Articles | Volume 20, issue 14
https://doi.org/10.5194/bg-20-3093-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3093-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Potassium limitation of forest productivity – Part 1: A mechanistic model simulating the effects of potassium availability on canopy carbon and water fluxes in tropical eucalypt stands
Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Orsay, France
CIRAD, UMR Eco&Sols, Montpellier, France
Eco&Sols, University of Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
Nicolas Delpierre
Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Orsay, France
Institut Universitaire de France (IUF), Paris, France
Jean-Paul Laclau
CIRAD, UMR Eco&Sols, Montpellier, France
Eco&Sols, University of Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
Joannès Guillemot
CIRAD, UMR Eco&Sols, Montpellier, France
Department of Forest Sciences ESALQ, University of São Paulo, Piracicaba, SP, Brazil
Eco&Sols, University of Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
Yann Nouvellon
CIRAD, UMR Eco&Sols, Montpellier, France
Departmento de Ciências Florestais, Universidade Federal de Lavras, Lavras, MG, Brazil
Otavio Campoe
Departmento de Ciências Florestais, Universidade Federal de Lavras, Lavras, MG, Brazil
Jose Luiz Stape
Department of Forest Science, São Paulo State University, Botucatu, SP, Brazil
Vitoria Fernanda Santos
Suzano Papel e Celulose, Salvador, BA, Brazil
Guerric le Maire
CIRAD, UMR Eco&Sols, Montpellier, France
Eco&Sols, University of Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
Related authors
Ivan Cornut, Guerric le Maire, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, and Nicolas Delpierre
Biogeosciences, 20, 3119–3135, https://doi.org/10.5194/bg-20-3119-2023, https://doi.org/10.5194/bg-20-3119-2023, 2023
Short summary
Short summary
After simulating the effects of low levels of potassium on the canopy of trees and the uptake of carbon dioxide from the atmosphere by leaves in Part 1, here we tried to simulate the way the trees use the carbon they have acquired and the interaction with the potassium cycle in the tree. We show that the effect of low potassium on the efficiency of the trees in acquiring carbon is enough to explain why they produce less wood when they are in soils with low levels of potassium.
Daniel Epron, Rawiwan Chotiphan, Zixiao Wang, Ornuma Duangngam, Makoto Shibata, Sumonta Kumar Paul, Takumi Mochidome, Jate Sathornkich, Wakana A. Azuma, Jun Murase, Yann Nouvellon, Poonpipope Kasemsap, and Kannika Sajjaphan
Biogeosciences, 22, 4013–4033, https://doi.org/10.5194/bg-22-4013-2025, https://doi.org/10.5194/bg-22-4013-2025, 2025
Short summary
Short summary
The rapid expansion of rubber cultivation constitutes a significant land-use change in Southeast Asia. Despite fertilization being a common practice in rubber plantations, its impact on soil methane (CH4) dynamics has remained poorly understood. Our study demonstrates that fertilization not only reduces soil CH4 consumption but also increases CH4 production, transforming rubber plantations from a net CH4 sink to a source. Implementing rational fertilization could enhance atmospheric CH4 removal.
Tanguy Postic, François de Coligny, Isabelle Chuine, Louis Devresse, Daniel Berveiller, Hervé Cochard, Matthias Cuntz, Nicolas Delpierre, Émilie Joetzjer, Jean-Marc Limousin, Jean-Marc Ourcival, François Pimont, Julien Ruffault, Guillaume Simioni, Nicolas K. Martin-StPaul, and Xavier Morin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2110, https://doi.org/10.5194/egusphere-2025-2110, 2025
Short summary
Short summary
PHOREAU is a forest dynamic model that links plant traits with water use, growth, and climate responses to explore how species diversity affects productivity and resilience. Validated across European forests, PHOREAU simulates how tree communities function under drought and warming. Our findings support the use of trait-based modeling to guide forest adaptation strategies under future climate scenarios.
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Jianhong Lin, Daniel Berveiller, Christophe François, Heikki Hänninen, Alexandre Morfin, Gaëlle Vincent, Rui Zhang, Cyrille Rathgeber, and Nicolas Delpierre
Geosci. Model Dev., 17, 865–879, https://doi.org/10.5194/gmd-17-865-2024, https://doi.org/10.5194/gmd-17-865-2024, 2024
Short summary
Short summary
Currently, the high variability of budburst between individual trees is overlooked. The consequences of this neglect when projecting the dynamics and functioning of tree communities are unknown. Here we develop the first process-oriented model to describe the difference in budburst dates between individual trees in plant populations. Beyond budburst, the model framework provides a basis for studying the dynamics of phenological traits under climate change, from the individual to the community.
Ivan Cornut, Guerric le Maire, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, and Nicolas Delpierre
Biogeosciences, 20, 3119–3135, https://doi.org/10.5194/bg-20-3119-2023, https://doi.org/10.5194/bg-20-3119-2023, 2023
Short summary
Short summary
After simulating the effects of low levels of potassium on the canopy of trees and the uptake of carbon dioxide from the atmosphere by leaves in Part 1, here we tried to simulate the way the trees use the carbon they have acquired and the interaction with the potassium cycle in the tree. We show that the effect of low potassium on the efficiency of the trees in acquiring carbon is enough to explain why they produce less wood when they are in soils with low levels of potassium.
