Articles | Volume 20, issue 3
https://doi.org/10.5194/bg-20-647-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-647-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ideas and perspectives: Land–ocean connectivity through groundwater
Damian L. Arévalo-Martínez
CORRESPONDING AUTHOR
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24105, Germany
Institute of Geosciences, Kiel University, Kiel, 24118, Germany
now at: Department of Ecological Microbiology, Radboud University, Nijmegen, 6525 AJ, the Netherlands
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24105, Germany
Hermann W. Bange
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24105, Germany
Ercan Erkul
Institute of Geosciences, Kiel University, Kiel, 24118, Germany
Marion Jegen
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24105, Germany
Nils Moosdorf
Institute of Geosciences, Kiel University, Kiel, 24118, Germany
Leibniz Centre for Tropical Marine Research (ZMT), Bremen, 28359,
Germany
Jens Schneider von Deimling
Institute of Geosciences, Kiel University, Kiel, 24118, Germany
Christian Berndt
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24105, Germany
Michael Ernst Böttcher
Leibniz Institute for Baltic Sea Research Warnemünde (IOW),
Rostock, 18119, Germany
Marine Geochemistry, University of Greifswald, Greifswald, 17489,
Germany
Interdisciplinary Faculty, University of Rostock, Rostock, 18051,
Germany
Jasper Hoffmann
Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine
Research, List, 25992, Germany
Department of Geosciences, University of Malta, Msida, MSD 2080, Malta
Volker Liebetrau
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24105, Germany
deceased
Ulf Mallast
Helmholtz Centre for Environmental Research, Leipzig, 04318,
Germany
Gudrun Massmann
Institute of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, 26129,
Germany
Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, 26129,
Germany
Aaron Micallef
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24105, Germany
Department of Geosciences, University of Malta, Msida, MSD 2080, Malta
Holly A. Michael
Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA
Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
Hendrik Paasche
Helmholtz Centre for Environmental Research, Leipzig, 04318,
Germany
Wolfgang Rabbel
Institute of Geosciences, Kiel University, Kiel, 24118, Germany
Isaac Santos
Department of Marine Science, University of Gothenburg, Gothenburg,
40539, Sweden
Jan Scholten
Institute of Geosciences, Kiel University, Kiel, 24118, Germany
Katrin Schwalenberg
Federal Institute for Geosciences and Natural Resources, Hannover,
30655, Germany
Beata Szymczycha
Institute of Gdańsk Polish Academy of Sciences, Sopot, 81-712,
Poland
Ariel T. Thomas
Department of Geosciences, University of Malta, Msida, MSD 2080, Malta
Joonas J. Virtasalo
Marine Geology, Geological Survey of Finland (GTK), Espoo, 02150,
Finland
Hannelore Waska
Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, 26129,
Germany
Bradley A. Weymer
School of Oceanography, Shanghai Jiao Tong University, Shanghai,
China
Related authors
Guanlin Li, Damian L. Arévalo-Martínez, Riel Carlo O. Ingeniero, and Hermann W. Bange
EGUsphere, https://doi.org/10.5194/egusphere-2023-771, https://doi.org/10.5194/egusphere-2023-771, 2023
Preprint archived
Short summary
Short summary
Dissolved carbon monoxide (CO) surface concentrations were first measured at 14 stations in the Ria Formosa Lagoon system in May 2021. Ria Formosa was a source of atmospheric CO. Microbial consumption accounted for 83 % of the CO production. The results of a 48-hour irradiation experiment with aquaculture effluent water indicated that aquaculture facilities in the Ria Formosa Lagoon seem to be a negligible source of atmospheric CO.
Hanna I. Campen, Damian L. Arévalo-Martínez, and Hermann W. Bange
Biogeosciences, 20, 1371–1379, https://doi.org/10.5194/bg-20-1371-2023, https://doi.org/10.5194/bg-20-1371-2023, 2023
Short summary
Short summary
Carbon monoxide (CO) is a climate-relevant trace gas emitted from the ocean. However, oceanic CO cycling is understudied. Results from incubation experiments conducted in the Fram Strait (Arctic Ocean) indicated that (i) pH did not affect CO cycling and (ii) enhanced CO production and consumption were positively correlated with coloured dissolved organic matter and nitrate concentrations. This suggests microbial CO uptake to be the driving factor for CO cycling in the Arctic Ocean.
Wangwang Ye, Hermann W. Bange, Damian L. Arévalo-Martínez, Hailun He, Yuhong Li, Jianwen Wen, Jiexia Zhang, Jian Liu, Man Wu, and Liyang Zhan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-334, https://doi.org/10.5194/bg-2021-334, 2022
Manuscript not accepted for further review
Short summary
Short summary
CH4 is the second important greenhouse gas after CO2. We show that CH4 consumption and sea-ice melting influence the CH4 distribution in the Ross Sea (Southern Ocean), causing undersaturation and net uptake of CH4 during summertime. This study confirms the capability of surface water in the high-latitude Southern Ocean regions to take up atmospheric CH4 which, in turn, will help to improve predictions of how CH4 release/uptake from the ocean will develop when sea-ice retreats in the future.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
James M. Ciarlo', Monique Borg Inguanez, Erika Coppola, Aaron Micallef, and David Mifsud
Earth Syst. Dynam., 16, 1391–1407, https://doi.org/10.5194/esd-16-1391-2025, https://doi.org/10.5194/esd-16-1391-2025, 2025
Short summary
Short summary
Climate change threatens biodiversity, especially that of arthropods, by altering species' habitats and ecological roles. This study presents a proof of concept for a novel index that models species distributions based on climatic niches, using regional climate model data and focusing on Mediterranean arthropods. The index enables quick assessments of species' climate resilience and offers potential applications for projecting ecological impacts of future climate changes.
