Articles | Volume 20, issue 1
https://doi.org/10.5194/bg-20-205-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-205-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Neodymium budget in the Mediterranean Sea: evaluating the role of atmospheric dusts using a high-resolution dynamical-biogeochemical model
Mohamed Ayache
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS- Université Paris Saclay, 91191, Gif-sur-Yvette, France
Jean-Claude Dutay
Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS- Université Paris Saclay, 91191, Gif-sur-Yvette, France
Kazuyo Tachikawa
Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, 13545, Aix-en-Provence, France
Thomas Arsouze
Barcelona Supercomputing Center, Barcelona, 08034, Spain
Catherine Jeandel
LEGOS, University of Toulouse, CNRS, CNES, IRD, UPS, Toulouse, 31400, France
Related authors
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Mohamed Ayache, Alberte Bondeau, Rémi Pagès, Nicolas Barrier, Sebastian Ostberg, and Melika Baklouti
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-342, https://doi.org/10.5194/gmd-2020-342, 2020
Preprint withdrawn
Short summary
Short summary
Land forcing is reported as one of the major sources of uncertainty limiting the capacity of marine biogeochemical models. In this study, we present the first basin-wide simulation at 1/12° of water discharge as well as nitrate (NO3) and phosphate (PO4) release into the Mediterranean from basin-wide agriculture and urbanization, by using the agro-ecosystem model (LPJmL-Med). The model evaluation against observation data, and all implemented processes are described in detail in this manuscript.
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
Suzanne Robinson, Ruza Ivanovic, Lauren Gregoire, Lachlan Astfalck, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, and Kazuyo Tachikawa
EGUsphere, https://doi.org/10.5194/egusphere-2022-937, https://doi.org/10.5194/egusphere-2022-937, 2022
Preprint archived
Short summary
Short summary
The neodymium (Nd) isotope (εNd) scheme in the ocean model of FAMOUS is used to explore a benthic Nd flux to seawater. Our results demonstrate that sluggish modern Pacific waters are sensitive to benthic flux alterations, whereas the well-ventilated North Atlantic displays a much weaker response. In closing, there are distinct regional differences in how seawater acquires its εNd signal, in part relating to the complex interactions of Nd addition and water advection.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Clara T. Bolton, Emmeline Gray, Wolfgang Kuhnt, Ann E. Holbourn, Julia Lübbers, Katharine Grant, Kazuyo Tachikawa, Gianluca Marino, Eelco J. Rohling, Anta-Clarisse Sarr, and Nils Andersen
Clim. Past, 18, 713–738, https://doi.org/10.5194/cp-18-713-2022, https://doi.org/10.5194/cp-18-713-2022, 2022
Short summary
Short summary
The timing of the initiation and evolution of the South Asian monsoon in the geological past is a subject of debate. Here, we present a new age model spanning the late Miocene (9 to 5 million years ago) and high-resolution records of past open-ocean biological productivity from the equatorial Indian Ocean that we interpret to reflect monsoon wind strength. Our data show no long-term intensification; however, strong orbital periodicities suggest insolation forcing of monsoon wind strength.
Roberto Bilbao, Simon Wild, Pablo Ortega, Juan Acosta-Navarro, Thomas Arsouze, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Rubén Cruz-García, Ivana Cvijanovic, Francisco Javier Doblas-Reyes, Markus Donat, Emanuel Dutra, Pablo Echevarría, An-Chi Ho, Saskia Loosveldt-Tomas, Eduardo Moreno-Chamarro, Núria Pérez-Zanon, Arthur Ramos, Yohan Ruprich-Robert, Valentina Sicardi, Etienne Tourigny, and Javier Vegas-Regidor
Earth Syst. Dynam., 12, 173–196, https://doi.org/10.5194/esd-12-173-2021, https://doi.org/10.5194/esd-12-173-2021, 2021
Short summary
Short summary
This paper presents and evaluates a set of retrospective decadal predictions with the EC-Earth3 climate model. These experiments successfully predict past changes in surface air temperature but show poor predictive capacity in the subpolar North Atlantic, a well-known source region of decadal climate variability. The poor predictive capacity is linked to an initial shock affecting the Atlantic Ocean circulation, ultimately due to a suboptimal representation of the Labrador Sea density.
