Articles | Volume 20, issue 9
https://doi.org/10.5194/bg-20-1789-2023
https://doi.org/10.5194/bg-20-1789-2023
Research article
 | 
16 May 2023
Research article |  | 16 May 2023

Continuous ground monitoring of vegetation optical depth and water content with GPS signals

Vincent Humphrey and Christian Frankenberg

Related authors

BuRNN (v1.0): A Data-Driven Fire Model
Seppe Lampe, Lukas Gudmundsson, Basil Kraft, Stijn Hantson, Douglas Kelley, Vincent Humphrey, Bertrand Le Saux, Emilio Chuvieco, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2025-3550,https://doi.org/10.5194/egusphere-2025-3550, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Using GNSS-based vegetation optical depth, tree sway motion, and eddy-covariance to examine evaporation of canopy-intercepted rainfall in a subalpine forest
Sean P. Burns, Vincent Humphrey, Ethan D. Gutmann, Mark S. Raleigh, David R. Bowling, and Peter D. Blanken
EGUsphere, https://doi.org/10.5194/egusphere-2025-1755,https://doi.org/10.5194/egusphere-2025-1755, 2025
Short summary
Estimating return periods for extreme events in climate models through Ensemble Boosting
Luna Bloin-Wibe, Robin Noyelle, Vincent Humphrey, Urs Beyerle, Reto Knutti, and Erich Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2025-525,https://doi.org/10.5194/egusphere-2025-525, 2025
Short summary
Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023,https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Drivers of intermodel uncertainty in land carbon sink projections
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022,https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary

Cited articles

Bilich, A., Axelrad, P., and Larson, K. M.: Scientific Utility of the Signal-to-Noise Ratio (SNR) Reported by Geodetic GPS Receivers, Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), 1999–2010, 2007. 
Camps, A., Alonso-Arroyo, A., Park, H., Onrubia, R., Pascual, D., and Querol, J.: L-Band Vegetation Optical Depth Estimation Using Transmitted GNSS Signals: Application to GNSS-Reflectometry and Positioning, Remote Sens., 12, 2352, https://doi.org/10.3390/rs12152352, 2020. 
Carreno-Luengo, H., Luzi, G., and Crosetto, M.: Above-Ground Biomass Retrieval over Tropical Forests: A Novel GNSS-R Approach with CyGNSS, Remote Sens., 12, 1368, https://doi.org/10.3390/rs12091368, 2020. 
Download
Short summary
Microwave satellites can be used to monitor how vegetation biomass changes over time or how droughts affect the world's forests. However, such satellite data are still difficult to validate and interpret because of a lack of comparable field observations. Here, we present a remote sensing technique that uses the Global Navigation Satellite System (GNSS) as a makeshift radar, making it possible to observe canopy transmissivity at any existing environmental research site in a cost-efficient way.
Share
Altmetrics
Final-revised paper
Preprint