Alberto C. Naveira Garabato, Carl P. Spingys, Andrew J. Lucas, Tiago S. Dotto, Christian T. Wild, Scott W. Tyler, Ted A. Scambos, Christopher B. Kratt, Ethan F. Williams, Mariona Claret, Hannah E. Glover, Meagan E. Wengrove, Madison M. Smith, Michael G. Baker, Giuseppe Marra, Max Tamussino, Zitong Feng, David Lloyd, Liam Taylor, Mikael Mazur, Maria-Daphne Mangriotis, Aaron Micallef, Jennifer Ward Neale, Oleg A. Godin, Matthew H. Alford, Emma P. M. Gregory, Michael A. Clare, Angel Ruiz Angulo, Kathryn L. Gunn, Ben I. Moat, Isobel A. Yeo, Alessandro Silvano, Arthur Hartog, and Mohammad Belal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3624, https://doi.org/10.5194/egusphere-2025-3624, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Distributed optical fibre sensing (DOFS) is a technology that enables continuous, real-time measurements of environmental parameters along a fibre optic cable. Here, we review the recently emerged applications of DOFS in physical oceanography, and offer a perspective on the technology’s potential for future growth in the field.
Joachim Schönfeld, Hermann W. Bange, Helmke Hepach, and Svenja Reents
EGUsphere, https://doi.org/10.5194/egusphere-2025-2672, https://doi.org/10.5194/egusphere-2025-2672, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The current state of intertidal waters at Bottsand lagoon on the Baltic Sea coast, and on the mudflats off Schobüll on the North Sea coast of Schleswig-Holstein, Germany was assessed with a 36-month time series of water level, temperature, and salinity measurements. Periods of strong precipitation, high Elbe river discharge, and high solar radiation caused a higher data variability as compared to the off shore monitoring stations Boknis Eck in the Baltic and Sylt Roads in the North Sea.
Pratirupa Bardhan, Claudia Frey, Gregor Rehder, and Hermann W. Bange
EGUsphere, https://doi.org/10.5194/egusphere-2025-2518, https://doi.org/10.5194/egusphere-2025-2518, 2025
Short summary
Short summary
Nitrous oxide (N2O), a potent greenhouse gas, is released from coastal seas & estuaries, yet we don't fully understand how it is formed and consumed. In this study we collected water from several sites in the central Baltic Sea. N2O came from ammonia in oxic waters. Deep waters with low to no oxygen noted more active N2O cycling. The seafloor was a source in some areas. Typically N2O is produced by bacteria, but our results indicate possibility of other players like fungi or chemical reactions.
Riaz Bibi, Mariana Ribas-Ribas, Leonie Jaeger, Carola Lehners, Lisa Gassen, Edgar Cortés, Jochen Wollschläger, Claudia Thölen, Hannelore Waska, Jasper Zöbelein, Thorsten Brinkhoff, Isha Athale, Rüdiger Röttgers, Michael Novak, Anja Engel, Theresa Barthelmeß, Josefine Karnatz, Thomas Reinthaler, Dmytro Spriahailo, Gernot Friedrichs, Falko Schäfer, and Oliver Wurl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1773, https://doi.org/10.5194/egusphere-2025-1773, 2025
Short summary
Short summary
A multidisciplinary mesocosm study was conducted to investigate biogeochemical processes and their relationships in the sea-surface microlayer and underlying water during an induced phytoplankton bloom. Phytoplankton-derived organic matter, fuelled microbial activity and biofilm formation, supporting high bacterial abundance. Distinct temporal patterns in biogeochemical parameters and greater variability in the sea-surface microlayer highlight its influence on air–sea interactions.
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1660, https://doi.org/10.5194/egusphere-2025-1660, 2025
Short summary
Short summary
Oxygen minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Robert Reinecke, Annemarie Bäthge, Ricarda Dietrich, Sebastian Gnann, Simon N. Gosling, Danielle Grogan, Andreas Hartmann, Stefan Kollet, Rohini Kumar, Richard Lammers, Sida Liu, Yan Liu, Nils Moosdorf, Bibi Naz, Sara Nazari, Chibuike Orazulike, Yadu Pokhrel, Jacob Schewe, Mikhail Smilovic, Maryna Strokal, Yoshihide Wada, Shan Zuidema, and Inge de Graaf
EGUsphere, https://doi.org/10.5194/egusphere-2025-1181, https://doi.org/10.5194/egusphere-2025-1181, 2025
Short summary
Short summary
Here we describe a collaborative effort to improve predictions of how climate change will affect groundwater. The ISIMIP groundwater sector combines multiple global groundwater models to capture a range of possible outcomes and reduce uncertainty. Initial comparisons reveal significant differences between models in key metrics like water table depth and recharge rates, highlighting the need for structured model intercomparisons.
