Articles | Volume 20, issue 12
https://doi.org/10.5194/bg-20-2405-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2405-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The hidden role of dissolved organic carbon in the biogeochemical cycle of carbon in modern redox-stratified lakes
Biogéosciences, CNRS, Université de Bourgogne
Franche-Comté, 21 000 Dijon, France
Christophe Thomazo
Biogéosciences, CNRS, Université de Bourgogne
Franche-Comté, 21 000 Dijon, France
Institut Universitaire de France, 75005 Paris, France
Miguel Iniesto
Ecologie Systématique Evolution, CNRS, Université
Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
Didier Jézéquel
IPGP, CNRS, Université de Paris Cité, 75005 Paris, France
UMR CARRTEL, INRAE and USMB, 74200 Thonon-les-bains, France
David Moreira
Ecologie Systématique Evolution, CNRS, Université
Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
Rosaluz Tavera
Departamento de Ecología y Recursos Naturales, Universidad
Nacional Autónoma de México, México City, México
Jeanne Caumartin
Institut de Minéralogie, de Physique des Matériaux
et de Cosmochimie (IMPMC), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
Elodie Muller
Institut de Minéralogie, de Physique des Matériaux
et de Cosmochimie (IMPMC), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
Purificación López-García
Ecologie Systématique Evolution, CNRS, Université
Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
Karim Benzerara
Institut de Minéralogie, de Physique des Matériaux
et de Cosmochimie (IMPMC), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
Related authors
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2347–2367, https://doi.org/10.5194/bg-20-2347-2023, https://doi.org/10.5194/bg-20-2347-2023, 2023
Short summary
Short summary
We describe the C cycle of four modern stratified water bodies from Mexico, a necessary step to better understand the C cycle of primitive-Earth-like environments, which were dominated by these kinds of conditions. We highlight the importance of local external factors on the C cycle of these systems. Notably, they influence the sensitivity of the carbonate record to environmental changes. We also show the strong C-cycle variability among these lakes and their organic C sediment record.
Clémentin Bouquet, Hermine Billard, Cécile C. Bidaud, Jonathan Colombet, Young-Tae Chang, Joan Artigas, Isabelle Batisson, Karim Benzerara, Fériel Skouri-Panet, Elodie Duprat, and Anne-Catherine Lehours
Biogeosciences, 22, 1729–1744, https://doi.org/10.5194/bg-22-1729-2025, https://doi.org/10.5194/bg-22-1729-2025, 2025
Short summary
Short summary
In the context of the ecological sustainability of phosphorus, the ubiquitous presence of polyphosphate-accumulating bacteria in natural environments invites efforts to reveal their unknown roles in the biogeochemical cycle of phosphorus. In this study, we evaluated the potential of combining the staining of intracellular polyphosphate granules and their subsequent detection by flow cytometry for the detection, quantification and cell sorting of polyphosphate-accumulating bacteria.
Karim Benzerara, Agnès Elmaleh, Maria Ciobanu, Alexis De Wever, Paola Bertolino, Miguel Iniesto, Didier Jézéquel, Purificación López-García, Nicolas Menguy, Elodie Muller, Fériel Skouri-Panet, Sufal Swaraj, Rosaluz Tavera, Christophe Thomazo, and David Moreira
Biogeosciences, 20, 4183–4195, https://doi.org/10.5194/bg-20-4183-2023, https://doi.org/10.5194/bg-20-4183-2023, 2023
Short summary
Short summary
Iron and manganese are poorly soluble in oxic and alkaline solutions but much more soluble under anoxic conditions. As a result, authigenic minerals rich in Fe and/or Mn have been viewed as diagnostic of anoxic conditions. However, here we reveal a new case of biomineralization by specific cyanobacteria, forming abundant Fe(III)- and Mn(IV)-rich amorphous phases under oxic conditions in an alkaline lake. This might be an overlooked biotic contribution to the scavenging of Fe from water columns.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2347–2367, https://doi.org/10.5194/bg-20-2347-2023, https://doi.org/10.5194/bg-20-2347-2023, 2023
Short summary
Short summary
We describe the C cycle of four modern stratified water bodies from Mexico, a necessary step to better understand the C cycle of primitive-Earth-like environments, which were dominated by these kinds of conditions. We highlight the importance of local external factors on the C cycle of these systems. Notably, they influence the sensitivity of the carbonate record to environmental changes. We also show the strong C-cycle variability among these lakes and their organic C sediment record.
Daniel A. Petrash, Ingrid M. Steenbergen, Astolfo Valero, Travis B. Meador, Tomáš Pačes, and Christophe Thomazo
Biogeosciences, 19, 1723–1751, https://doi.org/10.5194/bg-19-1723-2022, https://doi.org/10.5194/bg-19-1723-2022, 2022
Short summary
Short summary
We spectroscopically evaluated the gradients of dissolved C, N, S, Fe and Mn in a newly formed redox-stratified lake. The lake features an intermediate redox state between nitrogenous and euxinic conditions that encompasses vigorous open sulfur cycling fuelled by the reducible Fe and Mn stocks of the anoxic sediments. This results in substantial bottom water loads of dissolved iron and sulfate. Observations made in this ecosystem have relevance for deep-time paleoceanographic reconstructions.
