation, IEEE
J. Sel. Top. Appl.,
7, 1522–1532, https://doi.org/10.1109/jstars.2014.2322854, 2014.
Estey, L.: TEQC (Translation, Editing and Quality Checking) [software], https://www.unavco.org/software/data-processing/teqc/teqc.html (last access: 20 April 2023), 2019.
Fan, L., Wigneron, J.-P., Ciais, P., Chave, J., Brandt, M., Fensholt, R.,
Saatchi, S. S., Bastos, A., Al-Yaari, A., Hufkens, K., Qin, Y., Xiao, X.,
Chen, C., Myneni, R. B., Fernandez-Moran, R., Mialon, A.,
Rodriguez-Fernandez, N. J., Kerr, Y., Tian, F., and Peñuelas, J.:
Satellite-observed pantropical carbon dynamics, Nat. Plants, 5, 944–951,
https://doi.org/10.1038/s41477-019-0478-9, 2019.
Faria, T., Garcia-Plazaola, J. I., Abadia, A., Cerasoli, S., Pereira, J. S.,
and Chaves, M. M.: Diurnal changes in photoprotective mechanisms in leaves
of cork oak (Quercus suber) during summer, Tree Physiol., 16, 115–123,
https://doi.org/10.1093/treephys/16.1-2.115, 1996.
Feldman, A. F., Short Gianotti, D. J., Konings, A. G., Gentine, P., and Entekhabi, D.: Patterns of plant rehydration and growth following pulses of soil moisture availability, Biogeosciences, 18, 831–847, https://doi.org/10.5194/bg-18-831-2021, 2021.
Ferrazzoli, P. and Guerriero, L.: Passive microwave remote sensing of
forests: a model investigation, IEEE T. Geosci. Remote, 34, 433–443,
https://doi.org/10.1109/36.485121, 1996.
Frappart, F., Wigneron, J.-P., Li, X., Liu, X., Al-Yaari, A., Fan, L., Wang,
M., Moisy, C., Le Masson, E., Aoulad Lafkih, Z., Vallé, C., Ygorra, B.,
and Baghdadi, N.: Global Monitoring of the Vegetation Dynamics from the
Vegetation Optical Depth (VOD): A Review, Remote Sens., 12, 2915,
https://doi.org/10.3390/rs12182915, 2020.
Gao, B.-C.: NDWI – A normalized difference water index for remote sensing of
vegetation liquid water from space, Remote Sens. Environ., 58,
257–266, https://doi.org/10.1016/s0034-4257(96)00067-3, 1996.
Grant, J. P., Wigneron, J. P., De Jeu, R. A. M., Lawrence, H., Mialon, A.,
Richaume, P., Al Bitar, A., Drusch, M., van Marle, M. J. E., and Kerr, Y.:
Comparison of SMOS and AMSR-E vegetation optical depth to four MODIS-based
vegetation indices, Remote Sens. Environ., 172, 87–100,
https://doi.org/10.1016/j.rse.2015.10.021, 2016.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B.,
Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant responses to
rising vapor pressure deficit, New Phytol., 226, 1550–1566,
https://doi.org/10.1111/nph.16485, 2020.
Guerriero, L., Martin, F., Mollfulleda, A., Paloscia, S., Pierdicca, N.,
Santi, E., and Floury, N.: Ground-Based Remote Sensing of Forests Exploiting
GNSS Signals, IEEE T. Geosci. Remote, 58, 6844–6860,
https://doi.org/10.1109/tgrs.2020.2976899, 2020.
Guglielmetti, M., Schwank, M., Mätzler, C., Oberdörster, C.,
Vanderborght, J., and Flühler, H.: Measured microwave radiative transfer
properties of a deciduous forest canopy, Remote Sens. Environ., 109,
523–532, https://doi.org/10.1016/j.rse.2007.02.003, 2007.
Guglielmetti, M., Schwank, M., Matzler, C., Oberdorster, C., Vanderborght,
J., and Fluhler, H.: FOSMEX: Forest Soil Moisture Experiments With Microwave
Radiometry, IEEE T. Geosci. Remote, 46, 727–735, https://doi.org/10.1109/tgrs.2007.914797,
2008.
Holtzman, N. M., Anderegg, L. D. L., Kraatz, S., Mavrovic, A., Sonnentag, O., Pappas, C., Cosh, M. H., Langlois, A., Lakhankar, T., Tesser, D., Steiner, N., Colliander, A., Roy, A., and Konings, A. G.: L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand, Biogeosciences, 18, 739–753, https://doi.org/10.5194/bg-18-739-2021, 2021.