Rena Meyer, Janek Greskowiak, Stephan L. Seibert, Vincent E. Post, and Gudrun Massmann
Hydrol. Earth Syst. Sci., 29, 1469–1482, https://doi.org/10.5194/hess-29-1469-2025, https://doi.org/10.5194/hess-29-1469-2025, 2025
Short summary
Short summary
The subsurface of sandy beaches under high-energy conditions where tides, waves, and storms constantly reshape the beach surface is globally common and relevant for the alteration of solute fluxes across the land–sea continuum. Our generic modelling study highlights the relevance of dynamic boundary conditions paired with aquifer properties for groundwater flow, salt transport, and mixing reactions in coastal aquifers that are exposed to strong natural forces.
Julia Zill, Axel Suckow, Ulf Mallast, Jürgen Sültenfuß, and Christian Siebert
EGUsphere, https://doi.org/10.5194/egusphere-2025-642, https://doi.org/10.5194/egusphere-2025-642, 2025
Short summary
Short summary
Groundwater in agricultural regions can transport nutrients and contaminants into rivers, affecting water quality. This study examines nutrient flux in the german Elbe River using multi-environmental tracers. Groundwater takes a few decades to reach the river, mostly infiltrating after 1985. This means that massive nutrient inputs from past fertilization have peaked and will decline in the future. These findings guide management strategies to reduce eutrophication and protect aquatic ecosystems.
Antonia Reiß, Hanna Hadler, Dennis Wilken, Bente S. Majchczack, Ruth Blankenfeldt, Sarah Bäumler, Ulf Ickerodt, Stefanie Klooß, Timo Willershäuser, Wolfgang Rabbel, and Andreas Vött
E&G Quaternary Sci. J., 74, 37–57, https://doi.org/10.5194/egqsj-74-37-2025, https://doi.org/10.5194/egqsj-74-37-2025, 2025
Short summary
Short summary
This study combines different geophysical and geomorphological methods to estimate how and to what extent human–environment interactions have shaped the coastal region of the Trendermarsch since the High Middle Ages. Our results reveal a drowned, formerly cultivated marshland with different phases of settlement from medieval times onwards and thus presumably illustrate storm-flood-induced reactions in cultivation patterns.
Johnathan Daniel Maxey, Neil D. Hartstein, Hermann W. Bange, and Moritz Müller
Biogeosciences, 21, 5613–5637, https://doi.org/10.5194/bg-21-5613-2024, https://doi.org/10.5194/bg-21-5613-2024, 2024
Short summary
Short summary
The distribution of N2O in fjord-like estuaries is poorly described in the Southern Hemisphere. Our study describes N2O distribution and its drivers in one such system in Macquarie Harbour, Tasmania. Water samples were collected seasonally in 2022 and 2023. Results show the system removes atmospheric N2O when river flow is high, whereas the system emits N2O when the river flow is low. N2O generated in basins is intercepted by the surface water and exported to the ocean during high river flow.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Seyed Reza Saghravani, Michael Ernst Böttcher, Wei-Li Hong, Karol Kuliński, Aivo Lepland, Arunima Sen, and Beata Szymczycha
Earth Syst. Sci. Data, 16, 3419–3431, https://doi.org/10.5194/essd-16-3419-2024, https://doi.org/10.5194/essd-16-3419-2024, 2024
Short summary
Short summary
A comprehensive study conducted in 2021 examined the distributions of dissolved nutrients and carbon in the western Spitsbergen fjords during the high-melting season. Significant spatial variability was observed in the water column and pore water concentrations of constituents, highlighting the unique biogeochemical characteristics of each fjord and their potential impact on ecosystem functioning and oceanographic processes.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Sean Fettrow, Andrew Wozniak, Holly A. Michael, and Angelia L. Seyfferth
Biogeosciences, 21, 2367–2384, https://doi.org/10.5194/bg-21-2367-2024, https://doi.org/10.5194/bg-21-2367-2024, 2024
Short summary
Short summary
Salt marshes play a big role in global carbon (C) storage, and C stock estimates are used to predict future changes. However, spatial and temporal gradients in C burial rates over the landscape exist due to variations in water inundation, dominant plant species and stage of growth, and tidal action. We quantified soil C concentrations in soil cores across time and space beside several porewater biogeochemical variables and discussed the controls on variability in soil C in salt marsh ecosystems.
Steven Y. J. Lai, David Amblas, Aaron Micallef, and Hervé Capart
Earth Surf. Dynam., 12, 621–640, https://doi.org/10.5194/esurf-12-621-2024, https://doi.org/10.5194/esurf-12-621-2024, 2024
Short summary
Short summary
This study explores the creation of submarine canyons and hanging-wall fans on active faults, which can be defined by gravity-dominated breaching and underflow-dominated diffusion processes. The study reveals the self-similarity in canyon–fan long profiles, uncovers Hack’s scaling relationship and proposes a formula to estimate fan volume using canyon length. This is validated by global data from source-to-sink systems, providing insights into deep-water sedimentary processes.