Mohamed Ayache, Alberte Bondeau, Rémi Pagès, Nicolas Barrier, Sebastian Ostberg, and Melika Baklouti
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-342, https://doi.org/10.5194/gmd-2020-342, 2020
Preprint withdrawn
Short summary
Short summary
Land forcing is reported as one of the major sources of uncertainty limiting the capacity of marine biogeochemical models. In this study, we present the first basin-wide simulation at 1/12° of water discharge as well as nitrate (NO3) and phosphate (PO4) release into the Mediterranean from basin-wide agriculture and urbanization, by using the agro-ecosystem model (LPJmL-Med). The model evaluation against observation data, and all implemented processes are described in detail in this manuscript.
Marion Lagarde, Nolwenn Lemaitre, Hélène Planquette, Mélanie Grenier, Moustafa Belhadj, Pascale Lherminier, and Catherine Jeandel
Biogeosciences, 17, 5539–5561, https://doi.org/10.5194/bg-17-5539-2020, https://doi.org/10.5194/bg-17-5539-2020, 2020
Cited articles
Abbott, A. N., Haley, B. A., and McManus, J.: Bottoms up: Sedimentary control
of the deep North Pacific Ocean's εNd signature, Geology, 43, 1035–1038,
https://doi.org/10.1130/G37114.1, 2015. a
Antonov, J. I., Locarnini, R. A., Boyer, T. P., Mishonov, A. V., and Garcia,
H. E.: World Ocean Atlas 2005, Volume 2: Salinity, S. Levitus, Ed, NOAA Atlas
NESDIS 62, U.S. Government Printing Office, Washington, D.C., 182 pp,
2006. a
Arraes-Mescoff, R., Roy-Barman, M., Coppola, L., Souhaut, M., Tachikawa, K.,
Jeandel, C., Sempere, R., Yoro, C., and Roy, M.: The behavior of Al, Mn, Ba, Sr, REE and Th isotopes during in vitro degradation of large marine particles,
Mar. Chem., 73, 1–19, https://doi.org/10.1016/S0304-4203(00)00065-7, 2001. a
Arsouze, T., Dutay, J. C., Lacan, F., and Jeandel, C.: Modeling the neodymium
isotopic composition with a global ocean circulation model, Chem. Geol.,
239, 165–177, https://doi.org/10.1016/j.chemgeo.2006.12.006, 2007. a, b, c, d
Arsouze, T., Dutay, J.-C., Kageyama, M., Lacan, F., Alkama, R., Marti, O., and Jeandel, C.: A modeling sensitivity study of the influence of the Atlantic meridional overturning circulation on neodymium isotopic composition at the Last Glacial Maximum, Clim. Past, 4, 191–203, https://doi.org/10.5194/cp-4-191-2008, 2008. a, b
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron
fertilization studies, Global Biogeochem. Cy., 20, GB2017,
https://doi.org/10.1029/2005GB002591, 2006. a, b, c
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a
Ayache, M., Dutay, J.-C., Jean-Baptiste, P., Beranger, K., Arsouze, T., Beuvier, J., Palmieri, J., Le-vu, B., and Roether, W.: Modelling of the anthropogenic tritium transient and its decay product helium-3 in the Mediterranean Sea using a high-resolution regional model, Ocean Sci., 11, 323–342, https://doi.org/10.5194/os-11-323-2015, 2015a. a, b, c, d, e
Ayache, M., Dutay, J.-C., Jean-Baptiste, P., and Fourré, E.: Simulation of the mantle and crustal helium isotope signature in the Mediterranean Sea using a high-resolution regional circulation model, Ocean Sci., 11, 965–978, https://doi.org/10.5194/os-11-965-2015, 2015b. a
Ayache, M., Dutay, J.-C., Arsouze, T., Révillon, S., Beuvier, J., and Jeandel, C.: High-resolution neodymium characterization along the Mediterranean margins and modelling of εNd distribution in the Mediterranean basins, Biogeosciences, 13, 5259–5276, https://doi.org/10.5194/bg-13-5259-2016, 2016. a, b, c, d, e, f, g, h, i, j, k, l