Humphrey, V. and Frankenberg, C.: GNSS measurements at a pair of sites (clear-sky and forested) used to calculate GNSS-VOD [data set], https://doi.org/10.6084/m9.figshare.22140575 (last access: 20 April 2023), 2023.
Jackson, T. J., Schmugge, T. J., and Wang, J. R.: Passive microwave sensing
of soil moisture under vegetation canopies, Water Resour. Res., 18,
1137–1142, https://doi.org/10.1029/WR018i004p01137, 1982.
Jackson, T. J. and Schmugge, T. J.: Vegetation effects on the microwave
emission of soils, Remote Sens. Environ., 36, 203–212,
https://doi.org/10.1016/0034-4257(91)90057-d, 1991.
Kamakura, M., Kosugi, Y., Takanashi, S., Matsumoto, K., Okumura, M., and
Philip, E.: Patchy stomatal behavior during midday depression of leaf CO2
exchange in tropical trees, Tree Physiol., 31, 160–168,
https://doi.org/10.1093/treephys/tpq102, 2011.
Kerr, Y. H. and Wigneron, J. P.: Vegetation models and observations A
review, in: Passive Microwave Remote Sensing of Land-Atmosphere
Interactions, 317–344, 1995.
Khabbazan, S., Steele-Dunne, S. C., Vermunt, P., Judge, J., Vreugdenhil, M.,
and Gao, G.: The influence of surface canopy water on the relationship
between L-band backscatter and biophysical variables in agricultural
monitoring, Remote Sens. Environ., 268, 112789, https://doi.org/10.1016/j.rse.2021.112789,
2022.
Kocher, P., Horna, V., and Leuschner, C.: Stem water storage in five
coexisting temperate broad-leaved tree species: significance, temporal
dynamics and dependence on tree functional traits, Tree Physiol., 33,
817–832, https://doi.org/10.1093/treephys/tpt055, 2013.
Konings, A. G. and Gentine, P.: Global variations in ecosystem-scale
isohydricity, Global Change Biol., 23, 891–905, https://doi.org/10.1111/gcb.13389, 2016.
Konings, A. G., Piles, M., Rötzer, K., McColl, K. A., Chan, S. K., and
Entekhabi, D.: Vegetation optical depth and scattering albedo retrieval
using time series of dual-polarized L-band radiometer observations, Remote Sens. Environ., 172, 178–189, https://doi.org/10.1016/j.rse.2015.11.009, 2016.
Konings, A. G., Piles, M., Das, N., and Entekhabi, D.: L-band vegetation
optical depth and effective scattering albedo estimation from SMAP, Remote Sens. Environ., 198, 460–470, https://doi.org/10.1016/j.rse.2017.06.037, 2017a.
Konings, A. G., Yu, Y., Xu, L., Yang, Y., Schimel, D. S., and Saatchi, S.
S.: Active microwave observations of diurnal and seasonal variations of
canopy water content across the humid African tropical forests, Geophys. Res. Lett., 44, 2290–2299, https://doi.org/10.1002/2016gl072388, 2017b.
Konings, A. G., Rao, K., and Steele-Dunne, S. C.: Macro to micro: microwave
remote sensing of plant water content for physiology and ecology, New
Phytol., 223, 1166–1172, https://doi.org/10.1111/nph.15808, 2019.
Konings, A. G., Saatchi, S. S., Frankenberg, C., Keller, M., Leshyk, V.,
Anderegg, W. R. L., Humphrey, V., Matheny, A. M., Trugman, A., Sack, L.,
Agee, E., Barnes, M. L., Binks, O., Cawse-Nicholson, K., Christoffersen, B.
O., Entekhabi, D., Gentine, P., Holtzman, N. M., Katul, G. G., Liu, Y.,
Longo, M., Martinez-Vilalta, J., McDowell, N., Meir, P., Mencuccini, M.,
Mrad, A., Novick, K. A., Oliveira, R. S., Siqueira, P., Steele-Dunne, S. C.,
Thompson, D. R., Wang, Y., Wehr, R., Wood, J. D., Xu, X., and Zuidema, P.
A.: Detecting forest response to droughts with global observations of
vegetation water content, Global Change Biol., 27, 6005–6024,
https://doi.org/10.1111/gcb.15872, 2021.