Audrey Jolivot, Valentine Lebourgeois, Louise Leroux, Mael Ameline, Valérie Andriamanga, Beatriz Bellón, Mathieu Castets, Arthur Crespin-Boucaud, Pierre Defourny, Santiana Diaz, Mohamadou Dieye, Stéphane Dupuy, Rodrigo Ferraz, Raffaele Gaetano, Marie Gely, Camille Jahel, Bertin Kabore, Camille Lelong, Guerric le Maire, Danny Lo Seen, Martha Muthoni, Babacar Ndao, Terry Newby, Cecília Lira Melo de Oliveira Santos, Eloise Rasoamalala, Margareth Simoes, Ibrahima Thiaw, Alice Timmermans, Annelise Tran, and Agnès Bégué
Earth Syst. Sci. Data, 13, 5951–5967, https://doi.org/10.5194/essd-13-5951-2021, https://doi.org/10.5194/essd-13-5951-2021, 2021
Short summary
Short summary
This paper presents nine standardized crop type reference datasets collected between 2013 and 2020 in seven tropical countries. It aims at participating in the difficult exercise of mapping agricultural land use through satellite image classification in those complex areas where few ground truth or census data are available. These quality-controlled datasets were collected in the framework of the international JECAM initiative and contain 27 074 polygons documented by detailed keywords.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Kamel Soudani, Nicolas Delpierre, Daniel Berveiller, Gabriel Hmimina, Jean-Yves Pontailler, Lou Seureau, Gaëlle Vincent, and Éric Dufrêne
Biogeosciences, 18, 3391–3408, https://doi.org/10.5194/bg-18-3391-2021, https://doi.org/10.5194/bg-18-3391-2021, 2021
Short summary
Short summary
We present an exhaustive comparative survey of eight proximal methods to estimate forest phenology. We focused on methodological aspects and thoroughly assessed deviations between predicted and observed phenological dates and pointed out their main causes. We show that proximal methods provide robust phenological metrics. They can be used to retrieve long-term phenological series at flux measurement sites and help interpret the interannual variability and trends of mass and energy exchanges.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Anteneh Getachew Mengistu, Gizaw Mengistu Tsidu, Gerbrand Koren, Maurits L. Kooreman, K. Folkert Boersma, Torbern Tagesson, Jonas Ardö, Yann Nouvellon, and Wouter Peters
Biogeosciences, 18, 2843–2857, https://doi.org/10.5194/bg-18-2843-2021, https://doi.org/10.5194/bg-18-2843-2021, 2021
Short summary
Short summary
In this study, we assess the usefulness of Sun-Induced Fluorescence of Terrestrial Ecosystems Retrieval (SIFTER) data from the GOME-2A instrument and near-infrared reflectance of vegetation (NIRv) from MODIS to capture the seasonality and magnitudes of gross primary production (GPP) derived from six eddy-covariance flux towers in Africa in the overlap years between 2007–2014. We also test the robustness of sun-induced fluoresence and NIRv to compare the seasonality of GPP for the major biomes.
Cited articles
Arp, P. A. and Oja, T.: A forest soil vegetation atmosphere model (ForSVA),
I: Concepts, Ecol. Model., 95, 211–224,
https://doi.org/10.1016/S0304-3800(96)00036-1, 1997. a
Attia, A., Nouvellon, Y., Cuadra, S., Cabral, O., Laclau, J.-P., Guillemot, J.,
Campoe, O., Stape, J.-L., Galdos, M., Lamparelli, R., and le Maire, G.:
Modelling carbon and water balance of Eucalyptus plantations at regional
scale: Effect of climate, soil and genotypes, Forest Ecol.
Manag., 449, 117460, https://doi.org/10.1016/j.foreco.2019.117460, 2019. a, b
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon
dioxide exchange rates of ecosystems: past, present and future, Glob. Change
Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x,
2003. a
Basile, B., Reidel, E. J., Weinbaum, S. A., and DeJong, T. M.: Leaf potassium
concentration, CO2 exchange and light interception in almond trees
(Prunus dulcis (Mill) D.A. Webb), Sci. Hortic.-Amsterdam, 98,
185–194, https://doi.org/10.1016/S0304-4238(02)00214-5, 2003. a
Battie-Laclau, P., Laclau, J.-P., Piccolo, M. d. C., Arenque, B. C., Beri, C.,
Mietton, L., Muniz, M. R. A., Jordan-Meille, L., Buckeridge, M. S.,
Nouvellon, Y., Ranger, J., and Bouillet, J.-P.: Influence of potassium and
sodium nutrition on leaf area components in Eucalyptus grandis trees, Plant
Soil, 371, 19–35, https://doi.org/10.1007/s11104-013-1663-7, 2013. a, b, c, d, e, f, g, h, i, j
Battie-Laclau, P., Delgado-Rojas, J. S., Christina, M., Nouvellon, Y.,
Bouillet, J.-P., Piccolo, M. d. C., Moreira, M. Z., Gonçalves, J. L. d. M.,
Roupsard, O., and Laclau, J.-P.: Potassium fertilization increases water-use
efficiency for stem biomass production without affecting intrinsic water-use
efficiency in Eucalyptus grandis plantations, Forest Ecol.