Ayache, M., Dutay, J.-C., Mouchet, A., Tisnérat-Laborde, N., Montagna, P., Tanhua, T., Siani, G., and Jean-Baptiste, P.: High-resolution regional modelling of natural and anthropogenic radiocarbon in the Mediterranean Sea, Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, 2017. a
Ayache, M., Bondeau, A., Pagès, R., Barrier, N., Ostberg, S., and Baklouti, M.: LPJmL-Med – Modelling the dynamics of the land-sea nutrient transfer over the Mediterranean region–version 1: Model description and evaluation, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-342, in review, 2020. a
Ayache, M., Swingedouw, D., Colin, C., and Dutay, J. C.: Evaluating the impact
of Mediterranean overflow on the large-scale Atlantic Ocean circulation using
neodymium isotopic composition, Palaeogeogr. Palaeocl., 570, 110359, https://doi.org/10.1016/J.PALAEO.2021.110359, 2021. a
Baar, H. J. D., Bacon, M. P., Brewer, P. G., and Bruland, K. W.: Rare earth
elements in the Pacific and Atlantic Oceans, Geochim. Cosmochim. Ac.,
49, 1943–1959, https://doi.org/10.1016/0016-7037(85)90089-4, 1985. a
Bacon, M. P. and Anderson, R. F.: Distribution of thorium isotopes between
dissolved and particulate forms in the deep sea, J. Geophys. Res., 87, 2045, https://doi.org/10.1029/JC087iC03p02045, 1982. a
Beuvier, J., Sevault, F., Herrmann, M., Kontoyiannis, H., Ludwig, W., Rixen,
M., Stanev, E., Béranger, K., and Somot, S.: Modeling the Mediterranean Sea
interannual variability during 1961–2000: Focus on the Eastern
Mediterranean Transient, J. Geophys. Res., 115, C08017,
https://doi.org/10.1029/2009JC005950, 2010. a
Beuvier, J., Brossier, C. L., Béranger, K., Arsouze, T., Bourdallé-Badie, R.,
Deltel, C., Drillet, Y., Drobinski, P., Lyard, F., Ferry, N., Sevault, F., S,
and Somot: MED12, Oceanic component for the modelling of the regional
Mediterranean Earth System, Mercator Ocean Quarterly Newsletter, 46, 60–66,
2012a. a, b
Beuvier, J., Béranger, K., Brossier, C. L., Somot, S., Sevault, F., Drillet,
Y., Bourdallé-Badie, R., Ferry, N., and Lyard, F.: Spreading of the Western
Mediterranean Deep Water after winter 2005: Time scales and deep cyclone
transport, J. Geophys. Res., 117, C07022,
https://doi.org/10.1029/2011JC007679, 2012b. a, b, c, d, e, f
Brossier, C. L., Béranger, K., Deltel, C., and Drobinski, P.: The
Mediterranean response to different space–time resolution atmospheric
forcings using perpetual mode sensitivity simulations, Ocean Modell., 36,
1–25, https://doi.org/10.1016/j.ocemod.2010.10.008, 2011. a
Cullen, J. J.: The Deep Chlorophyll Maximum: Comparing Vertical Profiles of
Chlorophyll a, Can. J. Fish. Aquat. Sci., 39,
791–803, https://doi.org/10.1139/F82-108, 1982. a
Dahlqvist, R., Andersson, P. S., and Ingri, J.: The concentration and isotopic
composition of diffusible Nd in fresh and marine waters, Earth Planet. Sc. Lett., 233, 9–16, https://doi.org/10.1016/J.EPSL.2005.02.021, 2005. a
Dubois-Dauphin, Q., Montagna, P., Siani, G., Douville, E., Wienberg, C., Hebbeln, D., Liu, Z., Kallel, N., Dapoigny, A., Revel, M., Pons-Branchu, E., Taviani, M., and Colin, C.: Hydrological variations of the intermediate water masses of the western Mediterranean Sea during the past 20 ka inferred from neodymium isotopic composition in foraminifera and cold-water corals, Clim. Past, 13, 17–37, https://doi.org/10.5194/cp-13-17-2017, 2017. a, b, c, d, e, f
Dulac, F., Buat‐ménard, P., Ezat, U., Melki, S., and Bergametti, G.:
Atmospheric input of trace metals to the western Mediterranean: uncertainties