Kurum, M., Lang, R. H., O'Neill, P. E., Joseph, A. T., Jackson, T. J., and
Cosh, M. H.: L-Band Radar Estimation of Forest Attenuation for
Active/Passive Soil Moisture Inversion, 2009 IEEE T. Geosci. Remote Se., 47, 3026–3040,
https://doi.org/10.1109/tgrs.2009.2026641, 2009a.
Kurum, M., Lang, R. H., Utku, C., and O'Neill, P. E.: A physical model for
microwave radiometry of forest canopies, 2021 IEEE T. Geosci. Remote S., III-294-III-297, https://doi.org/10.1109/IGARSS.2009.5417758, 2009b.
Kurum, M., O'Neill, P. E., Lang, R. H., Joseph, A. T., Cosh, M. H., and
Jackson, T. J.: Effective tree scattering and opacity at L-band, Remote Sens. Environ., 118, 1–9, https://doi.org/10.1016/j.rse.2011.10.024, 2012.
Kurum, M., and Farhad, M. M.: UGV-Based Mapping of Forest Transmissivity
Using GPS Measurements, 2021 IEEE T. Geosci. Remote Se. IGARSS, 6076–6079, https://doi.org/10.1109/IGARSS47720.2021.9555155, 2021.
Kurum, M., Kim, S.-B., Akbar, R., and Cosh, M. H.: Surface Soil Moisture
Retrievals Under Forest Canopy for L-Band SAR Observations Across a
Wide Range of Incidence Angles by Inverting a Physical Scattering Model,
IEEE J. Sel. Top. Appl., 14, 1741–1753, https://doi.org/10.1109/jstars.2020.3047883, 2021.
Larson, K. M.: GPS interferometric reflectometry: applications to surface
soil moisture, snow depth, and vegetation water content in the western
United States, Wiley Interdis. Rev., 3, 775–787,
https://doi.org/10.1002/wat2.1167, 2016.
Larson, K. M. and Nievinski, F. G.: GPS snow sensing: results from the
EarthScope Plate Boundary Observatory, GPS Solut., 17, 41–52,
https://doi.org/10.1007/s10291-012-0259-7, 2012.
Larson, K. M., Gutmann, E. D., Zavorotny, V. U., Braun, J. J., Williams, M.
W., and Nievinski, F. G.: Can we measure snow depth with GPS receivers?,
Geophys. Res. Lett., 36, L17502, https://doi.org/10.1029/2009gl039430, 2009.
Le Vine, D. M. and Karam, M. A.: Dependence of attenuation in a vegetation
canopy on frequency and plant water content, IEEE T. Geosci. Remote, 34,
1090–1096, https://doi.org/10.1109/36.536525, 1996.
Lee, J.-E., Frankenberg, C., van der Tol, C., Berry, J. A., Guanter, L.,
Boyce, C. K., Fisher, J. B., Morrow, E., Worden, J. R., Asefi, S., Badgley,
G., and Saatchi, S.: Forest productivity and water stress in Amazonia:
observations from GOSAT chlorophyll fluorescence, P. Roy. Soc. B-Biol. Sci., 280, 20130171, https://doi.org/10.1098/rspb.2013.0171, 2013.
Li, X., Wigneron, J.-P., Frappart, F., Fan, L., Ciais, P., Fensholt, R.,
Entekhabi, D., Brandt, M., Konings, A. G., Liu, X., Wang, M., Al-Yaari, A.,
and Moisy, C.: Global-scale assessment and inter-comparison of recently
developed/reprocessed microwave satellite vegetation optical depth products,
Remote Sens. Environ., 253, 112208, https://doi.org/10.1016/j.rse.2020.112208, 2021.
Liu, H. Q. and Huete, A.: A feedback based modification of the NDVI to
minimize canopy background and atmospheric noise, IEEE T. Geosci. Remote, 33,
457–465, https://doi.org/10.1109/tgrs.1995.8746027, 1995.
Los Angeles Department of Public Works: Near real-time raingages [data set], https://dpw.lacounty.gov/wrd/rainfall/ (last access: 20 April 2023), 2022.
Martínez-Vilalta, J., Poyatos, R., Aguadé, D., Retana, J., and
Mencuccini, M.: A new look at water transport regulation in plants, New
Phytol., 204, 105–115, https://doi.org/10.1111/nph.12912, 2014.
Matheny, A. M., Garrity, S. R., and Bohrer, G.: The Calibration and Use of
Capacitance Sensors to Monitor Stem Water Content in Trees, J. Visual. Exp., 130, 57062, https://doi.org/10.3791/57062, 2017.
