Articles | Volume 20, issue 11
https://doi.org/10.5194/bg-20-2013-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2013-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Partitioning of carbon export in the euphotic zone of the oligotrophic South China Sea
Yifan Ma
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, 361102, China
Kuanbo Zhou
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, 361102, China
Weifang Chen
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, 361102, China
Junhui Chen
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, 361102, China
Jin-Yu Terence Yang
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, 361102, China
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, 361102, China
Related authors
No articles found.
Jialu Huang, Moriaki Yasuhara, He Wang, Pedro Julião Jimenez, Jiying Li, and Minhan Dai
Biogeosciences, 22, 4763–4777, https://doi.org/10.5194/bg-22-4763-2025, https://doi.org/10.5194/bg-22-4763-2025, 2025
Short summary
Short summary
We investigated the abundance, diversity, composition, and distribution of ostracods (a meiobenthic group) and their interactions with eutrophication and pollution through high-resolution sampling of surface sediment in Deep Bay, a small semi-enclosed riverine bay adjacent to two of the world’s most populated cities: Hong Kong and Shenzhen. The results support the idea that ostracods are a useful bioindicator of coastal benthic ecosystems shaped by distinct environmental problems.
Yuye Han, Zvi Steiner, Zhimian Cao, Di Fan, Junhui Chen, Jimin Yu, and Minhan Dai
Biogeosciences, 22, 3681–3697, https://doi.org/10.5194/bg-22-3681-2025, https://doi.org/10.5194/bg-22-3681-2025, 2025
Short summary
Short summary
Our results suggest coccolithophore calcite accounts for a major fraction of PIC (particulate inorganic carbon) standing stocks in the western North Pacific, with a markedly higher contribution in the oligotrophic subtropical gyre than in the Kuroshio–Oyashio transition region, which highlights the importance of coccolithophores for PIC production in the pelagic ocean, particularly in oligotrophic ocean waters.
Yanmin Wang, Xianghui Guo, Guizhi Wang, Lifang Wang, Tao Huang, Yan Li, Zhe Wang, and Minhan Dai
EGUsphere, https://doi.org/10.5194/egusphere-2023-3155, https://doi.org/10.5194/egusphere-2023-3155, 2024
Preprint archived
Short summary
Short summary
This study reports higher nutrient release in fish farming system compared to river inputs and other sources with implications for coastal environment. DIN and DIP variation in Sansha Bay are dominated by mariculture activity relative to river input during spring. The N/P budget shows that 52.8 ± 4.7 % of DIN and 33.0 ± 3.7 % of DIP released from fish feeds exceeded other nutrient inputs. Co-culture strategies (e.g., of fish, kelp and oysters) allow effective mitigation of environmental impacts.
Zhixuan Wang, Guizhi Wang, Xianghui Guo, Yan Bai, Yi Xu, and Minhan Dai
Earth Syst. Sci. Data, 15, 1711–1731, https://doi.org/10.5194/essd-15-1711-2023, https://doi.org/10.5194/essd-15-1711-2023, 2023
Short summary
Short summary
We reconstructed monthly sea surface pCO2 data with a high spatial resolution in the South China Sea (SCS) from 2003 to 2020. We validate our reconstruction with three independent testing datasets and present a new method to assess the uncertainty of the data. The results strongly suggest that our reconstruction effectively captures the main features of the spatiotemporal patterns of pCO2 in the SCS. Using this dataset, we found that the SCS is overall a weak source of atmospheric CO2.
Yangyang Zhao, Khanittha Uthaipan, Zhongming Lu, Yan Li, Jing Liu, Hongbin Liu, Jianping Gan, Feifei Meng, and Minhan Dai
Biogeosciences, 18, 2755–2775, https://doi.org/10.5194/bg-18-2755-2021, https://doi.org/10.5194/bg-18-2755-2021, 2021
Short summary
Short summary
In situ oxygen consumption rates were estimated for the first time during destruction of coastal hypoxia as disturbed by a typhoon and its reinstatement in the South China Sea off the Pearl River estuary. The reinstatement of summer hypoxia was rapid with a comparable timescale with that of its initial disturbance from frequent tropical cyclones, which has important implications for better understanding the intermittent nature of coastal hypoxia and its prediction in a changing climate.