in modelling dry deposition from cascade impactor data, Tellus B, 41,
362–378, https://doi.org/10.1111/J.1600-0889.1989.TB00315.X, 1989. a
Dutay, J.-C., Lacan, F., Roy-Barman, M., and Bopp, L.: Influence of particle
size and type on 231 Pa and 230 Th simulation with a global coupled
biogeochemical-ocean general circulation model: A first approach,
Geochem. Geophys. Geosys., 10, Q01011,
https://doi.org/10.1029/2008GC002291, 2009. a, b, c, d, e, f, g, h
Elderfield, H., Upstill-Goddard, R., and Sholkovitz, E.: The rare earth
elements in rivers, estuaries, and coastal seas and their significance to the
composition of ocean waters, Geochim. Cosmochim. Ac., 54, 971–991,
https://doi.org/10.1016/0016-7037(90)90432-K, 1990. a
Ferry, N., Parent, L., Garric, G., Barnier, B., and Jourdain, N. C.: Mercator
Global Eddy Permitting Ocean Reanalysis GLORYS1V1: Description and Results,
Mercator Ocean Quarterly Newsletter, 36, 15–28, 2010. a
Frank, M.: Radiogenic isotopes: Tracers of past ocean circulation and erosional
input, Rev. Geophys., 40, 1001, https://doi.org/10.1029/2000RG000094, 2002. a
Gacic, M., Borzelli, G. L. E., Civitarese, G., Cardin, V., and Yari, S.: Can
internal processes sustain reversals of the ocean upper circulation? The
Ionian Sea example, Geophys. Res. Lett., 37, L09608,
https://doi.org/10.1029/2010GL043216, 2010. a
Goldstein, S. L. and Hemming, S. R.: Long-lived Isotopic Tracers in
Oceanography, Paleoceanography, and Ice-sheet Dynamics, Treatise on
Geochemistry: Second Edition, 8, 453–483,
https://doi.org/10.1016/B978-0-08-095975-7.00617-3, 2003. a, b
Goldstein, S. L. and O'nions, R. K.: Nd and Sr isotopic relationships in
pelagic clays and ferromanganese deposits, Nature, 292,
324–327, https://doi.org/10.1038/292324a0, 1981. a
Greaves, M., Statham, P., and Elderfield, H.: Rare earth element mobilization
from marine atmospheric dust into seawater, Mar. Chem., 46, 255–260,
https://doi.org/10.1016/0304-4203(94)90081-7, 1994. a, b
Greaves, M. J., Rudnicki, M., and Elderfield, H.: Rare earth elements in the
Mediterranean Sea and mixing in the Mediterranean outflow, Earth
Planet. Sc. Lett., 103, 169–181, https://doi.org/10.1016/0012-821X(91)90158-E,
1991. a, b, c, d
Grousset, F. E. and Biscaye, P. E.: Tracing dust sources and transport patterns
using Sr, Nd and Pb isotopes, Chem. Geol., 222, 149–167,
https://doi.org/10.1016/j.chemgeo.2005.05.006, 2005. a
Gu, S. and Liu, Z.: 231Pa and 230Th in the ocean model of the Community Earth System Model (CESM1.3), Geosci. Model Dev., 10, 4723–4742, https://doi.org/10.5194/gmd-10-4723-2017, 2017. a
Guerzoni, S., Molinaroli, E., and Chester, R.: Saharan dust input to the
western Mediterranean Sea: depositional patterns, geochemistry and
sedimentology implications, Deep-Sea Res. Pt. II, 44, 631–654, 1997. a
Guieu, C., Bozec, Y., Blain, S., Ridame, C., Sarthou, G., and Leblond, N.:
Impact of high Saharan dust inputs on dissolved iron concentrations in the
Mediterranean Sea, Geophys. Res. Lett., 29, 1911,
https://doi.org/10.1029/2001GL014454, 2002. a
Guyennon, A., Baklouti, M., Diaz, F., Palmieri, J., Beuvier, J., Lebaupin-Brossier, C., Arsouze, T., Béranger, K., Dutay, J.-C., and Moutin, T.: New insights into the organic carbon export in the Mediterranean Sea from 3-D modeling, Biogeosciences, 12, 7025–7046, https://doi.org/10.5194/bg-12-7025-2015, 2015. a
Herrmann, M., Sevault, F., Beuvier, J., and Somot, S.: What induced the
exceptional 2005 convection event in the northwestern Mediterranean basin?