Pierre Nevers, Julien Bouchez, Jérôme Gaillardet, Christophe Thomazo, Delphine Charpentier, Laëticia Faure, and Catherine Bertrand
Earth Surf. Dynam., 9, 487–504, https://doi.org/10.5194/esurf-9-487-2021, https://doi.org/10.5194/esurf-9-487-2021, 2021
Cited articles
Alcántara-Hernández, R. J., Macek, M., Torres-Huesca, J.,
Arellano-Posadas, J., and Valdespino-Castillo, P. M.: Bacterioplankton, in:
Lake Alchichica Limnology: The Uniqueness of a Tropical
Maar Lake, edited by: Alcocer, J., Springer International Publishing, Cham, 183–196, https://doi.org/10.1007/978-3-030-79096-7_11, 2022.
Alcocer, J., Guzmán-Arias, A., Oseguera, L. A., and Escobar, E.: Dinámica
del carbono orgánico disuelto y particulado asociados al florecimiento
de Nodularia spumigena en un lago tropical oligotrófico, in: n Estado Actual del Conocimiento del Ciclo del Carbono y sus Interacciones en México: Sintesis a 2014, edited by: Paz, F. and Wong, J., Programma
Mexicano del Carbono, 404–410, 2014a.
Alcocer, J., Ruiz-Fernández, A. C., Escobar, E., Pérez-Bernal, L. H.,
Oseguera, L. A., and Ardiles-Gloria, V.: Deposition, burial and sequestration of
carbon in an oligotrophic, tropical lake, J. Limnol., 73, 223–235, https://doi.org/10.4081/jlimnol.2014.783, 2014b.
Alcocer, J., Merino-Ibarra, M., Ramírez-Zierold, J. A., Oseguera, L. A., Cortés-Guzmán, D., Castillo-Sandoval, F. S., Guzmán-Arias, A. P., and Pérez-Ramírez, M. G.: Physicochemical Characteristics, in: Lake Alchichica Limnology: The Uniqueness of a Tropical Maar Lake, 101–142, Cham, Springer International Publishing, https://doi.org/10.1007/978-3-030-79096-7_7, 2022.
Anderson, N. J. and Stedmon, C. A.: The effect of evapoconcentration on dissolved
organic carbon concentration and quality in lakes of SW Greenland, Freshwater
Biol., 52, 280–289, https://doi.org/10.1111/j.1365-2427.2006.01688.x, 2007.
Armienta, M. A., Vilaclara, G., De la Cruz-Reyna, S., Ramos, S., Ceniceros,
N., Cruz, O., Aguayo, A., and Arcega-Cabrera, F.: Water chemistry of lakes
related to active and inactive Mexican volcanoes, J. Volcanol. Geoth.
Res., 178, 249–258, https://doi.org/10.1016/j.jvolgeores.2008.06.019, 2008.
Bade, D. L., Carpenter, S. R., Cole, J. J., Hanson, P. C., and Hesslein, R. H.:
Controls of δ13C-DIC in lakes: Geochemistry, lake metabolism,
and morphometry, Limnol. Oceanogr., 49, 1160–1172,
https://doi.org/10.4319/lo.2004.49.4.1160, 2004.
Bade, D. L., Carpenter, S. R., Cole, J. J., Pace, M. L., Kritzberg, E., Van de
Bogert, M. C., Cory, R. M., and McKnight, D. M.: Sources and fates of dissolved
organic carbon in lakes as determined by whole-lake carbon isotope
additions, Biogeochemistry, 84, 115–129,
https://doi.org/10.1007/s10533-006-9013-y, 2007.
Badger, M. R., Andrews, T. J., Whitney, S. M., Ludwig, M., Yellowlees, D. C.,
Leggat, W., and Price, G. D.: The diversity and coevolution of Rubisco, plastids,
pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae,
Can. J. Botany, 76, 1052–1071, https://doi.org/10.1139/b98-074, 1998.
Baines, S. B. and Pace, M. L.: The production of dissolved organic matter by
phytoplankton and its importance to bacteria: Patterns across marine and
freshwater systems, Limnol. Oceanogr., 36, 1078–1090,
https://doi.org/10.4319/lo.1991.36.6.1078, 1991.
Barber, A., Sirois, M., Chaillou, G., and Gélinas, Y.: Stable isotope
analysis of dissolved organic carbon in Canada's eastern coastal waters:
Stable isotope analysis of DOC, Limnol. Oceanogr., 62, S71–S84,
https://doi.org/10.1002/lno.10666, 2017.
Bateson, M. M. and Ward, D. M.: Photoexcretion and Fate of Glycolate in a Hot
Spring Cyanobacterial Mat, Appl. Environ. Microb., 54, 1738–1743,
https://doi.org/10.1128/aem.54.7.1738-1743.1988, 1988.
Beardall, J., Griffiths, H., and Raven, J. A.: Carbon Isotope Discrimination and
the CO2 Accumulating Mechanism in Chlorella emersonii, J. Exp. Bot.,
33, 729–737, https://doi.org/10.1093/jxb/33.4.729, 1982.
Beaupré, S. R.: The Carbon Isotopic Composition of Marine DOC, in:
Biogeochemistry of Marine Dissolved Organic Matter, edited by: Hansell, D. A. and Carlson, C. A., Elsevier, 335–368,
https://doi.org/10.1016/B978-0-12-405940-5.00006-6, 2015.