Guizhi Wang, Samuel S. P. Shen, Yao Chen, Yan Bai, Huan Qin, Zhixuan Wang, Baoshan Chen, Xianghui Guo, and Minhan Dai
Earth Syst. Sci. Data, 13, 1403–1417, https://doi.org/10.5194/essd-13-1403-2021, https://doi.org/10.5194/essd-13-1403-2021, 2021
Short summary
Short summary
This study reconstructs a complete field of summer sea surface partial pressure of CO2 (pCO2) over the South China Sea (SCS) with a 0.5° resolution in the period of 2000–2017 using the scattered underway pCO2 observations. The spectral optimal gridding method was used in this reconstruction with empirical orthogonal functions computed from remote sensing data. Our reconstructed data show that the rate of sea surface pCO2 increase in the SCS is 2.4 ± 0.8 µatm yr-1 during 2000–2017.
Yanhong Lu, Shunyan Cheung, Ling Chen, Shuh-Ji Kao, Xiaomin Xia, Jianping Gan, Minhan Dai, and Hongbin Liu
Biogeosciences, 17, 6017–6032, https://doi.org/10.5194/bg-17-6017-2020, https://doi.org/10.5194/bg-17-6017-2020, 2020
Short summary
Short summary
Through a comprehensive investigation, we observed differential niche partitioning among diverse ammonia-oxidizing archaea (AOA) sublineages in a typical subtropical estuary. Distinct AOA communities observed at DNA and RNA levels suggested that a strong divergence in ammonia-oxidizing activity among different AOA groups occurs. Our result highlights the importance of identifying major ammonia oxidizers at RNA level in future studies.
Cited articles
Benitez-Nelson, C. R., Buesseler, K. O., and Crossin, G.: Upper ocean carbon
export, horizontal transport, and vertical eddy diffusivity in the
southwestern Gulf of Maine, Cont. Shelf Res., 20, 707–736, https://doi.org/10.1016/S0278-4343(99)00093-X, 2000.
Benitez-Nelson, C. R., Buesseler, K. O., Van Der Loeff, M., Andrews, J.,
Ball, L., Crossin, G., and Charette, M.: Testing a new small-volume technique
for determining 234Th in seawater, J. Radioanal. Nucl.
Ch., 248, 795–799, https://doi.org/10.1023/a:1010621618652, 2001.
Böttjer, D., Dore, J. E., Karl, D. M., Letelier, R. M., Mahaffey, C.,
Wilson, S. T., Zehr, J., and Church, M. J.: Temporal variability of nitrogen
fixation and particulate nitrogen export at Station ALOHA, Limnol. Oceanogr.,
62, 200–216, https://doi.org/10.1002/lno.10386, 2017.
Buesseler, K. O., Bacon, M. P., Cochran, J. K., and Livingston, H. D.: Carbon
and nitrogen export during the JGOFS North Atlantic Bloom experiment
estimated from 234Th : 238U disequilibria, Deep-Sea Res. Pt. I, 39,
1115–1137, https://doi.org/10.1016/0198-0149(92)90060-7, 1992.
Buesseler, K. O., Benitez-Nelson, C. R., Moran, S., Burd, A., Charette, M.,
Cochran, J. K., Coppola, L., Fisher, N., Fowler, S., and Gardner, W.: An
assessment of particulate organic carbon to thorium-234 ratios in the ocean
and their impact on the application of 234Th as a POC flux proxy, Mar.
Chem., 100, 213–233, https://doi.org/10.1016/j.marchem.2005.10.013, 2006.
Buesseler, K. O., Pike, S., Maiti, K., Lamborg, C. H., Siegel, D. A., and
Trull, T. W.: Thorium-234 as a tracer of spatial, temporal and vertical
variability in particle flux in the North Pacific, Deep-Sea Res. Pt. I, 56,
1143–1167, https://doi.org/10.1016/j.dsr.2009.04.001, 2009.