Matzler, C.: Microwave (1–100 GHz) dielectric model of leaves, IEEE T. Geosci. Remote, 32, 947–949, https://doi.org/10.1109/36.298024, 1994.
Mätzler, C.: Microwave transmissivity of a forest canopy: Experiments
made with a beech, Remote Sens. Environ., 48, 172–180,
https://doi.org/10.1016/0034-4257(94)90139-2, 1994.
Mirfenderesgi, G., Bohrer, G., Matheny, A. M., Fatichi, S., de Moraes
Frasson, R. P., and Schäfer, K. V. R.: Tree level hydrodynamic approach
for resolving aboveground water storage and stomatal conductance and
modeling the effects of tree hydraulic strategy, J. Geophys. Res.-Biogeo., 121, 1792–1813, https://doi.org/10.1002/2016jg003467, 2016.
Moesinger, L., Dorigo, W., de Jeu, R., van der Schalie, R., Scanlon, T., Teubner, I., and Forkel, M.: The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA), Earth Syst. Sci. Data, 12, 177–196, https://doi.org/10.5194/essd-12-177-2020, 2020.
Momen, M., Wood, J. D., Novick, K. A., Pangle, R., Pockman, W. T., McDowell,
N. G., and Konings, A. G.: Interacting Effects of Leaf Water Potential and
Biomass on Vegetation Optical Depth, J. Geophys. Res.-Biogeo., 122, 3031–3046, https://doi.org/10.1002/2017jg004145, 2017.
Mullan, D. and Pietragalla, J.: Chapter 5. Leaf relative water content, in:
Physiological breeding II: a field guide to wheat phenotyping, edited by:
Pask, A., Pietragalla, J., Mullan, D., and Reynolds, M. P., CIMMYT, Mexico,
132 pp., 2012.
Munoz-Martin, J. F., Pascual, D., Onrubia, R., Park, H., Camps, A., Rudiger,
C., Walker, J. P., and Monerris, A.: Vegetation Canopy Height Retrieval
Using L1 and L5 Airborne GNSS-R, IEEE Geosci. Remote Sens. Lett.,
19, 1–5, https://doi.org/10.1109/lgrs.2021.3131263, 2022.
Owe, M., de Jeu, R., and Holmes, T.: Multisensor historical climatology of
satellite-derived global land surface moisture, J. Geophys.
Res., 113, F01002, https://doi.org/10.1029/2007jf000769, 2008.
Paloscia, S. and Pampaloni, P.: Microwave vegetation indexes for detecting
biomass and water conditions of agricultural crops, Remote Sens. Environ., 40, 15–26, https://doi.org/10.1016/0034-4257(92)90123-2, 1992.
Pan, Y., Ren, C., Liang, Y., Zhang, Z., and Shi, Y.: Inversion of surface
vegetation water content based on GNSS-IR and MODIS data fusion, Spac. Stud., 1, 21, https://doi.org/10.1186/s43020-020-00021-z, 2020.
Prigent, C., Jimenez, C., Dinh, L. A., Frappart, F., Gentine, P., Wigneron,
J. P., and Munchak, J.: Diurnal and Seasonal Variations of Passive and
Active Microwave Satellite Observations Over Tropical Forests, J. Geophys. Res.-Biogeo., 127, e2021JG006677, https://doi.org/10.1029/2021jg006677, 2022.
Ritter, F., Berkelhammer, M., and Beysens, D.: Dew frequency across the US from a network of in situ radiometers, Hydrol. Earth Syst. Sci., 23, 1179–1197, https://doi.org/10.5194/hess-23-1179-2019, 2019.
Rodriguez-Alvarez, N., Bosch-Lluis, X., Camps, A., Ramos-Perez, I.,
Valencia, E., Park, H., and Vall-llossera, M.: Vegetation Water Content
Estimation Using GNSS Measurements, IEEE Geosci. Remote Sens. Lett., 9, 282–286, https://doi.org/10.1109/lgrs.2011.2166242, 2012.
Rodríguez-Fernández, N. J., Mialon, A., Mermoz, S., Bouvet, A., Richaume, P., Al Bitar, A., Al-Yaari, A., Brandt, M., Kaminski, T., Le Toan, T., Kerr, Y. H., and Wigneron, J.-P.: An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa, Biogeosciences, 15, 4627–4645, https://doi.org/10.5194/bg-15-4627-2018, 2018.