Answers from a modeling study, J. Geophys. Res., 115,
C12051, https://doi.org/10.1029/2010JC006162, 2010. a
Herrmann, M. J. and Somot, S.: Relevance of ERA40 dynamical downscaling for
modeling deep convection in the Mediterranean Sea, Geophys. Res.
Lett., 35, L04607, https://doi.org/10.1029/2007GL032442, 2008. a
Jeandel, C. and Oelkers, E. H.: The influence of terrigenous particulate
material dissolution on ocean chemistry and global element cycles, Chem.
Geol., 395, 50–66, https://doi.org/10.1016/j.chemgeo.2014.12.001, 2015. a
Johannesson, K. H. and Burdige, D. J.: Balancing the global oceanic neodymium
budget: Evaluating the role of groundwater, Earth Planet. Sc. Lett., 253, 129–142, https://doi.org/10.1016/J.EPSL.2006.10.021, 2007. a
Jones, K. M., Khatiwala, S. P., Goldstein, S. L., Hemming, S. R., and van de
Flierdt, T.: Modeling the distribution of Nd isotopes in the oceans using an
ocean general circulation model, Earth Planet. Sc. Lett., 272,
610–619, https://doi.org/10.1016/j.epsl.2008.05.027, 2008. a, b, c
Lacan, F. and Jeandel, C.: Tracing Papua New Guinea imprint on the central
Equatorial Pacific Ocean using neodymium isotopic compositions and Rare Earth
Element patterns, Earth Planet. Sc. Lett., 186, 497–512,
https://doi.org/10.1016/S0012-821X(01)00263-1, 2001. a
Lacan, F. and Jeandel, C.: Acquisition of the neodymium isotopic composition of
the North Atlantic Deep Water, Geochem. Geophys. Geosys., 6, Q12008,
https://doi.org/10.1029/2005GC000956, 2005. a, b
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., and Garcia,
H. E.: World Ocean Atlas 2005, Volume 1: Temperature, S. Levitus, Ed, NOAA
Atlas NESDIS 61, U.S. Government Printing Office, Washington, D.C. 182 pp.,
2006. a
Ludwig, W., Dumont, E., Meybeck, M., and Heussner, S.: River discharges of
water and nutrients to the Mediterranean and Black Sea: Major drivers for
ecosystem changes during past and future decades?, Prog. Oceanogr.,
80, 199–217, https://doi.org/10.1016/j.pocean.2009.02.001, 2009. a, b, c, d
MEDAR-MedAtlas-group: Medar-Medatlas Protocol (Version 3) Part I: Exchange
Format and Quality Checks for Observed Profiles, P. Rap. Int.