Buesseler, K. O.,
Boyd, P. W., Black, E. E., and Siegel, D. A.: Metrics that matter for assessing
the ocean biological carbon pump, P. Natl. Acad. Sci. USA, 117, 201918114,
https://doi.org/10.1073/pnas.1918114117, 2020a.
Buesseler, K. O., Benitez-Nelson, C. R., Roca-Martí, M., Wyatt, A. M.,
Resplandy, L., Clevenger, S. J., Drysdale, J. A., Estapa, M. L., Pike, S., and
Umhau, B. P.: High-resolution spatial and temporal measurements of
particulate organic carbon flux using thorium-234 in the northeast Pacific
Ocean during the EXport Processes in the Ocean from RemoTe Sensing field
campaign, Elementa, 8, 30, https://doi.org/10.1525/elementa.2020.030, 2020b.
Cai, P., Dai, M., Chen, W., Tang, T., and Zhou, K.: On the importance of the
decay of 234Th in determining size-fractionated ratio on
marine particles, Geophys. Res. Lett., 33, L23602, https://doi.org/10.1029/2006GL027792, 2006.
Cai, P., Chen, W., Dai, M., Wan, Z., Wang, D., Li, Q., Tang, T., and Lv, D.: A
high-resolution study of particle export in the southern South China Sea
based on 234Th : 238U disequilibrium, J. Geophys. Res.-Oceans, 113,
C04019, https://doi.org/10.1029/2007JC004268, 2008.
Cai, P., Zhao, D., Wang, L., Huang, B., and Dai, M.: Role of particle stock and
phytoplankton community structure in regulating particulate organic carbon
export in a large marginal sea, J. Geophys. Res.-Oceans, 120, 2063–2095,
https://doi.org/10.1002/2014JC010432, 2015.
Ceballos-Romero, E., Buesseler, K. O., and Villa-Alfageme, M.: Revisiting five decades of 234Th data: a comprehensive global oceanic compilation, Earth Syst. Sci. Data, 14, 2639–2679, https://doi.org/10.5194/essd-14-2639-2022, 2022.
Chen, W. F.: On the export fluxes, seasonality and controls of particulate organic carbon in the Northern South China Sea, Ph.D. thesis, Xiamen University, China, 152 pp., 2008
Chen, Y.-L. L., Chen, H.-Y., Lin, Y.-H., Yong, T.-C., Taniuchi, Y., and Tuo,
S.-H.: The relative contributions of unicellular and filamentous diazotrophs
to N2 fixation in the South China Sea and the upstream Kuroshio,
Deep-Sea Res. Pt. I, 85, 56–71, https://doi.org/10.1016/j.dsr.2013.11.006, 2014.
Coale, K. H. and Bruland, K. W.: Oceanic stratified euphotic zone as elucidated
by 234Th : 238U disequilibria, Limnol. Oceanogr., 32, 189–200,
https://doi.org/10.4319/lo.1987.32.1.0189, 1987.
Cornec, M., Laxenaire, R., Speich, S., and Claustre, H.: Impact of mesoscale
eddies on deep chlorophyll maxima, Geophys. Res. Lett., 48, e2021GL093470,
https://doi.org/10.1029/2021GL093470, 2021.
Dore, J. E. and Karl, D. M.: Nitrite distributions and dynamics at Station
ALOHA, Deep-Sea Res. Pt. II, 43, 385–402, https://doi.org/10.1016/0967-0645(95)00105-0, 1996.
Du, C., Liu, Z., Dai, M., Kao, S.-J., Cao, Z., Zhang, Y., Huang, T., Wang, L., and Li, Y.: Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: insights from an isopycnal mixing model, Biogeosciences, 10, 6419–6432, https://doi.org/10.5194/bg-10-6419-2013, 2013.
Du, C., Liu, Z., Kao, S. J., and Dai, M.: Diapycnal Fluxes of Nutrients in an
Oligotrophic Oceanic Regime: The South China Sea, Geophys. Res. Lett., 44,
11510–11518, https://doi.org/10.1002/2017GL074921, 2017.