Benzerara, K., Skouri-Panet, F., Li, J., Férard, C., Gugger, M.,
Laurent, T., Couradeau, E., Ragon, M., Cosmidis, J., Menguy, N.,
Margaret-Oliver, I., Tavera, R., López-García, P., and Moreira, D.:
Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria,
P. Natl. Acad. Sci. USA, 111, 10933–10938,
https://doi.org/10.1073/pnas.1403510111, 2014.
Bertilsson, S. and Jones, J. B.: Supply of Dissolved Organic Matter to Aquatic
Ecosystems: Autochthonous Sources, in:
Aquatic Ecosystems, Aquatic Ecology, edited by: Findlay, S. E. G. and Sinsabaugh, R. L., Academic Press, Burlington,
3–24, https://doi.org/10.1016/B978-012256371-3/50002-0, 2003.
Blair, N., Leu, A., Muñoz, E., Olsen, J., Kwong, E., and Des Marais, D.:
Carbon isotopic fractionation in heterotrophic microbial metabolism, Appl.
Environ. Microb., 50, 996–1001,
https://doi.org/10.1128/aem.50.4.996-1001.1985, 1985.
Brailsford, F. L.: Dissolved organic matter (DOM) in freshwater ecosystems,
Bangor University, UK, https://research.bangor.ac.uk/portal/en/theses/dissolved-organic-matter-dom-in-freshwater-ecosystems(80ce7e34-f41a-43fb-b943-f24296419832).html (last access: 17 June 2023), 2019.
Burns, B. D. and Beardall, J.: Utilization of inorganic carbon by marine
microalgae, J. Exp. Mar. Biol. Ecol., 107, 75–86,
https://doi.org/10.1016/0022-0981(87)90125-0, 1987.
Cadeau, P., Jézéquel, D., Leboulanger, C., Fouilland, E., Le Floc'h,
E., Chaduteau, C., Milesi, V., Guélard, J., Sarazin, G., Katz, A.,
d'Amore, S., Bernard, C., and Ader, M.: Carbon isotope evidence for large
methane emissions to the Proterozoic atmosphere, Sci. Rep., 10, 18186,
https://doi.org/10.1038/s41598-020-75100-x, 2020.
Cañadas, F., Papineau, D., Leng, M. J., and Li, C.: Extensive primary
production promoted the recovery of the Ediacaran Shuram excursion, Nat.
Commun., 13, 148, https://doi.org/10.1038/s41467-021-27812-5, 2022.
Carlson, C. A. and Hansell, D. A.: DOM Sources, Sinks, Reactivity, and Budgets,
in: Biogeochemistry of Marine Dissolved Organic Matter, edited by: Hansell, D. A. and Carlson, C. A., Elsevier,
65–126, https://doi.org/10.1016/B978-0-12-405940-5.00003-0, 2015.
Carrasco-Núñez, G., Ort, M. H., and Romero, C.: Evolution and
hydrological conditions of a maar volcano (Atexcac crater, Eastern Mexico),
J. Volcanol. Geoth. Res., 159, 179–197,
https://doi.org/10.1016/j.jvolgeores.2006.07.001, 2007.
Cawley, K. M., Ding, Y., Fourqurean, J., and Jaffé, R.: Characterising the
sources and fate of dissolved organic matter in Shark Bay, Australia: a
preliminary study using optical properties and stable carbon isotopes, Mar.
Freshwater Res., 63, 1098, https://doi.org/10.1071/MF12028, 2012.
Chako Tchamabé, B., Carrasco-Núñez, G., Miggins, D. P., and
Németh, K.: Late Pleistocene to Holocene activity of Alchichica maar
volcano, eastern Trans-Mexican Volcanic Belt, J. South Am. Earth Sci., 97,
102404, https://doi.org/10.1016/j.jsames.2019.102404, 2020.
Chen, B., Hu, C., Mills, B. J. W., He, T., Andersen, M. B., Chen, X., Liu, P.,
Lu, M., Newton, R. J., Poulton, S. W., Shields, G. A., and Zhu, M.: A short-lived
oxidation event during the early Ediacaran and delayed oxygenation of the
Proterozoic ocean, Earth Planet. Sc. Lett., 577, 117274,
https://doi.org/10.1016/j.epsl.2021.117274, 2022.
Chomicki, K.: The use of stable carbon and oxygen isotopes to examine the
fate of dissolved organic matter in two small, oligotrophic Canadian Shield
lakes, University of Waterloo, Canada, https://www.researchgate.net/publication/268368579 (last access: 17 June 2023), 2009.
Close, H. G. and Henderson, L. C.: Open-Ocean Minima in δ13C Values
of Particulate Organic Carbon in the Lower Euphotic Zone, Front. Mar. Sci.,
7, 540165, https://doi.org/10.3389/fmars.2020.540165, 2020.
Couradeau, E., Benzerara, K., Gérard, E., Moreira, D., Bernard, S.,
Brown, G. E., and López-García, P.: An Early-Branching Microbialite
Cyanobacterium Forms Intracellular Carbonates, Science, 336, 459–462,
https://doi.org/10.1126/science.1216171, 2012.
Crowe, S. A., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S.,
Pack, M. A., Kessler, J. D., Reeburgh, W. S., Roberts, J. A., González, L.,
Douglas Haffner, G., Mucci, A., Sundby, B., and Fowle, D. A.: The methane cycle
in ferruginous Lake Matano: Methane cycle in ferruginous Lake Matano,
Geobiology, 9, 61–78, https://doi.org/10.1111/j.1472-4669.2010.00257.x,
2011.