Julie Christin Schindlbeck-Belo, Matthew Toohey, Marion Jegen, Steffen Kutterolf, and Kira Rehfeld
Earth Syst. Sci. Data, 16, 1063–1081, https://doi.org/10.5194/essd-16-1063-2024, https://doi.org/10.5194/essd-16-1063-2024, 2024
Short summary
Short summary
Volcanic forcing of climate resulting from major explosive eruptions is a dominant natural driver of past climate variability. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present an ensemble reconstruction of volcanic stratospheric sulfur injection over the last 140 000 years that is based primarily on tephra records.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Joonas J. Virtasalo, Peter Österholm, and Eero Asmala
Biogeosciences, 20, 2883–2901, https://doi.org/10.5194/bg-20-2883-2023, https://doi.org/10.5194/bg-20-2883-2023, 2023
Short summary
Short summary
We mixed acidic metal-rich river water from acid sulfate soils and seawater in the laboratory to study the flocculation of dissolved metals and organic matter in estuaries. Al and Fe flocculated already at a salinity of 0–2 to large organic flocs (>80 µm size). Precipitation of Al and Fe hydroxide flocculi (median size 11 µm) began when pH exceeded ca. 5.5. Mn transferred weakly to Mn hydroxides and Co to the flocs. Up to 50 % of Cu was associated with the flocs, irrespective of seawater mixing.
Guanlin Li, Damian L. Arévalo-Martínez, Riel Carlo O. Ingeniero, and Hermann W. Bange
EGUsphere, https://doi.org/10.5194/egusphere-2023-771, https://doi.org/10.5194/egusphere-2023-771, 2023
Preprint archived
Short summary
Short summary
Dissolved carbon monoxide (CO) surface concentrations were first measured at 14 stations in the Ria Formosa Lagoon system in May 2021. Ria Formosa was a source of atmospheric CO. Microbial consumption accounted for 83 % of the CO production. The results of a 48-hour irradiation experiment with aquaculture effluent water indicated that aquaculture facilities in the Ria Formosa Lagoon seem to be a negligible source of atmospheric CO.
Hanna I. Campen, Damian L. Arévalo-Martínez, and Hermann W. Bange
Biogeosciences, 20, 1371–1379, https://doi.org/10.5194/bg-20-1371-2023, https://doi.org/10.5194/bg-20-1371-2023, 2023
Short summary
Short summary
Carbon monoxide (CO) is a climate-relevant trace gas emitted from the ocean. However, oceanic CO cycling is understudied. Results from incubation experiments conducted in the Fram Strait (Arctic Ocean) indicated that (i) pH did not affect CO cycling and (ii) enhanced CO production and consumption were positively correlated with coloured dissolved organic matter and nitrate concentrations. This suggests microbial CO uptake to be the driving factor for CO cycling in the Arctic Ocean.
Gesa Franz, Marion Jegen, Max Moorkamp, Christian Berndt, and Wolfgang Rabbel
Solid Earth, 14, 237–259, https://doi.org/10.5194/se-14-237-2023, https://doi.org/10.5194/se-14-237-2023, 2023
Short summary
Short summary
Our study focuses on the correlation of two geophysical parameters (electrical resistivity and density) with geological units. We use this computer-aided correlation to improve interpretation of the Earth’s formation history along the Namibian coast and the associated formation of the South Atlantic Ocean. It helps to distinguish different types of sediment cover and varieties of oceanic crust, as well as to identify typical features associated with the breakup of continents.
Arne Lohrberg, Jens Schneider von Deimling, Henrik Grob, Kai-Frederik Lenz, and Sebastian Krastel
E&G Quaternary Sci. J., 71, 267–274, https://doi.org/10.5194/egqsj-71-267-2022, https://doi.org/10.5194/egqsj-71-267-2022, 2022
Short summary
Short summary
We present an update on the distribution of tunnel valleys in the southeastern North Sea between Amrum and Heligoland based on active seismic data. Our results demonstrate that very dense grids of seismic profiles are needed to understand the distribution and the formation of tunnel valleys in a given region. We also demonstrate that acquiring offshore active seismic data is time- and cost-effective to learn more about the formation and filling of tunnel valleys in different geological settings.
Anner Paldor, Nina Stark, Matthew Florence, Britt Raubenheimer, Steve Elgar, Rachel Housego, Ryan S. Frederiks, and Holly A. Michael
Hydrol. Earth Syst. Sci., 26, 5987–6002, https://doi.org/10.5194/hess-26-5987-2022, https://doi.org/10.5194/hess-26-5987-2022, 2022
Short summary
Short summary
Ocean surges can impact the stability of beaches by changing the hydraulic regime. These surge-induced changes in the hydraulic regime have important implications for coastal engineering and for beach morphology. This work uses 3D computer simulations to study how these alterations vary in space and time. We find that certain areas along and across the beach are potentially more vulnerable than others and that previous assumptions regarding the most dangerous places may need to be revised.