Du, C., He, R., Liu, Z., Huang, T., Wang, L., Yuan, Z., Xu, Y., Wang, Z., and
Dai, M.: Climatology of nutrient distributions in the South China Sea based
on a large data set derived from a new algorithm, Prog. Oceanogr., 195,
102586, https://doi.org/10.1016/j.pocean.2021.102586, 2021.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and
planktonic new production in the deep ocean, Nature, 282, 677–680,
https://doi.org/10.1038/282677a0, 1979.
Estapa, M., Buesseler, K., Durkin, C. A., Omand, M., Benitez-Nelson, C. R.,
Roca-Martí, M., Breves, E., Kelly, R., and Pike, S.: Biogenic sinking
particle fluxes and sediment trap collection efficiency at Ocean Station
Papa, Elementa, 9, 00122, https://doi.org/10.1525/elementa.2020.00122, 2021.
Gan, J., Liu, Z., and Liang, L.: Numerical modeling of intrinsically and
extrinsically forced seasonal circulation in the China Seas: A kinematic
study, J. Geophys. Res.-Oceans, 121, 4697–4715, https://doi.org/10.1002/2016JC011800, 2016.
Gao, Y., Wang, L., Guo, X., Xu, Y., and Luo, L.: Atmospheric wet and dry
deposition of dissolved inorganic nitrogen to the South China Sea, Sci.
China Earth Sci., 63, 1339–1352, https://doi.org/10.1007/s11430-019-9612-2, 2020.
Goldman, J. C.: Oceanic Nutrient Cycles, in: Flows of Energy and Materials in Marine Ecosystems: Theory and Practice, edited by: Fasham, M. J. R., Springer US, Boston, MA, 137–170, https://doi.org/10.1007/978-1-4757-0387-0_6, 1984
Gustafsson, Ö., Gelting, J., Andersson, P., Larsson, U., and Roos, P.: An
assessment of upper ocean carbon and nitrogen export fluxes on the boreal
continental shelf: A 3-year study in the open Baltic Sea comparing sediment
traps, 234Th proxy, nutrient, and oxygen budgets, Limnol. Oceanogr.-Meth., 11, 495–510, https://doi.org/10.4319/lom.2013.11.495,
2013.
Haskell II, W. Z., Berelson, W. M., Hammond, D. E., and Capone, D. G.: Particle
sinking dynamics and POC fluxes in the Eastern Tropical South Pacific based
on 234Th budgets and sediment trap deployments, Deep-Sea Res. Pt. I,
81, 1–13, https://doi.org/10.1016/j.dsr.2013.07.001, 2013.
He, Q., Zhan, H., Cai, S., and Li, Z.: Eddy effects on surface chlorophyll in
the northern South China Sea: Mechanism investigation and temporal
variability analysis, Deep-Sea Res. Pt. I, 112, 25–36, https://doi.org/10.1016/j.dsr.2016.03.004, 2016.
Hung, C. C. and Gong, G. C.: Export flux of POC in the main stream of the
Kuroshio, Geophys. Res. Lett., 34, L18606, https://doi.org/10.1029/2007GL030236, 2007.
Johnson, K. S., Riser, S. C., and Karl, D. M.: Nitrate supply from deep to
near-surface waters of the North Pacific subtropical gyre, Nature, 465,
1062–1065, https://doi.org/10.1038/nature09170, 2010.
Kao, S. J., Terence Yang, J. Y., Liu, K. K., Dai, M., Chou, W. C., Lin, H.
L., and Ren, H.: Isotope constraints on particulate nitrogen source and dynamics
in the upper water column of the oligotrophic South China Sea, Global
Biogeochem. Cy., 26, GB2033, https://doi.org/10.1029/2011GB004091, 2012.
Kim, T. W., Lee, K., Duce, R., and Liss, P.: Impact of atmospheric nitrogen
deposition on phytoplankton productivity in the South China Sea, Geophys. Res.
Lett., 41, 3156–3162, https://doi.org/10.1002/2014GL059665,
2014.