Descolas-Gros, C. and Fontungne, M.: Stable carbon isotope fractionation by
marine phytoplankton during photosynthesis, Plant Cell Environ., 13,
207–218, https://doi.org/10.1111/j.1365-3040.1990.tb01305.x, 1990.
Dittmar, T.: Reasons Behind the Long-Term Stability of Dissolved Organic
Matter, in: Biogeochemistry of Marine Dissolved Organic Matter, Elsevier,
369–388, https://doi.org/10.1016/B978-0-12-405940-5.00007-8, 2015.
Ducklow, H. W., Hansell, D. A., and Morgan, J. A.: Dissolved organic carbon and
nitrogen in the Western Black Sea, Mar. Chem., 105, 140–150,
https://doi.org/10.1016/j.marchem.2007.01.015, 2007.
Erez, J., Bouevitch, A., and Kaplan, A.: Carbon isotope fractionation by
photosynthetic aquatic microorganisms: experiments with Synechococcus PCC7942, and a
simple carbon flux model, Can. J. Bot, 76, 1109–1118,
https://doi.org/10.1139/b98-067, 1998.
Fakhraee, M., Tarhan, L. G., Planavsky, N. J., and Reinhard, C. T.: A largely
invariant marine dissolved organic carbon reservoir across Earth's history,
P. Natl. Acad. Sci. USA, 118, e2103511118,
https://doi.org/10.1073/pnas.2103511118, 2021.
Ferrari, L., Orozco-Esquivel, T., Manea, V., and Manea, M.: The dynamic history
of the Trans-Mexican Volcanic Belt and the Mexico subduction zone,
Tectonophysics, 522–523, 122–149,
https://doi.org/10.1016/j.tecto.2011.09.018, 2012.
Fike, D. A., Grotzinger, J. P., Pratt, L. M., and Summons, R. E.: Oxidation of the
Ediacaran Ocean, Nature, 444, 744–747, https://doi.org/10.1038/nature05345,
2006.
Fogel, M. L. and Cifuentes, L. A.: Isotope Fractionation during Primary
Production, in: Organic Geochemistry,
Topics in Geobiology, edited by: Engel, M. H. and Macko, S. A., Springer US, Boston, MA, 73–98,
https://doi.org/10.1007/978-1-4615-2890-6_3, 1993.
Fry, B.: fractionation by marine diatoms, Mar. Ecol.-Prog.
Ser., 134, 283–294, https://doi.org/10.3354/meps134283, 1996.
Hansell, D. A.: Recalcitrant Dissolved Organic Carbon Fractions, Annu. Rev.
Mar. Sci., 5, 421–445,
https://doi.org/10.1146/annurev-marine-120710-100757, 2013.
Havas, R., Thomazo, C., Iniesto, M., Jézéquel, D., Moreira, D., Tavera, R., Caumartin, J., Muller, E., López-García, P., and Benzerara, K.: Biogeochemical processes captured by carbon isotopes in redox-stratified water columns: a comparative study of four modern stratified lakes along an alkalinity gradient, Biogeosciences, 20, 2347–2367, https://doi.org/10.5194/bg-20-2347-2023, 2023a.
Havas, R., Thomazo, C., Iniesto, M., Jezequel, D., Moreira, D., Tavera, R., Caumartin, J., Muller, E., Lopez Garcia, P., and Benzerara, K.: Carbon isotopes and alkalinity gradient for biogeochemical processes in modern stratified lakes v. 2, Version 1.0, Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.26022/IEDA/112943, 2023b.
Havig, J. R., McCormick, M. L., Hamilton, T. L., and Kump, L. R.: The behavior of
biologically important trace elements across the oxic/euxinic transition of
meromictic Fayetteville Green Lake, New York, USA, Geochim. Cosmochim. Ac.,
165, 389–406, https://doi.org/10.1016/j.gca.2015.06.024, 2015.
Havig, J. R., Hamilton, T. L., McCormick, M., McClure, B., Sowers, T., Wegter,
B., and Kump, L. R.: Water column and sediment stable carbon isotope
biogeochemistry of permanently redox-stratified Fayetteville Green Lake, New
York, U.S.A., Limnol. Oceanogr., 63, 570–587,
https://doi.org/10.1002/lno.10649, 2018.
Hayes, J. M.: Fractionation of Carbon and Hydrogen Isotopes in Biosynthetic
Processes*, Rev. Mineral. Geochem., 43, 225–277,
https://doi.org/10.2138/gsrmg.43.1.225, 2001.
Hessen, D. O.: Dissolved organic carbon in a humic lake: effects on bacterial
production and respiration, in:
Dissolved Organic Matter in Lacustrine Ecosystems: Energy Source and
System Regulator, Developments in Hydrobiology, edited by: Salonen, K., Kairesalo, T., and Jones, R. I., Springer Netherlands,
Dordrecht, 115–123,
https://doi.org/10.1007/978-94-011-2474-4_9, 1992.
Hessen, D. O. and Anderson, T. R.: Excess carbon in aquatic organisms and
ecosystems: Physiological, ecological, and evolutionary implications,
Limnol. Oceanogr., 53, 1685–1696,
https://doi.org/10.4319/lo.2008.53.4.1685, 2008.