Sonja Gindorf, Hermann W. Bange, Dennis Booge, and Annette Kock
Biogeosciences, 19, 4993–5006, https://doi.org/10.5194/bg-19-4993-2022, https://doi.org/10.5194/bg-19-4993-2022, 2022
Short summary
Short summary
Methane is a climate-relevant greenhouse gas which is emitted to the atmosphere from coastal areas such as the Baltic Sea. We measured the methane concentration in the water column of the western Kiel Bight. Methane concentrations were higher in September than in June. We found no relationship between the 2018 European heatwave and methane concentrations. Our results show that the methane distribution in the water column is strongly affected by temporal and spatial variabilities.
Bryce Van Dam, Nele Lehmann, Mary A. Zeller, Andreas Neumann, Daniel Pröfrock, Marko Lipka, Helmuth Thomas, and Michael Ernst Böttcher
Biogeosciences, 19, 3775–3789, https://doi.org/10.5194/bg-19-3775-2022, https://doi.org/10.5194/bg-19-3775-2022, 2022
Short summary
Short summary
We quantified sediment–water exchange at shallow sites in the North and Baltic seas. We found that porewater irrigation rates in the former were approximately twice as high as previously estimated, likely driven by relatively high bioirrigative activity. In contrast, we found small net fluxes of alkalinity, ranging from −35 µmol m−2 h−1 (uptake) to 53 µmol m−2 h−1 (release). We attribute this to low net denitrification, carbonate mineral (re-)precipitation, and sulfide (re-)oxidation.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Wangwang Ye, Hermann W. Bange, Damian L. Arévalo-Martínez, Hailun He, Yuhong Li, Jianwen Wen, Jiexia Zhang, Jian Liu, Man Wu, and Liyang Zhan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-334, https://doi.org/10.5194/bg-2021-334, 2022
Manuscript not accepted for further review
Short summary
Short summary
CH4 is the second important greenhouse gas after CO2. We show that CH4 consumption and sea-ice melting influence the CH4 distribution in the Ross Sea (Southern Ocean), causing undersaturation and net uptake of CH4 during summertime. This study confirms the capability of surface water in the high-latitude Southern Ocean regions to take up atmospheric CH4 which, in turn, will help to improve predictions of how CH4 release/uptake from the ocean will develop when sea-ice retreats in the future.
Amanda T. Nylund, Lars Arneborg, Anders Tengberg, Ulf Mallast, and Ida-Maja Hassellöv
Ocean Sci., 17, 1285–1302, https://doi.org/10.5194/os-17-1285-2021, https://doi.org/10.5194/os-17-1285-2021, 2021
Short summary
Short summary
Acoustic and satellite observations of turbulent ship wakes show that ships can mix the water column down to 30 m depth and that a temperature signature of the wake can last for tens of kilometres after ship passage. Turbulent wakes deeper than 12 m were frequently detected, which is deeper than previously reported. The observed extent of turbulent ship wakes implies that in areas with intensive ship traffic, ship mixing should be considered when assessing environmental impacts from shipping.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Yanan Zhao, Cathleen Schlundt, Dennis Booge, and Hermann W. Bange
Biogeosciences, 18, 2161–2179, https://doi.org/10.5194/bg-18-2161-2021, https://doi.org/10.5194/bg-18-2161-2021, 2021
Short summary
Short summary
We present a unique and comprehensive time-series study of biogenic sulfur compounds in the southwestern Baltic Sea, from 2009 to 2018. Dimethyl sulfide is one of the key players regulating global climate change, as well as dimethylsulfoniopropionate and dimethyl sulfoxide. Their decadal trends did not follow increasing temperature but followed some algae group abundances at the Boknis Eck Time Series Station.
Joonas J. Virtasalo, Peter Österholm, Aarno T. Kotilainen, and Mats E. Åström
Biogeosciences, 17, 6097–6113, https://doi.org/10.5194/bg-17-6097-2020, https://doi.org/10.5194/bg-17-6097-2020, 2020
Short summary
Short summary
Rivers draining the acid sulphate soils of western Finland deliver large amounts of metals (e.g. Cd, Co, Cu, La, Mn, Ni, and Zn) to the coastal sea. To better understand metal enrichment in the sea floor, we analysed metal contents and grain size distribution in nine sediment cores, which increased in the 1960s and 1970s and stayed at high levels afterwards. The enrichment is visible more than 25 km out from the river mouths. Organic aggregates are suggested as the key seaward metal carriers.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Cited articles
Abbott, B. W., Bishop, K., Zarnetske, J. P., Minaudo, C., Chapin, F. S.,
Krause, S., Hannah, D. M., Conner, L., Ellison, D., Godsey, E. S., Plont,
S., Marçais, J., Kolbe, T., Huebner, A., Frei, R. J., Hampton, T., Gu,
S., Buhman, M., Sara Sayedi, S., Ursache, O., Chapin, M., Henderson, K. D.,
and Pinay, G.: Human domination of the global water cycle absent from
depictions and perceptions, Nat. Geosci., 12, 533–540, 2019.
Adyasari, D., Hassenrück, C., Oehler, T., Sabdaningsih, A., and
Moosdorf, N.: Microbial community structure associated with submarine
groundwater discharge in northern Java (Indonesia), Sci. Total Environ.,
689, 590–601, 2019.
Ahmerkamp, S., Winter, C., Krämer, K., Beer, D. d., Janssen, F.,
Friedrich, J., Kuypers, M. M. M., and Holtappels, M.: Regulation of benthic
oxygen fluxes in permeable sediments of the coastal ocean, Limnol.