Knap, A., Michaels, A., Close, A., Ducklow, H., and Dickson, A. J.: Protocols
for the joint global ocean flux study (JGOFS) core measurements, Reprint of
the IOC Manuals Guides No. 29, UNESCO, 19, https://doi.org/10.25607/OBP-1443, 1996.
Lampitt, R. S., Boorman, B., Lucas, M. L., Salter, I., Sanders, R., Saw, K.,
Seeyave, S., Thomalla, S. J., and Turnewitsch, R.: Particle export from the
euphotic zone: Estimates using a novel drifting sediment trap, 234Th
and new production, Deep-Sea Res. Pt. I, 55, 1484–1502, https://doi.org/10.1016/j.dsr.2008.07.002, 2008.
Liu, K.-K., Kao, S.-J., Wen, L.-S., and Chen, K.-L.: Carbon and nitrogen
isotopic compositions of particulate organic matter and biogeochemical
processes in the eutrophic Danshuei Estuary in northern Taiwan, Sci. Total
Environ., 382, 103–120, https://doi.org/10.1016/j.scitotenv.2007.04.019, 2007.
Liu, Y., Tang, D., and Evgeny, M.: Chlorophyll concentration response to the
typhoon wind-pump induced upper ocean processes considering air–sea heat
exchange, Remote Sens., 11, 1825–1847, https://doi.org/10.3390/rs11151825, 2019.
Liu, Z., Zhao, Y., Colin, C., Stattegger, K., Wiesner, M. G., Huh, C.-A.,
Zhang, Y., Li, X., Sompongchaiyakul, P., You, C.-F., Huang, C.-Y., Liu, J.
T., Siringan, F. P., Le, K. P., Sathiamurthy, E., Hantoro, W. S., Liu, J.,
Tuo, S., Zhao, S., Zhou, S., He, Z., Wang, Y., Bunsomboonsakul, S., and Li, Y.:
Source-to-sink transport processes of fluvial sediments in the South China
Sea, Earth-Sci. Rev., 153, 238–273, https://doi.org/10.1016/j.earscirev.2015.08.005, 2016.
Lu, Y., Wen, Z., Shi, D., Chen, M., Zhang, Y., Bonnet, S., Li, Y., Tian, J., and Kao, S.-J.: Effect of light on N2 fixation and net nitrogen release of Trichodesmium in a field study, Biogeosciences, 15, 1–12, https://doi.org/10.5194/bg-15-1-2018, 2018.
Lu, Y. Y., Wen, Z. Z., Shi, D. L., Lin, W. F., Bonnet, S., Dai, M. H., and
Kao, S. J.: Biogeography of N2 fixation influenced by the western
boundary current intrusion in the South China Sea, J. Geophys. Res.-Oceans,
124, 6983–6996, https://doi.org/10.1029/2018JC014781, 2019.
Ma, Y. F. and Dai, M. H.: Vertical distribution of total and particulate 234Th, particulate organic carbon (POC) and nutrients with their physical forcings (temperature, salinity, fluorescence-based Chl a), Science Data Bank [data set], https://doi.org/10.57760/sciencedb.02782, 2023.
Ma, W. T.,
Xiu, P., Chai, F., Ran, L. H., Wiesner, M. G., Xi, J. Y., Yan, Y. W., and Fredj, E.:
Impact of mesoscale eddies on the source funnel of sediment trap
measurements in the South China Sea, Prog. Oceanogr., 194, 102566, https://doi.org/10.1016/j.pocean.2021.102566, 2021.
Mouriño-Carballido, B., Otero Ferrer, J. L., Fernández Castro, B.,
Marañón, E., Blazquez Maseda, M., Aguiar-González, B.,
Chouciño, P., Graña, R., Moreira-Coello, V., and Villamaña, M.:
Magnitude of nitrate turbulent diffusion in contrasting marine environments.
Sci. Rep., 11, 1–16, https://doi.org/10.1038/s41598-021-97731-4,
2021.
Okubo, A.: Oceanic diffusion diagrams, Deep-Sea Res., 18, 789–802, https://doi.org/10.1016/0011-7471(71)90046-5, 1971.