Iniesto, M., Moreira, D., Benzerara, K., Reboul, G., Bertolino, P., Tavera,
R., and López-García, P.: Planktonic microbial communities from
microbialite-bearing lakes sampled along a salinity-alkalinity gradient,
Limnol. Oceanogr., 67, 2718–2733, https://doi.org/10.1002/lno.12233, 2022.
Iñiguez, C., Capó-Bauçà, S., Niinemets, Ü., Stoll, H.,
Aguiló-Nicolau, P., and Galmés, J.: Evolutionary trends in RuBisCO
kinetics and their co-evolution with CO2 concentrating mechanisms,
Plant J., 101, 897–918, https://doi.org/10.1111/tpj.14643, 2020.
Ivanovsky, R. N., Lebedeva, N. V., Keppen, O. I., and Chudnovskaya, A. V.: Release
of Photosynthetically Fixed Carbon as Dissolved Organic Matter by Anoxygenic
Phototrophic Bacteria, Microbiology, 89, 28–34,
https://doi.org/10.1134/S0026261720010075, 2020.
Jiang, G., Wang, X., Shi, X., Zhang, S., Xiao, S., and Dong, J.: Organic carbon
isotope constraints on the dissolved organic carbon (DOC) reservoir at the
Cryogenian–Ediacaran transition, Earth Planet. Sc. Lett., 299, 159–168,
https://doi.org/10.1016/j.epsl.2010.08.031, 2010.
Jiang, G., Wang, X., Shi, X., Xiao, S., Zhang, S., and Dong, J.: The origin of
decoupled carbonate and organic carbon isotope signatures in the early
Cambrian (ca. 542–520 Ma) Yangtze platform, Earth Planet. Sc. Lett.,
317–318, 96–110, https://doi.org/10.1016/j.epsl.2011.11.018, 2012.
Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm,
S. W., Kirchman, D. L., Weinbauer, M. G., Luo, T., Chen, F., and Azam, F.:
Microbial production of recalcitrant dissolved organic matter: long-term
carbon storage in the global ocean, Nat. Rev. Microbiol., 8, 593–599,
https://doi.org/10.1038/nrmicro2386, 2010.
Kaplan, L. A., Wiegner, T. N., Newbold, J. D., Ostrom, P. H., and Gandhi, H.:
Untangling the complex issue of dissolved organic carbon uptake: a stable
isotope approach, Freshwater Biol., 53, 855–864,
https://doi.org/10.1111/j.1365-2427.2007.01941.x, 2008.
Kawasaki, N., Komatsu, K., Kohzu, A., Tomioka, N., Shinohara, R., Satou, T.,
Watanabe, F. N., Tada, Y., Hamasaki, K., Kushairi, M. R. M., and Imai, A.:
Bacterial Contribution to Dissolved Organic Matter in Eutrophic Lake
Kasumigaura, Japan, Appl. Environ. Microb., 79, 7160–7168,
https://doi.org/10.1128/AEM.01504-13, 2013.
Kroopnick, P. M.: The distribution of 13C of ΣCO2 in the world
oceans, Deep-Sea Res. Pt. A, 32, 57–84,
https://doi.org/10.1016/0198-0149(85)90017-2, 1985.
Kuntz, L. B., Laakso, T. A., Schrag, D. P., and Crowe, S. A.: Modeling the carbon
cycle in Lake Matano, Geobiology, 13, 454–461,
https://doi.org/10.1111/gbi.12141, 2015.
Lampert, W.: Release of dissolved organic carbon by grazing zooplankton,
Limnol. Oceanogr., 23, 831–834, https://doi.org/10.4319/lo.1978.23.4.0831,
1978.
Lehmann, M. F., Bernasconi, S. M., Barbieri, A., and McKenzie, J. A.: Preservation
of organic matter and alteration of its carbon and nitrogen isotope
composition during simulated and in situ early sedimentary diagenesis,
Geochim. Cosmochim. Ac., 66, 3573–3584,
https://doi.org/10.1016/S0016-7037(02)00968-7, 2002.
Lenton, T. M. and Daines, S. J.: Matworld – the biogeochemical effects of early
life on land, New Phytol., 215, 531–537, https://doi.org/10.1111/nph.14338,
2017.
Lenton, T. M. and Daines, S. J.: The effects of marine eukaryote evolution on
phosphorus, carbon and oxygen cycling across the Proterozoic–Phanerozoic
transition, Emerg. Top. Life Sci., 2, 267–278,
https://doi.org/10.1042/ETLS20170156, 2018.
Li, C., Hardisty, D. S., Luo, G., Huang, J., Algeo, T. J., Cheng, M., Shi, W.,
An, Z., Tong, J., Xie, S., Jiao, N., and Lyons, T. W.: Uncovering the spatial
heterogeneity of Ediacaran carbon cycling, Geobiology, 15, 211–224,
https://doi.org/10.1111/gbi.12222, 2017.
Lu, M., Zhu, M., Zhang, J., Shields-Zhou, G., Li, G., Zhao, F., Zhao, X., and
Zhao, M.: The DOUNCE event at the top of the Ediacaran Doushantuo Formation,
South China: Broad stratigraphic occurrence and non-diagenetic origin,
Precambrian Res., 225, 86–109,
https://doi.org/10.1016/j.precamres.2011.10.018, 2013.