Manag., 364, 77–89, https://doi.org/10.1016/j.foreco.2016.01.004, 2016. a, b, c
Battie‐Laclau, P., Laclau, J.-P., Beri, C., Mietton, L., Muniz, M. R. A.,
Arenque, B. C., Piccolo, M. D. C., Jordan‐Meille, L., Bouillet, J.-P., and
Nouvellon, Y.: Photosynthetic and anatomical responses of Eucalyptus
grandis leaves to potassium and sodium supply in a field experiment, Plant
Cell Environ., 37, 70–81, https://doi.org/10.1111/pce.12131, 2014a. a, b, c
Battie‐Laclau, P., Laclau, J.-P., Domec, J.-C., Christina, M., Bouillet,
J.-P., Piccolo, M. d. C., Gonçalves, J. L. d. M., Moreira, R. M. E.,
Krusche, A. V., Bouvet, J.-M., and Nouvellon, Y.: Effects of potassium and
sodium supply on drought-adaptive mechanisms in Eucalyptus grandis
plantations, New Phytol., 203, 401–413, https://doi.org/10.1111/nph.12810,
2014b. a, b, c, d
Bauters, M., Janssens, I. A., Wasner, D., Doetterl, S., Vermeir, P.,
Griepentrog, M., Drake, T. W., Six, J., Barthel, M., Baumgartner, S.,
Van Oost, K., Makelele, I. A., Ewango, C., Verheyen, K., and Boeckx, P.:
Increasing calcium scarcity along Afrotropical forest succession, Nat.
Ecol. Evolut., 6, 1122–1131, https://doi.org/10.1038/s41559-022-01810-2,
2022. a
Bonneau, M.: Quelques résultats d'essai de fertilisation sur Épicéa dans le
Massif central, Revue Forestière Française, 24, 354–363,
https://doi.org/10.4267/2042/20633, 1972. a
Caldeira Filho, A., Krushe, A. V., Mareschal, L., da Silva, P., Nouvellon, Y.,
Campoe, O., Stape, J. L., Montebelo, A., Formaglio, G., le Maire, G.,
Guillemot, J., Ranger, J., and Laclau, J.-P.: Very Low Nutrient Losses
by Deep Leaching after Clearcutting Commercial Eucalyptus
Plantations in Brazil, Forest Ecol. Manag.,
534,
120866,
https://doi.org/10.2139/ssrn.4270148, 2023. a, b
Christina, M., Laclau, J.-P., Gonçalves, J. L. M., Jourdan, C., Nouvellon, Y.,
and Bouillet, J.-P.: Almost symmetrical vertical growth rates above and below
ground in one of the world's most productive forests, Ecosphere, 2, 1–10,
https://doi.org/10.1890/ES10-00158.1, 2011. a, b, c
Christina, M., Maire, G. L., Battie‐Laclau, P., Nouvellon, Y., Bouillet,
J.-P., Jourdan, C., Gonçalves, J. L. d. M., and Laclau, J.-P.: Measured and
modeled interactive effects of potassium deficiency and water deficit on
gross primary productivity and light‐use efficiency in Eucalyptus grandis
plantations, Glob. Change Biol., 21, 2022–2039, https://doi.org/10.1111/gcb.12817,
2015. a, b, c, d, e, f, g, h, i
Christina, M., le Maire, G., Nouvellon, Y., Vezy, R., Bordon, B.,
Battie-Laclau, P., Gonçalves, J. L. M., Delgado-Rojas, J. S., Bouillet,
J. P., and Laclau, J. P.: Simulating the effects of different potassium and
water supply regimes on soil water content and water table depth over a
rotation of a tropical Eucalyptus grandis plantation, Forest Ecol.