IFREMER/TMSI/IDM/SIS002-006, 50, 2002. a
Millot, C. and Taupier-Letage, I.: The Mediterranean Sea, vol. 5K,
https://doi.org/10.1007/b107143., 2005. a, b, c
Montagna, P., Colin, C., Frank, M., Störling, T., Tanhua, T., Rijkenberg,
M. J., Taviani, M., Schroeder, K., Chiggiato, J., Gao, G., Dapoigny, A., and
Goldstein, S. L.: Dissolved neodymium isotopes in the Mediterranean Sea,
Geochim. Cosmochim. Ac., 322, 143–169, https://doi.org/10.1016/J.GCA.2022.01.005, 2022. a, b, c, d, e, f, g, h, i
Morrison, R., Waldner, A., Hathorne, E. C., Rahlf, P., Zieringer, M., Montagna,
P., Colin, C., Frank, N., and Frank, M.: Limited influence of basalt
weathering inputs on the seawater neodymium isotope composition of the
northern Iceland Basin, Chem. Geol., 511, 358–370,
https://doi.org/10.1016/J.CHEMGEO.2018.10.019, 2019. a
Nabat, P., Somot, S., Mallet, M., Sevault, F., Chiacchio, M., and Wild, M.:
Direct and semi-direct aerosol radiative effect on the Mediterranean climate
variability using a coupled regional climate system model, Clim. Dynam.,
44, 1127–1155, https://doi.org/10.1007/s00382-014-2205-6, 2015. a, b
NEMO Consortium: http://www.nemo-ocean.eu/ [code], last access: 3 January 2023. a
Nozaki, Y. and Alibo, D. S.: Dissolved rare earth elements in the Southern
Ocean, southwest of Australia: Unique patterns compared to the South Atlantic
data., Geochem. J., 37, 47–62, https://doi.org/10.2343/geochemj.37.47, 2003. a
Nozaki, Y. and Zhang, J.: The rare earth elements and yttrium in the
coastal/offshore mixing zone of Tokyo Bay waters and Kuroshio, Biogeochemical
Processes and Ocean Flux in the Western Pacific, 171–184, 1995. a
Nozaki, Y., Horibe, Y., and Tsubota, H.: The water column distributions of
thorium isotopes in the western North Pacific, Earth Planet. Sc. Lett., 54, 203–216, https://doi.org/10.1016/0012-821X(81)90004-2, 1981. a, b
Palmiéri, J., Orr, J. C., Dutay, J.-C., Béranger, K., Schneider, A., Beuvier, J., and Somot, S.: Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea, Biogeosciences, 12, 781–802, https://doi.org/10.5194/bg-12-781-2015, 2015. a, b, c, d
Pasquier, B., Hines, S. K. V., Liang, H., Wu, Y., Goldstein, S. L., and John, S. G.: GNOM v1.0: an optimized steady-state model of the modern marine neodymium cycle, Geosci. Model Dev., 15, 4625–4656, https://doi.org/10.5194/gmd-15-4625-2022, 2022. a
Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., Velde, M. V. D., Bopp, L.,
Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca, S.,
Obersteiner, M., and Janssens, I. A.: Human-induced nitrogen–phosphorus
imbalances alter natural and managed ecosystems across the globe, Nat. Commun., 2013, 1–10, https://doi.org/10.1038/ncomms3934, 2013. a
Piepgras, D. J. and Wasserburg, G. J.: Rare earth element transport in the
western North Atlantic inferred from Nd isotopic observations, Geochim.
Cosmochim. Ac., 51, 1257–1271, https://doi.org/10.1016/0016-7037(87)90217-1, 1987. a, b
Pinardi, N. and Masetti, E.: Variability of the large scale general circulation
of the Mediterranean Sea from observations and modelling: a review,
Palaeogeogr. Palaeocl., 158, 153–173,
https://doi.org/10.1016/S0031-0182(00)00048-1, 2000. a, b
Pöppelmeier, F., Blaser, P., Gutjahr, M., Süfke, F., Thornalley, D. J.,
Grützner, J., Jakob, K. A., Link, J. M., Szidat, S., and Lippold, J.:
Influence of Ocean Circulation and Benthic Exchange on Deep Northwest
Atlantic Nd Isotope Records During the Past 30,000 Years, Geochem.
Geophys. Geosys., 20, 4457–4469, https://doi.org/10.1029/2019GC008271, 2019. a, b
Pöppelmeier, F., Scheen, J., Blaser, P., Lippold, J., Gutjahr, M., and
Stocker, T. F.: Influence of Elevated Nd Fluxes on the Northern Nd Isotope
End Member of the Atlantic During the Early Holocene, Paleoceanogr. Paleocl., 35, e2020PA003973, https://doi.org/10.1029/2020PA003973, 2020. a
Pöppelmeier, F., Scheen, J., Jeltsch-Thömmes, A., and Stocker, T. F.: Simulated stability of the Atlantic Meridional Overturning Circulation during the Last Glacial Maximum, Clim. Past, 17, 615–632, https://doi.org/10.5194/cp-17-615-2021, 2021. a
Rempfer, J., Stocker, T. F., Joos, F., Dutay, J. C., and Siddall, M.: Modelling
Nd-isotopes with a coarse resolution ocean circulation model: Sensitivities
to model parameters and source/sink distributions, Geochim. Cosmochim. Ac., 75, 5927–5950, https://doi.org/10.1016/j.gca.2011.07.044, 2011. a, b, c, d
Richon, C., Dutay, J.-C., Dulac, F., Wang, R., and Balkanski, Y.: Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea, Biogeosciences, 15, 2499–2524, https://doi.org/10.5194/bg-15-2499-2018, 2018. a, b, c, d
Rixen, M., Beckers, J. M., Levitus, S., Antonov, J., Boyer, T., Maillard, C.,
Fichaut, M., Balopoulos, E., Iona, S., Dooley, H., Garcia, M. J., Manca, B.,
Giorgetti, A., Manzella, G., Mikhailov, N., Pinardi, N., and Zavatarelli, M.:
The Western Mediterranean Deep Water: A proxy for climate change, Geophys.
Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL022702, 2005. a
Robinson, S., Ivanovic, R., van de Flierdt, T., Blanchet, C. L., Tachikawa, K.,
Martin, E. E., Cook, C. P., Williams, T., Gregoire, L., Plancherel, Y.,
Jeandel, C., and Arsouze, T.: Global continental and marine detrital εNd: An
updated compilation for use in understanding marine Nd cycling, Chem.
Geol., 567, 120119, https://doi.org/10.1016/J.CHEMGEO.2021.120119, 2021. a, b, c, d, e
Roether, W., Manca, B. B., Klein, B., Bregant, D., Georgopoulos, D., Beitzel,
V., Kovacevic, V., and Luchetta, A.: Recent Changes in Eastern Mediterranean
Deep Waters, Science, 271, 333–335, https://doi.org/10.1126/science.271.5247.333,
1996. a, b
Rousseau, T. C. C., Sonke, J. E., Chmeleff, J., van Beek, P., Souhaut, M.,
Boaventura, G., Seyler, P., and Jeandel, C.: Rapid neodymium release to
marine waters from lithogenic sediments in the Amazon estuary, Nat. Commun., 6, 7592, https://doi.org/10.1038/ncomms8592, 2015. a
Roy-Barman, M., Chen, J. H., and Wasserburg, G. J.: 230Th232Th systematics in
the central Pacific Ocean: The sources and the fates of thorium, Earth
Planet. Sc. Lett., 139, 351–363, https://doi.org/10.1016/0012-821X(96)00017-9,
1996. a
Scheuvens, D., Schutz, L., Kandler, K., Ebert, M., and Weinbruch, S.: Bulk
composition of northern African dust and its source sediments - A
compilation, Earth-Sci. Rev., 116, 170–194,
https://doi.org/10.1016/j.earscirev.2012.08.005, 2013. a, b, c, d
Schijf, J., de Baar, H. J. W., Wijbrans, J. R., and Landing, W. M.: Dissolved
rare earth elements in the Black Sea, Deep Sea Res., 38, 805–823, https://doi.org/10.1016/S0198-0149(10)80010-X, 1991. a
Sholkovitz, E. R., Landing, W. M., and Lewis, B. L.: Ocean particle chemistry:
The fractionation of rare earth elements between suspended particles and
seawater, Geochim. Cosmochim. Ac., 58, 1567–1579,
https://doi.org/10.1016/0016-7037(94)90559-2, 1994. a
Siddall, M., Henderson, G. M., Edwards, N. R., Frank, M., Müller, S. A.,
Stocker, T. F., and Joos, F.: 231Pa/230Th fractionation by ocean transport,
biogenic particle flux and particle type, https://doi.org/10.1016/j.epsl.2005.05.031,
2005. a, b
Siddall, M., Khatiwala, S., van de Flierdt, T., Jones, K., Goldstein, S. L.,
Hemming, S., and Anderson, R. F.: Towards explaining the Nd paradox using
reversible scavenging in an ocean general circulation model, Earth
Planet. Sc. Lett., 274, 448–461, https://doi.org/10.1016/j.epsl.2008.07.044,
2008. a, b
Soto-Navarro, J., Somot, S., Sevault, F., Beuvier, J., Béranger, K.,
Criado-Aldeanueva, F., and García-Lafuente, J.: Evaluation of regional ocean
circulation models for the Mediterranean Sea at the Strait of Gibraltar :
volume transport and thermohaline properties of the outflow, Clim.