Lugo, A., Alcocer, J., Sanchez, M. R., and Escobar, E.: Trophic status of
tropical lakes indicated by littoral protozoan assemblages, Int.
Ver. The.,
25, 4441–443, https://doi.org/10.1080/03680770.1992.11900159, 1993.
Lyons, T. W., Reinhard, C. T., and Planavsky, N. J.: The rise of oxygen in Earth's
early ocean and atmosphere, Nature, 506, 307–315,
https://doi.org/10.1038/nature13068, 2014.
Macek, M., Medina, X. S., Picazo, A., Peštová, D., Reyes, F. B.,
Hernández, J. R. M., Alcocer, J., Ibarra, M. M., and Camacho, A.: Spirostomum
teres: A Long Term Study of an Anoxic-Hypolimnion Population Feeding upon
Photosynthesizing Microorganisms, Acta Protozool., 59, 13–38,
https://doi.org/10.4467/16890027AP.20.002.12158, 2020.
Marañón, E., Cermeño, P., Fernández, E., Rodríguez, J., and
Zabala, L.: Significance and mechanisms of photosynthetic production of
dissolved organic carbonin a coastal eutrophic ecosystem, Limnol. Oceanogr.,
49, 1652–1666, https://doi.org/10.4319/lo.2004.49.5.1652, 2004.
Margolin, A. R., Gerringa, L. J. A., Hansell, D. A., and Rijkenberg, M. J. A.: Net
removal of dissolved organic carbon in the anoxic waters of the Black Sea,
Mar. Chem., 183, 13–24, https://doi.org/10.1016/j.marchem.2016.05.003,
2016.
Mook, W. G., Bommerson, J. C., and Staverman, W. H.: Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide, Earth Planet. Sc. Lett., 22, 169–176, https://doi.org/10.1016/0012-821X(74)90078-8, 1974.
Morana, C., Sarmento, H., Descy, J.-P., Gasol, J.M., Borges, A.V., Bouillon,
S., and Darchambeau, F.: Production of dissolved organic matter by phytoplankton
and its uptake by heterotrophic prokaryotes in large tropical lakes, Limnol.
Oceanogr., 59, 1364–1375, https://doi.org/10.4319/lo.2014.59.4.1364, 2014.
OECD (Organization for Economic Cooperation and Development), Vollenweider,
R. A., and Kerekes, J. (Eds.): Eutrophication of waters, Monitoring, assessment and
control, OECD, Paris, 154 pp., http://lakes.chebucto.org/TPMODELS/OECD/OECD1982.pdf (last access: 17 June 2023), 1982.
Ogawa, H., Amagai, Y., Koike, I., Kaiser, K., and Benner, R.: Production of
Refractory Dissolved Organic Matter by Bacteria, Science, 292, 917–920,
https://doi.org/10.1126/science.1057627, 2001.
O'Leary, M. H.: Carbon Isotopes in Photosynthesis, BioScience, 38, 328–336,
https://doi.org/10.2307/1310735, 1988.
Otero, A. and Vincenzini, M.: Extracellular polysaccharide synthesis by Nostoc
strains as affected by N source and light intensity, J. Biotechnol., 102,
143–152, https://doi.org/10.1016/S0168-1656(03)00022-1, 2003.
Peltier, W. R., Liu, Y., and Crowley, J. W.: Snowball Earth prevention by
dissolved organic carbon remineralization, Nature, 450, 813–818,
https://doi.org/10.1038/nature06354, 2007.
Petrash, D. A., Steenbergen, I. M., Valero, A., Meador, T. B., Pačes, T., and Thomazo, C.: Aqueous system-level processes and prokaryote assemblages in the ferruginous and sulfate-rich bottom waters of a post-mining lake, Biogeosciences, 19, 1723–1751, https://doi.org/10.5194/bg-19-1723-2022, 2022.
Posth, N. R., Bristow, L. A., Cox, R. P., Habicht, K. S., Danza, F., Tonolla,
M., Frigaard, N.-U., and Canfield, D.E.: Carbon isotope fractionation by
anoxygenic phototrophic bacteria in euxinic Lake Cadagno, Geobiology, 15,
798–816, https://doi.org/10.1111/gbi.12254, 2017.
Rao, D. N., Chopra, M., Rajula, G. R., Durgadevi, D. S. L., and Sarma, V. V. S. S.:
Release of significant fraction of primary production as dissolved organic
carbon in the Bay of Bengal, Deep-Sea Res. Pt. I, 168,
103445, https://doi.org/10.1016/j.dsr.2020.103445, 2021.
Renstrom-Kellner, E. and Bergman, B.: Glycolate metabolism in cyanobacteria.
III. Nitrogen controls excretion and metabolism of glycolate in Anabaena
cylindrica, Physiol. Plant., 77, 46–51,
https://doi.org/10.1111/j.1399-3054.1989.tb05976.x, 1989.
Repeta, D. J. and Aluwihare, L. I.: Radiocarbon analysis of neutral sugars in
high-molecular-weight dissolved organic carbon: Implications for organic
carbon cycling, Limnol. Oceanogr., 51, 1045–1053,
https://doi.org/10.4319/lo.2006.51.2.1045, 2006.