Oceanogr., 62, 1935–1954, https://doi.org/10.1002/lno.10544, 2017.
Archana, A., Francis, C. A., and Boehm, A. B.: The Beach Aquifer
Microbiome: Research Gaps and Data Needs, Front. Environ. Sci., 9, 653568,
https://doi.org/10.3389/fenvs.2021.653568, 2021.
Archie, G. E.: The Electrical Resistivity Log as an Aid in Determining Some
Reservoir Characteristics, Transactions of AIME, 146, 54–62, 1942.
Attias, E., Thomas, D., Sherman, D., Ismail, K., and Constable, S.: Marine electrical imaging reveals novel freshwater transport mechanism in Hawai'i, Sci. Adv., 6, eabd4866, https://doi.org/10.1126/sciadv.abd4866, 2020.
Attias, E., Constable, S., Sherman, D., Ismail, K., Shuler, C., and Dulai,
H.: Marine electromagnetic imaging and volumetric estimation of freshwater
plumes offshore Hawai'i, Geophys. Res. Lett., 48, e2020GL091249,
https://doi.org/10.1029/2020GL091249, 2021.
Bakken, T. H., Ruden, F., and Mangset, L. E.: Submarine groundwater: A new
concept for the supply of drinking water, Water Resour. Manag., 26,
1015–1026, https://doi.org/10.1007/s11269-011-9806-1, 2012.
Bayari, C. S., Ozyurt, N. N., Oztan, M., Bastanlar, Y., Varinlioglu, G., Koyuncu, H., Ulkenli, H., and Hamarat, S.: Submarine and coastal karstic groundwater discharges
along the southwestern Mediterranean coast of Turkey, Hydrogeol. J., 19,
399–414, https://doi.org/10.1007/s10040-010-0677-y, 2011.
Bedrosian, P. A., Schamper, C., and Auken, E.: A comparison of
helicopter-borne electromagnetic systems for hydrogeologic studies, Geophys.
Prospect., 64, 192–215, https://doi.org/10.1111/1365-2478.12262, 2016.
Beebe, D. A., Huettemann, M. B., Webb, B. M., and Jackson Jr., W. T.:
Atmospheric groundwater forcing of a subterranean estuary: A seasonal
seawater recirculation process, Geophys. Res. Lett., 49, e2021GL096154,
https://doi.org/10.1029/2021GL096154, 2022.
Bertoni, C., Lofi, J., Micallef, A., and Moe, H.: Seismic reflection methods
in offshore groundwater research, Geosciences, 10, 299, https://doi.org/10.3390/geosciences10080299, 2020.
Bierkens, M. F. P. and Wada, Y.: Non-renewable groundwater use and
groundwater depletion:
a review, Environ. Res. Lett., 14, 063002, https://doi.org/10.1088/1748-9326/ab1a5f, 2019.
Böttcher, M. E., Mallast, U., Massmann, G., Moosdorf, N.,
Müller-Petke, M., and Waska, H.: Coastal-Groundwater interfaces
(submarine groundwater discharge), in: Ecohydrological Interfaces, edited by: Krause, S., Hannah, D. M., and Grimm,
N., Wiley
Science, 400 pp., ISBN 978-1119489672, 2023.
Bratton, J. F.: The Three Scales of Submarine Groundwater Flow and Discharge
across Passive Continental Margins, J. Geol., 118, 565–575,
2010.
Bugna, G., Chanton, J. P., Young, J. E., Burnett, W. C., and Cable, P. H.:
The importance of groundwater discharge to the methane budgets of nearshore
and continental shelf waters of the northeastern Gulf of Mexico, Geochim.
Cosmochim. Ac., 60, 4735–4746, https://doi.org/10.1016/S0016-7037(96)00290-6, 1996.
Burnett, W. C., Aggarwal, P. K., Aureli, A., Bokuniewicz, H., Cable, J. E.,
Charette, M. A., Kontar, E., Krupa, S., Kulkarni, K. M., Loveless, A.,
Moore, W. S., Oberdorfer, J. A., Oliveira, J., Ozyurt, N., Povinec, P.,
Privitera, A. M. G., Rajar, R., Ramassur, R. T., Scholten, J., Stieglitz,
T., Taniguchi, M., and Turner, J. V.: Quantifying submarine groundwater
discharge in the coastal zone via multiple methods, Sci. Total Environ.,
367, 498–543, 2006.
Cable, J. E., Burnett, W. C., Chanton, J. P., and Weatherly, G. L.:
Estimating groundwater discharge into the northeastern Gulf of Mexico using
radon-222, Earth Plan. Sc. Lett., 144, 591–604,
https://doi.org/10.1016/S0012-821X(96)00173-2, 1996.
Cabral, A., Dittmar, T., Call, M., Scholten, J., de Rezende, C. E., Asp, N.,
Gledhill, M., Seidel, M., and Santos, I. R.: Carbon and alkalinity
outwelling across the groundwater-creek-shelf continuum off Amazonian
mangroves, Limmnol. Oceanogr. Lett., 6, 369–378, 2021.