Owens, S. A., Buesseler, K. O., and Sims, K.: Re-evaluating the
238U-salinity relationship in seawater: Implications for the
238U-234Th disequilibrium method, Mar. Chem., 127, 31–39, https://doi.org/10.1016/j.marchem.2011.07.005, 2011.
Puigcorbé, V., Masqué, P., and Le Moigne, F. A. C.: Global database of ratios of particulate organic carbon to thorium-234 in the ocean: improving estimates of the biological carbon pump, Earth Syst. Sci. Data, 12, 1267–1285, https://doi.org/10.5194/essd-12-1267-2020, 2020.
Resplandy, L., Martin, A. P., Le Moigne, F., Martin, P., Aquilina, A.,
Mémery, L., Lévy, M., and Sanders, R.: How does dynamical spatial
variability impact 234Th-derived estimates of organic export?, Deep-Sea
Res. Pt. I, 68, 24–45, https://doi.org/10.1016/j.dsr.2012.05.015, 2012.
Savoye, N., Benitez-Nelson, C., Burd, A. B., Cochran, J. K., Charette, M.,
Buesseler, K. O., Jackson, G. A., Roy-Barman, M., Schmidt, S., and Elskens, M.:
234Th sorption and export models in the water column: A review, Mar.
Chem., 100, 234–249, https://doi.org/10.1016/j.marchem.2005.10.014, 2006.
Scharek, R., Tupas, L. M., and Karl, D. M.: Diatom fluxes to the deep sea in the
oligotrophic North Pacific gyre at Station ALOHA, Mar. Ecol.-Prog. Ser., 182,
55–67, https://doi.org/10.3354/meps182055, 1999.
Siegel, D. A., Buesseler, K. O., Behrenfeld, M. J., Benitez-Nelson, C. R.,
Emmanuel, B., Brzezinski, M. A., Adrian, B., Carlson, C. A., D'Asaro, E. A., and
Doney, S. C.: Prediction of the Export and Fate of Global Ocean Net Primary
Production: The EXPORTS Science Plan, Front. Mar. Sci., 3, 22, https://doi.org/10.3389/fmars.2016.00022, 2016.
Siegel, D. A., Cetinić, I., Graff, J. R., Lee, C. M., Nelson, N., Perry,
M. J., Ramos, I. S., Steinberg, D. K., Buesseler, K., and Hamme, R.: An
operational overview of the EXport Processes in the Ocean from RemoTe
Sensing (EXPORTS) Northeast Pacific field deployment, Elementa, 9, 00107, https://doi.org/10.3389/fmars.2016.00022, 2021.
Satellite observations: Global Ocean Gridded L 4 Sea Surface Heights And Derived Variables Reprocessed 1993 Ongoing, CMS [data set], https://doi.org/10.48670/moi-00148, 2020.
Stewart, G., Cochran, J., Miquel, J., Masqué, P., Szlosek, J., Baena, A.
R., Fowler, S., Gasser, B., and Hirschberg, D.: Comparing POC export from
and disequilibria with estimates
from sediment traps in the northwest Mediterranean, Deep-Sea Res. Pt. I, 54,
1549–1570, https://doi.org/10.1016/j.dsr.2007.06.005, 2007.
Stukel, M. R., Kelly, T. B., Landry, M. R., Selph, K. E., and Swalethorp, R.:
Sinking carbon, nitrogen, and pigment flux within and beneath the euphotic
zone in the oligotrophic, open-ocean Gulf of Mexico, J. Plankton Res., 44, 711–727,
https://doi.org/10.1093/plankt/fbab001, 2022.
Umhau, B. P., Benitez-Nelson, C. R., Close, H. G., Hannides, C. C., Motta,
L., Popp, B. N., Blum, J. D., and Drazen, J. C.: Seasonal and spatial changes in
carbon and nitrogen fluxes estimated using 234Th : 238U
disequilibria in the North Pacific tropical and subtropical gyre, Mar. Chem.,
217, 103705, https://doi.org/10.1016/j.marchem.2019.103705,
2019.