Ridgwell, A. and Arndt, S.: Chapter 1 – Why Dissolved Organics Matter: DOC in
Ancient Oceans and Past Climate Change, in:
Biogeochemistry of Marine Dissolved Organic Matter, 2nd Edn., edited by: Hansell, D. A. and Carlson, C. A.,
Academic Press, Boston, 1–20,
https://doi.org/10.1016/B978-0-12-405940-5.00001-7, 2015.
Riebesell, U., Burkhardt, S., Dauelsberg, A., and Kroon, B.: Carbon isotope
fractionation by a marine diatom: dependence on the growth-rate-limiting
resource, Mar. Ecol.-Prog. Ser., 193, 295–303,
https://doi.org/10.3354/meps193295, 2000.
Rothman, D. H., Hayes, J. M., and Summons, R. E.: Dynamics of the Neoproterozoic
carbon cycle, P. Natl. Acad. Sci. USA, 100, 8124–8129,
https://doi.org/10.1073/pnas.0832439100, 2003.
Saini, J. S., Hassler, C., Cable, R., Fourquez, M., Danza, F., Roman, S., Tonolla, M., Storelli, N., Jacquet, S., Zdobnov, E. M., and Duhaime, M. B.: Microbial loop of a Proterozoic ocean analogue,
bioRxiv, 2021-08, https://doi.org/10.1101/2021.08.17.456685,
2021.
Saltzman, M. R. and Thomas, E.: Carbon Isotope Stratigraphy, in: The Geologic
Time Scale, Elsevier, 207–232,
https://doi.org/10.1016/B978-0-444-59425-9.00011-1, 2012.
Santinelli, C., Follett, C., Retelletti Brogi, S., Xu, L., and Repeta, D.:
Carbon isotope measurements reveal unexpected cycling of dissolved organic
matter in the deep Mediterranean Sea, Mar. Chem., 177, 267–277,
https://doi.org/10.1016/j.marchem.2015.06.018, 2015.
Satkoski, A. M., Beukes, N. J., Li, W., Beard, B. L., and Johnson, C. M.: A
redox-stratified ocean 3.2 billion years ago, Earth Planet. Sc. Lett., 430,
43–53, https://doi.org/10.1016/j.epsl.2015.08.007, 2015.
Schiff, S. L., Tsuji, J. M., Wu, L., Venkiteswaran, J. J., Molot, L. A., Elgood,
R. J., Paterson, M. J., and Neufeld, J. D.: Millions of Boreal Shield Lakes can be
used to Probe Archaean Ocean Biogeochemistry, Sci. Rep., 7, 46708,
https://doi.org/10.1038/srep46708, 2017.
Sexton, P. F., Norris, R. D., Wilson, P. A., Pälike, H., Westerhold, T.,
Röhl, U., Bolton, C. T., and Gibbs, S.: Eocene global warming events driven
by ventilation of oceanic dissolved organic carbon, Nature, 471, 349–352,
https://doi.org/10.1038/nature09826, 2011.
Shi, W., Li, C., and Algeo, T. J.: Quantitative model evaluation of organic
carbon oxidation hypotheses for the Ediacaran Shuram carbon isotopic
excursion, Sci. China Earth Sci., 60, 2118–2127,
https://doi.org/10.1007/s11430-017-9137-1, 2017.
Shields, G. A., Mills, B. J. W., Zhu, M., Raub, T. D., Daines, S. J., and Lenton,
T. M.: Unique Neoproterozoic carbon isotope excursions sustained by coupled
evaporite dissolution and pyrite burial, Nat. Geosci., 12, 823–827,
https://doi.org/10.1038/s41561-019-0434-3, 2019.
Siebe, C., Guilbaud, M.-N., Salinas, S., and Chédeville-Monzo,
C.: Eruption of Alberca de los Espinos tuff cone causes transgression of Zacapu lake ca. 25,000 yr BP in Michoacán, México, Presented at the IAS 4IMC Conference, Auckland, New Zeland, 74–75, https://www.researchgate.net/publication/283927123 (last access: 8 June 2023), 2012.
Siebe, C., Guilbaud, M.-N., Salinas, S., Kshirsagar, P., Chevrel, M. O.,
Jiménez, A. H., and Godínez, L.: Monogenetic volcanism of the
Michoacán-Guanajuato Volcanic Field: Maar craters of the Zacapu basin
and domes, shields, and scoria cones of the Tarascan highlands
(Paracho-Paricutin region), Presented at the Pre-meeting field guide for the
5th international Maar Conference, Querétaro, México, 1–37,
2014.
Sigala, I., Caballero, M., Correa-Metrio, A., Lozano-García, S.,
Vázquez, G., Pérez, L., and Zawisza, E.: Basic limnology of 30
continental waterbodies of the Transmexican Volcanic Belt across climatic
and environmental gradients, B. Soc. Geol. Mex., 69, 313–370,
https://doi.org/10.18268/BSGM2017v69n2a3, 2017.
Silva Aguilera, R. A.: Análisis del descenso del nivel de agua del Lago Alchichica, Puebla, México (Tesis de Maestría), Universidad Nacional Autónoma de México, Coordinación General de Estudios de Posgrado, UNAM, https://repositorio.unam.mx/contenidos/3534827 (last access: 6 June 2023), 2019.