Manag., 418, 4–14, https://doi.org/10.1016/j.foreco.2017.12.048, 2018. a, b, c, d, e, f, g
Cornut, I., Le Maire, G., Laclau, J.-P., Guillemot, J., Mareschal, L.,
Nouvellon, Y., and Delpierre, N.: Potassium limitation of wood productivity:
A review of elementary processes and ways forward to modelling illustrated
by Eucalyptus plantations, Forest Ecol. Manag., 494, 119275,
https://doi.org/10.1016/j.foreco.2021.119275, 2021. a, b, c, d, e, f, g, h, i, j, k, l
Cornut, I., le Maire, G., Laclau, J.-P., Guillemot, J., Nouvellon, Y., and Delpierre, N.: Potassium limitation of forest productivity – Part 2:
CASTANEA-MAESPA-K shows a reduction in photosynthesis
rather than a stoichiometric limitation of tissue formation, Biogeosciences, 20, 3119–3135, https://doi.org/10.5194/bg-20-3119-2023, 2023. a, b, c, d, e, f, g, h, i, j
Crockford, R. H., Richardson, D. P., and Sageman, R.: Chemistry of rainfall,
throughfall and stemflow in a eucalypt forest and a pine plantation in
south-eastern Australia: 2. Throughfall, Hydrol. Process., 10,
13–24, https://doi.org/10.1002/(SICI)1099-1085(199601)10:1<13::AID-HYP296>3.0.CO;2-5,
1996. a
Cunha, H. F. V., Andersen, K. M., Lugli, L. F., Santana, F. D., Aleixo, I. F.,
Moraes, A. M., Garcia, S., Di Ponzio, R., Mendoza, E. O., Brum, B., Rosa,
J. S., Cordeiro, A. L., Portela, B. T. T., Ribeiro, G., Coelho, S. D.,
de Souza, S. T., Silva, L. S., Antonieto, F., Pires, M., Salomão, A. C.,
Miron, A. C., de Assis, R. L., Domingues, T. F., Aragão, L. E. O. C., Meir,
P., Camargo, J. L., Manzi, A. O., Nagy, L., Mercado, L. M., Hartley, I. P.,
and Quesada, C. A.: Direct evidence for phosphorus limitation on Amazon
forest productivity, Nature, 608, 558–562, https://doi.org/10.1038/s41586-022-05085-2,
2022. a
Davi, H., Dufrêne, E., Francois, C., Le Maire, G., Loustau, D., Bosc, A.,
Rambal, S., Granier, A., and Moors, E.: Sensitivity of water and carbon
fluxes to climate changes from 1960 to 2100 in European forest ecosystems,
Agr. Forest Meteorol., 141, 35–56,
https://doi.org/10.1016/j.agrformet.2006.09.003, 2006. a
Delpierre, N., Soudani, K., François, C., Le Maire, G., Bernhofer, C., Kutsch,
W., Misson, L., Rambal, S., Vesala, T., and Dufrêne, E.: Quantifying the
influence of climate and biological drivers on the interannual variability of
carbon exchanges in European forests through process-based modelling,
Agr. Forest Meteorol., 154/155, 99–112,
https://doi.org/10.1016/j.agrformet.2011.10.010, 2012. a
de Oliveira, F. B., Carneiro, S. H., de Souza, N. F., Horta, B. M., da Silva,
I. R., Fontes, M. P. F., and Valadares, S. V.: Soil potassium dynamics in the
eucalypt rhizosphere, Trees, 35, 1411–1415, https://doi.org/10.1007/s00468-021-02153-4, 2021. a, b
Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., van Lissa, C. J.,
Zhao, X., Xia, N., Wu, X., and Jackson, R. B.: Global patterns of terrestrial
nitrogen and phosphorus limitation, Nat. Geosci., 13, 221–226,
https://doi.org/10.1038/s41561-019-0530-4, 2020. a, b
Dufrêne, E., Davi, H., François, C., Maire, G. l., Dantec, V. L., and
Granier, A.: Modelling carbon and water cycles in a beech forest: Part I:
Model description and uncertainty analysis on modelled NEE, Ecol.
Model., 185, 407–436, https://doi.org/10.1016/j.ecolmodel.2005.01.004, 2005. a, b
Duursma, R. A. and Medlyn, B. E.: MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO2] × drought interactions, Geosci. Model Dev., 5, 919–940, https://doi.org/10.5194/gmd-5-919-2012, 2012. a, b
Ellsworth, D. S., Crous, K. Y., De Kauwe, M. G., Verryckt, L. T., Goll, D.,
Zaehle, S., Bloomfield, K. J., Ciais, P., Cernusak, L. A., Domingues, T. F.,
Dusenge, M. E., Garcia, S., Guerrieri, R., Ishida, F. Y., Janssens, I. A.,
Kenzo, T., Ichie, T., Medlyn, B. E., Meir, P., Norby, R. J., Reich, P. B.,
Rowland, L., Santiago, L. S., Sun, Y., Uddling, J., Walker, A. P.,
Weerasinghe, K. W. L. K., van de Weg, M. J., Zhang, Y.-B., Zhang, J.-L., and
Wright, I. J.: Convergence in phosphorus constraints to photosynthesis in
forests around the world, Nat. Commun., 13, 5005,
https://doi.org/10.1038/s41467-022-32545-0, 2022. a, b
Epron, D., Laclau, J.-P., Almeida, J. C. R., Gonçalves, J. L. M., Ponton, S.,
Sette, C. R., Delgado-Rojas, J. S., Bouillet, J.-P., and Nouvellon, Y.: Do
changes in carbon allocation account for the growth response to potassium and
sodium applications in tropical Eucalyptus plantations?, Tree Physiol.,
32, 667–679, https://doi.org/10.1093/treephys/tpr107, 2012. a, b, c, d, e, f, g
Epron, D., Cabral, O. M. R., Laclau, J.-P., Dannoura, M., Packer, A. P., Plain,
C., Battie-Laclau, P., Moreira, M. Z., Trivelin, P. C. O., Bouillet, J.-P.,
Gérant, D., and Nouvellon, Y.: In situ 13CO2 pulse labelling of
field-grown eucalypt trees revealed the effects of potassium nutrition and
throughfall exclusion on phloem transport of photosynthetic carbon, Tree
Physiol., 36, 6–21, https://doi.org/10.1093/treephys/tpv090, 2016. a
Famiglietti, C. A., Smallman, T. L., Levine, P. A., Flack-Prain, S., Quetin,
G. R., Meyer, V., Parazoo, N. C., Stettz, S. G., Yang, Y., Bonal, D., Bloom,
A. A., Williams, M., and Konings, A. G.: Optimal model complexity for
terrestrial carbon cycle prediction, Biogeosciences, 18, 2727–2754,
https://doi.org/10.5194/bg-18-2727-2021, 2021. a, b
Farquhar, G. D., Caemmerer, S. V., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149,
78–90, https://doi.org/10.1007/BF00386231, 1980. a
Fleischer, K., Rebel, K. T., van der Molen, M. K., Erisman, J. W., Wassen,
M. J., van Loon, E. E., Montagnani, L., Gough, C. M., Herbst, M., Janssens,
I. A., Gianelle, D., and Dolman, A. J.: The contribution of nitrogen
deposition to the photosynthetic capacity of forests, Global Biogeochem.