Ruf, C. S., Chew, C., Lang, T., Morris, M. G., Nave, K., Ridley, A., and
Balasubramaniam, R.: A New Paradigm in Earth Environmental Monitoring with
the CYGNSS Small Satellite Constellation, Sci. Rep., 8, 8782,
https://doi.org/10.1038/s41598-018-27127-4, 2018.
Santi, E., Paloscia, S., Pettinato, S., Fontanelli, G., Guerriero, L.,
Pierdicca, N., Clarizia, M.-P., Notarnicola, C., Pierdicca, N., Bovenga, F.,
and Santi, E.: Global monitoring of forest biomass using GNSS reflectometry
(Conference Presentation), Active and Passive Microwave Remote Sensing for
Environmental Monitoring III, 111540B, https://doi.org/10.1117/12.2534676, 2019.
Schmugge, T. J. and Jackson, T. J.: A dielectric model of the vegetation
effects on the microwave emission from soils, IEEE T. Geosci. Remote, 30,
757–760, https://doi.org/10.1109/36.158870, 1992.
Schneebeli, M., Wolf, S., Kunert, N., Eugster, W., and Mätzler, C.:
Relating the X-band opacity of a tropical tree canopy to sapflow, rain
interception and dew formation, Remote Sens. Environ., 115,
2116–2125, https://doi.org/10.1016/j.rse.2011.04.016, 2011.
Schwank, M., Kontu, A., Mialon, A., Naderpour, R., Houtz, D., Lemmetyinen,
J., Rautiainen, K., Li, Q., Richaume, P., Kerr, Y., and Mätzler, C.:
Temperature effects on L-band vegetation optical depth of a boreal forest,
Remote Sens. Environ., 263, 112542, https://doi.org/10.1016/j.rse.2021.112542, 2021.
Scoffoni, C., Vuong, C., Diep, S., Cochard, H., and Sack, L.: Leaf Shrinkage
with Dehydration: Coordination with Hydraulic Vulnerability and Drought
Tolerance, Plant Physiol., 164, 1772–1788, https://doi.org/10.1104/pp.113.221424, 2014.
Small, E. E., Larson, K. M., and Braun, J. J.: Sensing vegetation growth
with reflected GPS signals, Geophys. Res. Lett., 37, L12401,
https://doi.org/10.1029/2010gl042951, 2010.
Smyrnaios, M., Schön, S., and Liso, M.: Multipath Propagation, Characterization and Modeling in GNSS, in: Geodetic Sciences – Observations, Modeling and Applications, edited by: Jin, S., InTech, https://doi.org/10.5772/54567, 2013.
Steele-Dunne, S. C., Friesen, J., and van de Giesen, N.: Using Diurnal
Variation in Backscatter to Detect Vegetation Water Stress, IEEE T. Geosci. Remote, 50, 2618–2629, https://doi.org/10.1109/tgrs.2012.2194156, 2012.
Tian, F., Brandt, M., Liu, Y. Y., Verger, A., Tagesson, T., Diouf, A. A.,
Rasmussen, K., Mbow, C., Wang, Y., and Fensholt, R.: Remote sensing of
vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD)
using AVHRR NDVI and in situ green biomass data over West African Sahel,
Remote Sens. Environ., 177, 265–276, https://doi.org/10.1016/j.rse.2016.02.056,
2016.
Tian, F., Wigneron, J.-P., Ciais, P., Chave, J., Ogée, J., Peñuelas,
J., Ræbild, A., Domec, J.-C., Tong, X., Brandt, M., Mialon, A.,
Rodriguez-Fernandez, N., Tagesson, T., Al-Yaari, A., Kerr, Y., Chen, C.,
Myneni, R. B., Zhang, W., Ardö, J., and Fensholt, R.: Coupling of
ecosystem-scale plant water storage and leaf phenology observed by
satellite, Nat. Ecol. Evol., 2, 1428–1435,
https://doi.org/10.1038/s41559-018-0630-3, 2018.
Ulaby, F. T. and Jedlicka, R. P.: Microwave Dielectric Properties of Plant
Materials, IEEE T. Geosci. Remote, G22, 406–415, https://doi.org/10.1109/tgrs.1984.350644,
1984.
Ulaby, F. and El-rayes, M.: Microwave Dielectric Spectrum of Vegetation –
Part II: Dual-Dispersion Model, IEEE T. Geosci. Remote, 25, 550–557,
https://doi.org/10.1109/tgrs.1987.289833, 1987.