Silva-Aguilera, R. A., Vilaclara, G., Armienta, M. A., and Escolero, Ó.:
Hydrogeology and Hydrochemistry of the Serdán-Oriental Basin and the
Lake Alchichica, in: Lake Alchichica Limnology, edited by: Alcocer, J., Springer
International Publishing, Cham, 63–74,
https://doi.org/10.1007/978-3-030-79096-7_5, 2022.
Sperling, E. A., Peterson, K. J., and Laflamme, M.: Rangeomorphs, Thectardis
(Porifera?) and dissolved organic carbon in the Ediacaran oceans:
Rangeomorphs, Thectardis and DOC, Geobiology, 9, 24–33,
https://doi.org/10.1111/j.1472-4669.2010.00259.x, 2011.
Swanson-Hysell, N. L., Rose, C. V., Calmet, C. C., Halverson, G. P., Hurtgen,
M. T., and Maloof, A. C.: Cryogenian Glaciation and the Onset of Carbon-Isotope
Decoupling, Science, 328, 608–611, https://doi.org/10.1126/science.1184508,
2010.
Thomas, P. J., Boller, A. J., Satagopan, S., Tabita, F. R., Cavanaugh, C. M.,
and Scott, K. M.: Isotope discrimination by form IC RubisCO from Ralstonia eutropha and
Rhodobacter sphaeroides, metabolically versatile members of “Proteobacteria” from aquatic and soil habitats,
Environ. Microbiol., 21, 72–80, https://doi.org/10.1111/1462-2920.14423,
2019.
Thornton, D. C. O.: Dissolved organic matter (DOM) release by phytoplankton in
the contemporary and future ocean, Eur. J. Phycol., 49, 20–46,
https://doi.org/10.1080/09670262.2013.875596, 2014.
Tziperman, E., Halevy, I., Johnston, D. T., Knoll, A. H., and Schrag, D. P.:
Biologically induced initiation of Neoproterozoic snowball-Earth events,
P. Natl. Acad. Sci. USA, 108, 15091–15096,
https://doi.org/10.1073/pnas.1016361108, 2011.
Vilaclara, G., Chávez, M., Lugo, A., González, H., and Gaytán, M.:
Comparative description of crater-lakes basic chemistry in Puebla State,
Mexico, Int. Ver. The., 25, 435–440,
https://doi.org/10.1080/03680770.1992.11900158, 1993.
Wagner, S., Schubotz, F., Kaiser, K., Hallmann, C., Waska, H., Rossel, P. E.,
Hansman, R., Elvert, M., Middelburg, J. J., Engel, A., Blattmann, T. M.,
Catalá, T. S., Lennartz, S. T., Gomez-Saez, G. V., Pantoja-Gutiérrez,
S., Bao, R., and Galy, V.: Soothsaying DOM: A Current Perspective on the Future
of Oceanic Dissolved Organic Carbon, Front. Mar. Sci., 7, 341,
https://doi.org/10.3389/fmars.2020.00341, 2020.
Werne, J. P. and Hollander, D.J.: Balancing supply and demand: controls on
carbon isotope fractionation in the Cariaco Basin (Venezuela) Younger Dryas
to present, Mar. Chem., 92, 275–293,
https://doi.org/10.1016/j.marchem.2004.06.031, 2004.
Wetz, M. S. and Wheeler, P. A.: Release of dissolved organic matter by coastal
diatoms, Limnol. Oceanogr., 52, 798–807,
https://doi.org/10.4319/lo.2007.52.2.0798, 2007.
Williams, P. M. and Gordon, L. I.: Carbon-13: carbon-12 ratios in dissolved and
particulate organic matter in the sea, Deep-Sea Res. Oceanogr. Abstr., 17,
19–27, https://doi.org/10.1016/0011-7471(70)90085-9, 1970.
Xing, C., Liu, P., Wang, R., Li, C., Li, J., and Shen, B.: Tracing the evolution
of dissolved organic carbon (DOC) pool in the Ediacaran ocean by
Germanium/silica (Ge/Si) ratios of diagenetic chert nodules from the
Doushantuo Formation, South China, Precambrian Res., 374, 106639,
https://doi.org/10.1016/j.precamres.2022.106639, 2022.
Zeebe, R. E. and Wolf-Gladrow, D. A.: Carbon Dioxide, Dissolved (Ocean), in:
Encyclopedia of Paleoclimatology and Ancient Environments,
Encyclopedia of Earth Sciences Series, edited by: Gornitz, V., Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-4411-3_30, 2009.
Zeyen, N., Benzerara, K., Beyssac, O., Daval, D., Muller, E., Thomazo, C.,
Tavera, R., López-García, P., Moreira, D., and Duprat, E.: Integrative
analysis of the mineralogical and chemical composition of modern
microbialites from ten Mexican lakes: What do we learn about their
formation?, Geochim. Cosmochim. Ac., 305, 148–184,
https://doi.org/10.1016/j.gca.2021.04.030, 2021.
Short summary
Dissolved organic carbon (DOC) is a reservoir of prime importance in the C cycle of both continental and marine systems. It has also been suggested to influence the past Earth climate but is still poorly characterized in ancient-Earth-like environments. In this paper we show how DOC analyses from modern redox-stratified lakes can evidence specific metabolic reactions and environmental factors and how these can help us to interpret the C cycle of specific periods in the Earth's past.
Dissolved organic carbon (DOC) is a reservoir of prime importance in the C cycle of both...
Altmetrics
Final-revised paper
Preprint