Cy., 27, 187–199, https://doi.org/10.1002/gbc.20026, 2013. a
Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich,
P. B., van Bodegom, P. M., and Niinemets, U.: Nutrient limitation reduces
land carbon uptake in simulations with a model of combined carbon, nitrogen
and phosphorus cycling, Biogeosciences, 9, 3547–3569,
https://doi.org/10.5194/bg-9-3547-2012, 2012. a
Goll, D. S., Vuichard, N., Maignan, F., Jornet-Puig, A., Sardans, J., Violette, A., Peng, S., Sun, Y., Kvakic, M., Guimberteau, M., Guenet, B., Zaehle, S., Penuelas, J., Janssens, I., and Ciais, P.: A representation of the phosphorus cycle for ORCHIDEE (revision 4520), Geosci. Model Dev., 10, 3745–3770, https://doi.org/10.5194/gmd-10-3745-2017, 2017. a, b
Goll, D. S., Bauters, M., Zhang, H., Ciais, P., Balkanski, Y., Wang, R., and
Verbeeck, H.: Atmospheric phosphorus deposition amplifies carbon sinks in
simulations of a tropical forest in Central Africa, New Phytol., 237,
2054–2068, https://doi.org/10.1111/nph.18535, 2023. a
Greenwood, D. J. and Karpinets, T. V.: Dynamic model for the effects of
K-fertilizer on crop growth, K-uptake and soil-K in arable cropping. 1.
Description of the model, Soil Use Manag., 13, 178–183,
https://doi.org/10.1111/j.1475-2743.1997.tb00582.x, 1997. a
Guillemot, J., Francois, C., Hmimina, G., Dufrêne, E., Martin‐StPaul, N. K.,
Soudani, K., Marie, G., Ourcival, J.-M., and Delpierre, N.: Environmental
control of carbon allocation matters for modelling forest growth, New
Phytol., 214, 180–193, https://doi.org/10.1111/nph.14320, 2017. a
Guillemot, J., Asensio, V., Bordron, B., Nouvellon, Y., Maire, G. l., Bouillet,
J.-P., Domec, J.-C., Rojas, J. S. D., Abreu-Junior, C. H., Battie-Laclau, P.,
Cornut, I., Germon, A., Gonçalves, J. L. D. M., Robin, A., and Laclau,
J.-P.: Increased hydraulic constraints in Eucalyptus plantations fertilized
with potassium, Plant Cell Environ., 44, 2938–2950,
https://doi.org/10.1111/pce.14102, 2021. a
Guitton, J., Bonneau, M., and Adrian, M.: Résultats de fertilisation minérale
en région méditerranéenne, Revue Forestière Française, 60, 315–320,
https://doi.org/10.4267/2042/25896, 1988. a
Hou, E., Luo, Y., Kuang, Y., Chen, C., Lu, X., Jiang, L., Luo, X., and Wen, D.:
Global meta-analysis shows pervasive phosphorus limitation of aboveground
plant production in natural terrestrial ecosystems, Nat. Commun.,
11, 637, https://doi.org/10.1038/s41467-020-14492-w, 2020. a, b
Hyvönen, R., Persson, T., Andersson, S., Olsson, B., Ågren, G. I., and
Linder, S.: Impact of long-term nitrogen addition on carbon stocks in trees
and soils in northern Europe, Biogeochemistry, 89, 121–137,
https://doi.org/10.1007/s10533-007-9121-3, 2008. a
Hölttä, T., Vesala, T., Sevanto, S., Perämäki, M., and Nikinmaa, E.:
Modeling xylem and phloem water flows in trees according to cohesion theory
and Münch hypothesis, Trees, 20, 67–78, https://doi.org/10.1007/s00468-005-0014-6,
2006. a
Hölttä, T., Kurppa, M., and Nikinmaa, E.: Scaling of xylem and phloem
transport capacity and resource usage with tree size, Front. Plant
Sci., 4, 496, https://doi.org/10.3389/fpls.2013.00496, 2013. a
Johnson, D. W., Sogn, T., and Kvindesland, S.: The nutrient cycling model:
lessons learned, Forest Ecol. Manag., 138, 91–106,
https://doi.org/10.1016/S0378-1127(00)00414-X, 2000. a
Körner, C.: Paradigm shift in plant growth control, Current Opinion in Plant
Biology, 25, 107–114, https://doi.org/10.1016/j.pbi.2015.05.003, 2015. a, b
Laclau, J. P., Toutain, F., M'Bou, A. T., Arnaud, M., Joffre, R., and Ranger,
J.: The Function of the Superficial Root Mat in the Biogeochemical
Cycles of Nutrients in Congolese Eucalyptus Plantations, Ann.