Ulaby, F. T. and Long, D. G.: Microwave radar and radiometric remote
sensing, The University of Michigan Press, Ann. Arbor, 984 pp., 2014.
Van de Griend, A. A. and Wigneron, J. P.: The b-factor as a function of
frequency and canopy type at H-polarization, IEEE T. Geosci. Remote, 42,
786–794, https://doi.org/10.1109/tgrs.2003.821889, 2004.
Vermunt, P. C., Khabbazan, S., Steele-Dunne, S. C., Judge, J.,
Monsivais-Huertero, A., Guerriero, L., and Liu, P.-W.: Response of Subdaily
L-Band Backscatter to Internal and Surface Canopy Water Dynamics, IEEE T. Geosci. Remote, 59, 7322–7337, https://doi.org/10.1109/tgrs.2020.3035881, 2021.
Vermunt, P. C., Steele-Dunne, S. C., Khabbazan, S., Judge, J., and van de Giesen, N. C.: Extrapolating continuous vegetation water content to understand sub-daily backscatter variations, Hydrol. Earth Syst. Sci., 26, 1223–1241, https://doi.org/10.5194/hess-26-1223-2022, 2022.
Vittucci, C., Vaglio Laurin, G., Tramontana, G., Ferrazzoli, P., Guerriero,
L., and Papale, D.: Vegetation optical depth at L-band and above ground
biomass in the tropical range: Evaluating their relationships at continental
and regional scales, Int. J. Appl. Earth Observ. Geoinfo., 77, 151–161, https://doi.org/10.1016/j.jag.2019.01.006, 2019.
Wang, X., Dannenberg, M. P., Yan, D., Jones, M. O., Kimball, J. S., Moore,
D. J. P., Leeuwen, W. J. D., Didan, K., and Smith, W. K.: Globally
Consistent Patterns of Asynchrony in Vegetation Phenology Derived From
Optical, Microwave, and Fluorescence Satellite Data, J. Geophys.
Res.-Biogeo., 125, e2020JG005732, https://doi.org/10.1029/2020jg005732, 2020.
Wigneron, J.-P., Fan, L., Ciais, P., Bastos, A., Brandt, M., Chave, J.,
Saatchi, S., Baccini, A., and Fensholt, R.: Tropical forests did not recover
from the strong 2015–2016 El Niño event, Sci. Adv., 6, eaay4603,
https://doi.org/10.1126/sciadv.aay4603, 2020.
Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K., and Parazoo, N. C.:
Emerging satellite observations for diurnal cycling of ecosystem processes,
Nat. Plants, 7, 877–887, https://doi.org/10.1038/s41477-021-00952-8, 2021.
Xu, X., Konings, A. G., Longo, M., Feldman, A., Xu, L., Saatchi, S., Wu, D.,
Wu, J., and Moorcroft, P.: Leaf surface water, not plant water stress,
drives diurnal variation in tropical forest canopy water content, New
Phytol., 231, 122–136, https://doi.org/10.1111/nph.17254, 2021.
Yilmaz, M. T., Hunt, E. R., and Jackson, T. J.: Remote sensing of vegetation
water content from equivalent water thickness using satellite imagery,
Remote Sens. Environ., 112, 2514–2522, https://doi.org/10.1016/j.rse.2007.11.014,
2008.
Zhou, H., Sun, Y., Shan, G., Grantz, D. A., Cheng, Q., Schulze Lammers, P.,
Damerow, L., Wen, B., Xue, X., and Chen, B.: In situ measurement of stem
water content and diurnal storage of an apricot tree with a high frequency
inner fringing dielectric sensor, Agr. Forest Meteorol., 250, 35–46,
https://doi.org/10.1016/j.agrformet.2017.12.002, 2018.
Zribi, M., Motte, E., Fanise, P., and Zouaoui, W.: Low-Cost GPS Receivers
for the Monitoring of Sunflower Cover Dynamics, J. Sens., 2017,
1–9, https://doi.org/10.1155/2017/6941739, 2017.
Short summary
Microwave satellites can be used to monitor how vegetation biomass changes over time or how droughts affect the world's forests. However, such satellite data are still difficult to validate and interpret because of a lack of comparable field observations. Here, we present a remote sensing technique that uses the Global Navigation Satellite System (GNSS) as a makeshift radar, making it possible to observe canopy transmissivity at any existing environmental research site in a cost-efficient way.
Microwave satellites can be used to monitor how vegetation biomass changes over time or how...
Altmetrics
Final-revised paper
Preprint