Carruthers, T. J. B., van Tussenbroek, B. I., and Dennison, W. C.: Influence
of submarine springs and wastewater on nutrient dynamics of Caribbean
seagrass meadows, Estuar. Coast. Shelf S., 64, 191–199, 2005.
Chapelle, F. H. and Bradley, P. M.: Hydrologic significance of carbon
monoxide concentrations in groundwater, Groundwater, 45, 272–280, 2007.
Chaussard, E., Amelung, F., Abidin, H., and Hong, S.-H.: Sinking cities in
Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas
extraction, Remote Sens. Environ., 128, 150–161,
https://doi.org/10.1016/j.rse.2012.10.015, 2013.
Chen, C.-T., Hu, J.-C., Lu, C.-Y., Lee, J.-C., and Chan, Y.-C.: Thirty-year
land elevation change from subsidence to uplift following the termination of
groundwater pumping and its geological implications in the Metropolitan
Taipei Basin, Northern Taiwan, Eng. Geol., 95, 30–47, 2007.
Cho, H.-M., Kim, G., and Shin, K.-H.: Tracing nitrogen sources fueling
coastal green tides off a volcanic island using radon and nitrogen isotopic
tracers, Sci. Total Environ., 665, 913–919, 2019.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea Level
Change, in: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen,
S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
1137–1216, Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 2013.
Church, T. M.: A groundwater route for the water cycle, Nature, 380,
579–580, 1996.
Cohen, D., Person, M., Wang, P., Gable, C. W., Hutchinson, D., Marksamer, A., Dugan, B., Kooi, H., Groen, K., Lizarralde, D., Evans, R. L., Day-Lewis, F. D., and Lane Jr., J. W.: Origin and extent of fresh paleowaters on the Atlantic
continental shelf, USA, Groundwater, 48, 143–158, 2010.
Correa, R. E., Cardenas, M. B., Rodolfo, R. S., Lapus, M. R., Davis, K. L.,
Giles, A. B., Fullon, J. C., Hajati, M.-C., Moosdorf, N., Sanders, C. J.,
and Santos, I. R.: Submarine Groundwater Discharge Releases CO2 to a
Coral Reef, ACS ES&T Water, 1, 1756–1764, 2021.
Costall, A. R., Harris, B. D., Teo, B., Schaa, R., Wagner, F. M., and Pigois, J. P.: Groundwater Throughflow and
Seawater Intrusion in High Quality Coastal Aquifers, Sci. Rep., 10, 9866,
https://doi.org/10.1038/s41598-020-66516-6, 2020.
Dählmann, A. and de Lange, G. J.: Fluid-sediment interactions at
Eastern Mediterranean mud volcanoes: A stable isotope study from ODP Leg
160, Earth Plan. Sc. Lett., 212, 377–391,
https://doi.org/10.1016/S0012-821X(03)00227-9, 2003.
Dang, X., Gao, M., Wen, Z., Jakada, H., Hou, G., and Liu, S.: Evolutionary
process of saline groundwater influenced by palaeo-seawater trapped in
coastal deltas: A case study in Luanhe River Delta, China, Estuar. Coast.
Shelf S., 244, 106894, https://doi.org/10.1016/j.ecss.2020.106894, 2020.
Deutsch, C. V. and Pyrcz, M. (Eds.): Geostatistical reservoir modeling, 2nd Edn., Oxford University Press,
Oxford, 448 pp., ISBN 978-0199731442, 2014.
Donis, D., Janssen, F., Liu, B., Wenzhöfer, F., Dellwig, O., Escher, P.,
Spitzy, A., and Böttcher, M. E.: Biogeochemical impact of submarine
ground water discharge on coastal surface sands of the southern Baltic Sea,
Estuar. Coast. Shelf S., 189, 131–142, 2017.
Dulai, H., Kamenik, J., Waters, C. A., Kennedy, J., Babinec, J., Jolly, J., and Williamson, M.: Autonomous long-term gamma-spectrometric monitoring of submarine
groundwater discharge trends in Hawaii, J. Radioanal. Nucl. Ch., 307,
1865–1870, https://doi.org/10.1007/s10967-015-4580-9, 2016.
Ferguson, G. and Gleeson, T.: Vulnerability of coastal aquifers to
groundwater use and climate change, Nat. Clim. Change, 2, 342–345,
https://doi.org/10.1038/nclimate1413, 2012.
Fischer, W. A., Landis, G. H., Moxham, R. M., and Polcyn, F.: Infrared
Surveys of Hawaiian Volcanoes – Aerial Surveys with Infrared Imaging
Radiometer Depict Volcanic Thermal Patterns + Structural Features,
Science, 146, 733–742, 1964.
Fujita, K., Shoji, J., Sugimoto, R., Nakajima, T., Honda, H., Takeuchi, M.,
Tominaga, O., and Taniguchi, M.: Increase in Fish Production Through
Bottom-Up Trophic Linkage in Coastal Waters Induced by Nutrients Supplied
via Submarine Groundwater, Front. Environ. Sci., 7, 82,
https://doi.org/10.3389/fenvs.2019.00082, 2019.