Bot., 93, 249–261, https://doi.org/10.1093/aob/mch035, 2004. a
Laclau, J.-P., Almeida, J. C. R., Gonçalves, J. L. M., Saint-André, L.,
Ventura, M., Ranger, J., Moreira, R. M., and Nouvellon, Y.: Influence of
nitrogen and potassium fertilization on leaf lifespan and allocation of
above-ground growth in Eucalyptus plantations, Tree Physiol., 29,
111–124, https://doi.org/10.1093/treephys/tpn010, 2009. a, b, c, d, e, f, g, h
Laclau, J.-P., Ranger, J., de Moraes Gonçalves, J. L., Maquère, V., Krusche,
A. V., M’Bou, A. T., Nouvellon, Y., Saint-André, L., Bouillet, J.-P.,
de Cassia Piccolo, M., and Deleporte, P.: Biogeochemical cycles of nutrients
in tropical Eucalyptus plantations, Forest Ecol. Manag., 259,
1771–1785, https://doi.org/10.1016/j.foreco.2009.06.010, 2010. a, b, c, d, e
Lambers, H. and Oliveira, R. S.: Plant Water Relations, in: Plant
Physiological Ecology, edited by Lambers, H. and Oliveira, R. S.,
Springer International Publishing, Cham, 187–263,
https://doi.org/10.1007/978-3-030-29639-1_5, 2019. a
Landi, M., Tattini, M., and Gould, K. S.: Multiple functional roles of
anthocyanins in plant-environment interactions, Environ.
Exp. Bot., 119, 4–17, https://doi.org/10.1016/j.envexpbot.2015.05.012, 2015. a
le Maire, G.: Code for computing Leaf Size, Shape and Symptoms traits
from scans, DATAVERSE CIRAD,
https://doi.org/10.18167/DVN1/PYAXSS, 2023. a
Le Maire, G., Davi, H., Soudani, K., François, C., Le Dantec, V., and
Dufrêne, E.: Modeling annual production and carbon fluxes of a large managed
temperate forest using forest inventories, satellite data and field
measurements, Tree Physiol., 25, 859–872, https://doi.org/10.1093/treephys/25.7.859,
2005. a
Le Maire, G., Guillemot, J., Campoe, O., Stape, J. L., Laclau, J.-P., and
Nouvellon, Y.: Light use efficiency and productivity of 16 genotypes of
Eucalyptus along a 6-year rotation in Brazil, XXV IUFRO World Congress
Forest Research and Cooperation for Sustainable Development,
2019. a
Li, W., Yue, C., Ciais, P., Chang, J., Goll, D., Zhu, D., Peng, S., and
Jornet-Puig, A.: ORCHIDEE-MICT-BIOENERGY: an attempt to represent the
production of lignocellulosic crops for bioenergy in a global vegetation
model, Geosci. Model Dev., 11, 2249–2272,
https://doi.org/10.5194/gmd-11-2249-2018, 2018. a
Liu, S., Munson, R., Johnson, D. W., Gherini, S., Summers, K., hudson, R.,
Wilkinson, K., and Pitelka, L. F.: The nutrient cycling cycling model
(NuCM): overview and application, Ecol. Stud., 91, 583–609, 1992. a
Lockhart, J. A.: An analysis of irreversible plant cell elongation, J.