Wang, L., Huang, B. Q., Laws, E. A., Zhou, K. B., Liu, X., Xie, Y. Y., and Dai, M. H.: Anticyclonic Eddy Edge Effects on Phytoplankton Communities and
Particle Export in the Northern South China Sea, J. Geophys. Res.-Oceans, 123, 7632–7650, https://doi.org/10.1029/2017jc013623, 2018.
Winn, C. D., Campbell, L., Christian, J. R., Letelier, R. M., Hebel, D. V.,
Dore, J. E., Fujieki, L., and Karl, D. M.: Seasonal variability in the
phytoplankton community of the North Pacific Subtropical Gyre, Global
Biogeochem. Cy., 9, 605–620, https://doi.org/10.1029/95GB02149, 1995.
Wu, J., Lee, Z., Xie, Y., Goes, J., and Huang, B.: Reconciling between optical
and Biological determinants of the euphotic zone depth, J. Geophys.
Res.-Oceans, 126, e2020JC016874, https://doi.org/10.1029/2020JC016874, 2021.
Xie, Y., Laws, E. A., Yang, L., and Huang, B.: Diel patterns of variable
fluorescence and carbon fixation of picocyanobacteria
Prochlorococcus-dominated phytoplankton in the South China Sea basin, Front. Microbiol.,
9, 1589–1604, https://doi.org/10.3389/fmicb.2018.01589, 2018.
Yang, J.-Y. T., Hsu, S.-C., Dai, M. H., Hsiao, S. S.-Y., and Kao, S.-J.: Isotopic composition of water-soluble nitrate in bulk atmospheric deposition at Dongsha Island: sources and implications of external N supply to the northern South China Sea, Biogeosciences, 11, 1833–1846, https://doi.org/10.5194/bg-11-1833-2014, 2014.
Yang, J. Y. T., Kao, S. J., Dai, M., Yan, X., and Lin, H. L.: Examining N
cycling in the northern South China Sea from N isotopic signals in nitrate
and particulate phases, J. Geophys. Res.-Biogeo., 122, 2118–2136,
https://doi.org/10.1002/2016JG003618, 2017.
Yang, J. Y. T., Tang, J. M., Kang, S., Dai, M., Kao, S. J., Yan, X., Xu, M.
N., and Du, C.: Comparison of nitrate isotopes between the South China Sea and
western North Pacific Ocean: Insights into biogeochemical signals and water
exchange, J. Geophys. Res.-Oceans, 127, e2021JC018304, https://doi.org/10.1029/2021JC018304, 2022.
Zhou, K., Dai, M., Kao, S.-J., Wang, L., Xiu, P., Chai, F., Tian, J., and Liu,
Y.: Apparent enhancement of 234Th-based particle export associated with
anticyclonic eddies, Earth Planet. Sc. Lett., 381, 198–209,
https://doi.org/10.1016/j.epsl.2013.07.039, 2013.
Zhou, K., Dai, M., Maiti, K., Chen, W., and Xie, Y.: Impact of physical and
biogeochemical forcing on particle export in the South China Sea, Prog. Oceanogr., 187, 102403, https://doi.org/10.1016/j.pocean.2020.102403, 2020a.
Zhou, K., Dai, M., Xiu, P., Wang, L., Hu, J., and Benitez-Nelson, C. R.:
Transient enhancement and decoupling of carbon and opal export in cyclonic
eddies, J. Geophys. Res.-Oceans, 125, e2020JC016372, https://doi.org/10.1029/2020JC016372, 2020b.
Short summary
We distinguished particulate organic carbon (POC) export fluxes out of the nutrient-depleted layer (NDL) and the euphotic zone. The amount of POC export flux at the NDL base suggests that the NDL could be a hotspot of particle export. The substantial POC export flux at the NDL base challenges traditional concepts that the NDL was limited in terms of POC export. The dominant nutrient source for POC export fluxes should be subsurface nutrients, which was determined by 15N isotopic mass balance.
We distinguished particulate organic carbon (POC) export fluxes out of the nutrient-depleted...
Altmetrics
Final-revised paper
Preprint