Dynam., 44, 1277–1292, https://doi.org/10.1007/s00382-014-2179-4, 2014. a
Spivack, A. J. and Wasserburg, G. J.: Neodymium isotopic composition of the
Mediterranean outflow and the eastern North Atlantic, Geochim. Cosmochim. Ac., 52, 2767–2773, https://doi.org/10.1016/0016-7037(88)90144-5, 1988. a, b, c, d
Stanev, E. V. and Peneva, E. L.: Regional sea level response to global climatic
change: Black Sea examples, Europe, 32, 33–47, 2002. a
Tachikawa, K., Jeandel, C., and Roy-Barman, M.: A new approach to the Nd
residence time in the ocean: the role of atmospheric inputs, Earth
Planet. Sc. Lett., 170, 433–446,
https://doi.org/10.1016/S0012-821X(99)00127-2, 1999. a, b, c
Tachikawa, K., Athias, V., and Jeandel, C.: Neodymium budget in the modern
ocean and paleo-oceanographic implications, J. Geophys. Res.,
108, 3254, https://doi.org/10.1029/1999JC000285, 2003. a, b
Tachikawa, K., Roy-Barman, M., Michard, A., Thouron, D., Yeghicheyan, D., and
Jeandel, C.: Neodymium isotopes in the Mediterranean Sea: comparison between
seawater and sediment signals, Geochim. Cosmochim. Ac., 68,
3095–3106, https://doi.org/10.1016/j.gca.2004.01.024, 2004.
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Tachikawa, K., Arsouze, T., Bayon, G., Bory, A., Colin, C., Dutay, J. C.,
Frank, N., Giraud, X., Gourlan, A. T., Jeandel, C., Lacan, F., Meynadier, L.,
Montagna, P., Piotrowski, A. M., Plancherel, Y., Pucéat, E., Roy-Barman, M.,
and Waelbroeck, C.: The large-scale evolution of neodymium isotopic
composition in the global modern and Holocene ocean revealed from seawater
and archive data, Chem. Geol., 457, 131–148,
https://doi.org/10.1016/j.chemgeo.2017.03.018, 2017. a, b
Vadsaria, T., Ramstein, G., Dutay, J. C., Li, L., Ayache, M., and Richon, C.:
Simulating the Occurrence of the Last Sapropel Event (S1): Mediterranean
Basin Ocean Dynamics Simulations Using Nd Isotopic Composition Modeling,
Paleoceanogr. Paleocl., 34, 237–251,
https://doi.org/10.1029/2019PA003566, 2019. a
van de Flierdt, T., Frank, M., Lee, D. C., Halliday, A. N., Reynolds, B. C.,
and Hein, J. R.: New constraints on the sources and behavior of neodymium and
hafnium in seawater from Pacific Ocean ferromanganese crusts, Geochim.
Cosmochim. Ac., 68, 3827–3843, https://doi.org/10.1016/J.GCA.2004.03.009, 2004. a
van Hulten, M., Dutay, J.-C., and Roy-Barman, M.: A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with improved particle dynamics (NEMO-ProThorP 0.1), Geosci. Model Dev., 11, 3537–3556, https://doi.org/10.5194/gmd-11-3537-2018, 2018. a, b, c
Zhang, R.: Coherent surface-subsurface fingerprint of the Atlantic meridional
overturning circulation, Geophys. Res. Lett., 35, L20705,
https://doi.org/10.1029/2008GL035463, 2008. a, b, c
Short summary
The neodymium (Nd) is one of the most useful tracers to fingerprint water mass provenance. However, the use of Nd is hampered by the lack of adequate quantification of the external sources. Here, we present the first simulation of dissolved Nd concentration and Nd isotopic composition in the Mediterranean Sea using a high-resolution model. We aim to better understand how the various external sources affect the Nd cycle and particularly assess how it is impacted by atmospheric inputs.
The neodymium (Nd) is one of the most useful tracers to fingerprint water mass provenance....
Altmetrics
Final-revised paper
Preprint