Theor. Biol., 8, 264–275, https://doi.org/10.1016/0022-5193(65)90077-9, 1965. a
Manu, R., Corre, M. D., Aleeje, A., Mwanjalolo, M. J. G., Babweteera, F.,
Veldkamp, E., and van Straaten, O.: Responses of tree growth and biomass
production to nutrient addition in a semi-deciduous tropical forest in
Africa, Ecology, 103, e3659, https://doi.org/10.1002/ecy.3659, 2022. a
Marschner, H.: Marschner's Mineral Nutrition of Higher Plants, Academic
Press, https://doi.org/10.1016/C2009-0-63043-9, 2011. a, b, c
Marschner, H. and Cakmak, I.: High Light Intensity Enhances Chlorosis
and Necrosis in Leaves of Zinc, Potassium, and Magnesium
Deficient Bean (Phaseolus vulgaris) Plants, J. Plant
Physiol., 134, 308–315, https://doi.org/10.1016/S0176-1617(89)80248-2, 1989. a
Mattila, H., Valev, D., Havurinne, V., Khorobrykh, S., Virtanen, O.,
Antinluoma, M., Mishra, K. B., and Tyystjärvi, E.: Degradation of
chlorophyll and synthesis of flavonols during autumn senescence – the story
told by individual leaves, AoB PLANTS, 10, ply028, https://doi.org/10.1093/aobpla/ply028, 2018. a
Nardelli, A. and Fedorinova, Y.: Belgium Is Pushing to Dilute the
EU’s Belarus Potash Sanctions, Bloomberg.com,
https://www.bloomberg.com/news/articles/2021-10-19/belgium-is-pushing-to-dilute-the-eu-s-belarus-potash-sanctions (last access: 21 June 2023),
2021. a
Nardini, A., Grego, F., Trifilò, P., and Salleo, S.: Changes of xylem sap
ionic content and stem hydraulics in response to irradiance in Laurus
nobilis, Tree Physiol., 30, 628–635, https://doi.org/10.1093/treephys/tpq017, 2010. a
Nobel, P. S.: Physicochemical and Environmental Plant Physiology,
Academic Press Elsevier, https://doi.org/10.1016/B978-0-12-374143-1.X0001-4, 2005. a
Nouvellon, Y., Stape, J. L., Laclau, J.-P., Bonnefond, J.-M., da Rocha, H.,
Campoe, O. C., Marsden, C., Bouillet, J.-P., Loos, R. A., Kinana, A.,
Le Maire, G., Saint-André, L., and Roupsard, O.: Water and energy fluxes
above an Eucalyptus plantation in Brazil: environmental control and
comparison with two eucalypt plantations in Congo, IUFRO Workshop,
“Canopy processes in a changing climate”, Hobart, AUS,
https://hal.inrae.fr/hal-02821072/document (last access: 21 June 2023),
2010. a
Nouvellon, Y., Stape, J. L., Le Maire, G., Bonnefond, J.-M., Guillemot, J.,
Christina, M., Bouillet, J.-P., Campoe, O., and Laclau, J.-P.: Full-rotation
carbon, water and energy fluxes in a tropical eucalypt plantation, XXV IUFRO
World Congress Forest Research and Cooperation for Sustainable Development,
https://agritrop.cirad.fr/594409/ (last access: 21 June 2023), 2019. a, b
Pantin, F., Simonneau, T., and Muller, B.: Coming of leaf age: control of
growth by hydraulics and metabolics during leaf ontogeny, New Phytol.,
196, 349–366, https://doi.org/10.1111/j.1469-8137.2012.04273.x, 2012. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a
Pradier, C., Hinsinger, P., Laclau, J.-P., Bouillet, J.-P., Guerrini, I. A.,
Gonçalves, J. L. M., Asensio, V., Abreu-Junior, C. H., and Jourdan, C.:
Rainfall reduction impacts rhizosphere biogeochemistry in eucalypts grown in
a deep Ferralsol in Brazil, Plant Soil, 414, 339–354,
https://doi.org/10.1007/s11104-016-3107-7, 2017. a, b, c
Prakash, S. and Verma, J. P.: Global Perspective of Potash for Fertilizer
Production, in: Potassium Solubilizing Microorganisms for Sustainable
Agriculture, edited by: Meena, V. S., Maurya, B. R., Verma, J. P., and
Meena, R. S., Springer India, New Delhi, 327–331,
https://doi.org/10.1007/978-81-322-2776-2_23, 2016. a
Reed, S. C., Yang, X., and Thornton., P. E.: Incorporating phosphorus cycling
into global modeling efforts: a worthwhile, tractable endeavor, New
Phytol., 208, 324–329, https://doi.org/10.1111/nph.13521, 2015. a
Rocha, J. H. T., du Toit, B., and Gonçalves, J. L. d. M.: Ca and Mg
nutrition and its application in Eucalyptus and Pinus plantations, Forest
Ecol. Manag., 442, 63–78, https://doi.org/10.1016/j.foreco.2019.03.062,
2019. a
Sainte-Marie, J., Saint-André, L., Nouvellon, Y., Laclau, J. P., Roupsard, O.,
le Maire, G., Delpierre, N., Henrot, A., and Barrandon, M.: A new
probabilistic canopy dynamics model (SLCD) that is suitable for evergreen
and deciduous forest ecosystems, Ecol. Model., 290, 121–133,
https://doi.org/10.1016/j.ecolmodel.2014.01.026, 2014. a, b
Sardans, J. and Peñuelas, J.: Potassium: a neglected nutrient in global
change: Potassium stoichiometry and global change, Global Ecol.
Biogeogr., 24, 261–275, https://doi.org/10.1111/geb.12259, 2015. a, b, c
Seward, P., Barraclough, P. B., and Gregory, P. J.: Modelling potassium uptake
by wheat (Triticum aestivum) crops, Plant Soil, 124, 303–307,
https://doi.org/10.1007/BF00009277, 1990. a, b
Shen, C., Huang, R., Tang, Y., and Wang, Z.: Potassium nutrition recover
impacts on stomatal, mesophyll and biochemical limitations to photosynthesis
in Carya cathayensis and Hickory illinoensis, bioRxiv, 425629,
https://doi.org/10.1101/425629, 2018. a
Silberbush, M. and Barber, S. A.: Phosphorus and Potassium Uptake of
Field-Grown Soybean Cultivars Predicted by a Simulation Model,
Soil Sci. Soc. Am. J., 48, 592–596,
https://doi.org/10.2136/sssaj1984.03615995004800030025x, 1984. a
Silveira, R., Higashi, E. N., Gonçalves, A. N., and Moreira, A.: Avaliação
do estado nutricional do Eucalyptus: diagnose visual, foliar e suas
interpretações, Nutrição e fertilização florestal, Piracicaba, IPEF,
79–104, ISBN: 9788590135814, 2000. a
Thum, T., Caldararu, S., Engel, J., Kern, M., Pallandt, M., Schnur, R., Yu, L.,
and Zaehle, S.: A new model of the coupled carbon, nitrogen, and phosphorus
cycles in the terrestrial biosphere (QUINCY v1.0; revision 1996),
Geosci. Model Dev., 12, 4781–4802,
https://doi.org/10.5194/gmd-12-4781-2019, 2019. a
Townsend, A. R., Cleveland, C. C., Houlton, B. Z., Alden, C. B., and White,
J. W.: Multi-element regulation of the tropical forest carbon cycle,
Front. Ecol. Environ., 9, 9–17, https://doi.org/10.1890/100047,
2011. a
Tripler, C. E., Kaushal, S. S., Likens, G. E., and Walter, M. T.: Patterns in
potassium dynamics in forest ecosystems, Ecol. Lett., 9, 451–466,
https://doi.org/10.1111/j.1461-0248.2006.00891.x, 2006. a, b
van den Driessche, R.: Prediction of mineral nutrient status of trees by foliar
analysis, Bot. Rev., 40, 347–394, https://doi.org/10.1007/BF02860066, 1974. a
Vezy, R., Christina, M., Roupsard, O., Nouvellon, Y., Duursma, R., Medlyn, B.,
Soma, M., Charbonnier, F., Blitz-Frayret, C., Stape, J.-L., Laclau, J.-P.,
de Melo Virginio Filho, E., Bonnefond, J.-M., Rapidel, B., Do, F. C.,
Rocheteau, A., Picart, D., Borgonovo, C., Loustau, D., and le Maire, G.:
Measuring and modelling energy partitioning in canopies of varying complexity
using MAESPA model, Agr. Forest Meteorol., 253/254, 203–217,
https://doi.org/10.1016/j.agrformet.2018.02.005, 2018. a
von Liebig, J.: Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie, Vieweg,
https://doi.org/10.5962/bhl.title.42117, 1840. a
Wang, Y. P. and Jarvis, P. G.: Description and validation of an array model –
MAESTRO, Agr. Forest Meteorol., 51, 257–280,
https://doi.org/10.1016/0168-1923(90)90112-J, 1990.
a
Williams, M., Rastetter, E. B., Fernandes, D. N., Goulden, M. L., Wofsy, S. C.,
Shaver, G. R., Melillo, J. M., Munger, J. W., Fan, S.-M., and Nadelhoffer,
K. J.: Modelling the soil-plant-atmosphere continuum in a Quercus – Acer
stand at Harvard Forest: the regulation of stomatal conductance by light,
nitrogen and soil/plant hydraulic properties, Plant Cell Environ., 19,
911–927, https://doi.org/10.1111/j.1365-3040.1996.tb00456.x, 1996. a
Yang, X., Thornton, P. E., Ricciuto, D. M., and Post, W. M.: The role of
phosphorus dynamics in tropical forests – a modeling study using
CLM-CNP, Biogeosciences, 11, 1667–1681, https://doi.org/10.5194/bg-11-1667-2014,
2014. a
Zanne, A. E., Westoby, M., Falster, D. S., Ackerly, D. D., Loarie, S. R.,
Arnold, S. E. J., and Coomes, D. A.: Angiosperm wood structure: Global
patterns in vessel anatomy and their relation to wood density and potential
conductivity, Am. J. Bot., 97, 207–215,
https://doi.org/10.3732/ajb.0900178, 2010. a
Zhu, Z., Arp, P. A., Meng, F., Bourque, C. P. A., and Foster, N. W.: A Forest
Nutrient Cycling and Biomass Model (ForNBM) based on year-round,
monthly weather conditions: Part II: Calibration, verification, and
application, Ecol. Model., 170, 13–27,
https://doi.org/10.1016/S0304-3800(03)00284-9, 2003. a
Zhu, Z., Foster, N. W., Arp, P. A., Meng, F., and Bourque, C. P. A.: A test and
application of the model ForNBM in a northeastern Ontario jack pine
(Pinus banksiana lamb.) stand, Forest Ecol. Manag., 193,
385–397, https://doi.org/10.1016/j.foreco.2004.02.003, 2004. a
Short summary
Potassium is an essential element for living organisms. Trees are dependent upon this element for certain functions that allow them to build their trunks using carbon dioxide. Using data from experiments in eucalypt plantations in Brazil and a simplified computer model of the plantations, we were able to investigate the effect that a lack of potassium can have on the production of wood. Understanding nutrient cycles is useful to understand the response of forests to environmental change.
Potassium is an essential element for living organisms. Trees are dependent upon this element...
Altmetrics
Final-revised paper
Preprint