Goebel, M., Knight R., and Halkjaer, M.: Mapping saltwater intrusion with an
airborne electromagnetic method in the offshore coastal environment,
Monterey Bay, California, J. Hydrol.: Reg. Stud., 23, 100602,
https://doi.org/10.1016/j.ejrh.2019.100602, 2019.
Gottschalk, I., Knight, R., Asch, T., Abraham, J., and Cannia, J.: Using an
airborne electromagnetic method to map saltwater intrusion in the northern
Salinas Vallet, California, Geophysics, 85, B119–B131,
https://doi.org/10.1190/geo2019-0272.1, 2020.
Grzelak, K., Tamborski, J., Kotwicki, L., and Bokuniewicz, H.:
Ecostructuring of marine nematode communities by submarine groundwater
discharge, Mar. Environ. Res., 136, 106–119, https://doi.org/10.1016/j.marenvres.2018.01.013, 2018.
Gustafson, C., Key, K., and Evans, R. L.: Aquifer systems extending far
offshore on the U.S. Atlantic margin, Sci. Rep., 9, 8709,
https://doi.org/10.1038/s41598-019-44611-7, 2019.
Haroon, A., Lippert, K., Mogilatov, V., and Tezkan, B.: First application of
the marine differential electric dipole for groundwater investigations: A
case study from Bat Yam, Israel, Geophysics, 83, B59–B76, 2018.
Haroon, A., Micallef, A., Jegen, M., Schwalenberg, K., Karstens, J., Berndt, C., Garcia, X., Kühn, M., Rizzo, E., Fusi, N. C., Ahaneku, C. V., Petronio, L., Faghih, Z., Weymer, B. A., De Biase, M., and Chidichimo, F.: Electrical resistivity anomalies offshore a carbonate coastline:
Evidence for freshened groundwater?, Geophys. Res. Lett., 48, e2020GL091909,
https://doi.org/10.1029/2020GL091909, 2021.
Hermans, T. and Paepen, M.: Combined inversion of land and marine
electrical resistivity tomography for submarine groundwater discharge and
saltwater intrusion characterization, Geophys. Res. Lett., 47,
e2019GL085877, https://doi.org/10.1029/2019GL085877, 2020.
Hoefs, J.: Stable isotope geochemistry, 203 pp., Springer, Berlin/Heidelberg, ISBN 978-3-540-70708-0,
2009.
Hoffmann, J. J. L., Schneider von Deimling, J., Schröder, J., Schmidt,
M., Scholten, J., Crutchley, G. J., and Gorman, A. R.: Complex eyed pockmarks
and submarine groundwater discharge revealed by acoustic data and sediment
cores in Eckernförde Bay, SW Baltic Sea, Geochem. Geophy. Geosy., 21, e2019GC008825,
https://doi.org/10.1029/2019GC008825, 2020.
Hong, W.‐L., Lepland, A., Himmler, T., Kim, J. H., Chand, S., Sahy, D., Solomon, E. A., Rae, J. W. B., Martma, T., Nam, S.-I., and Knies, J.: Discharge of meteoric water in the eastern Norwegian Sea since the last
glacial period, Geophys. Res. Lett., 46, 8194–8204,
https://doi.org/10.1029/2019GL084237, 2019.
Hwang, D. W., Kim, G., Lee, W. C., and Oh, H. T.: The role of submarine
groundwater discharge (SGD) in nutrient budgets of Gamak Bay, a shellfish
farming bay, in Korea, J. Sea Res., 64, 224–230, 2010.
Ionescu, D., Siebert, C., Polerecky, L., Munwes, Y. Y., Lott, C., Häusler, S., Bižić-Ionescu, M. Quast, C., Peplies, J., Glöckner F. O., Ramette, A., Rödiger, T., Dittmar, T., Oren, A., Geyer, S., Stärk, H.-J., Sauter, M., Licha, T., Laronne, J. B., and de Beer, D.:
Microbial and Chemical Characterization of Underwater Fresh Water Springs in
the Dead Sea, PLoS ONE, 7, e38319,
https://https://doi.org/10.1371/journal.pone.0038319, 2012.
Ishizu, K. and Ogawa, Y.: Offshore-onshore resistivity imaging of
freshwater using a controlled-source electromagnetic method: A feasibility
study, Geophysics, 86, E391–E405, https://doi.org/10.1190/geo2020-0906.1,
2021.
Jiao, J. and Post, V. (Eds.): Coastal Hydrogeology, Cambridge
University Press, Cambridge, https://doi.org/10.1017/9781139344142, 2019.
Johnson, A. G., Glenn, C. R., Burnett, W. C., Peterson, R. N., and Lucey, P.
G.: Aerial infrared imaging reveals large nutrient-rich groundwater inputs
to the ocean, Geophys. Res. Lett., 35, 6, https://doi.org/10.1029/2008GL034574, 2008.
Jou-Claus, S., Folch, A., and Garcia-Orellana, J.: Applicability of Landsat 8 thermal infrared sensor for identifying submarine groundwater discharge springs in the Mediterranean Sea basin, Hydrol. Earth Syst. Sci., 25, 4789–4805, https://doi.org/10.5194/hess-25-4789-2021, 2021.
Judd, A. and Hovland, M. (Eds.): Seabed fluid flow: The impact on geology, biology
and the marine environment, 492 pp., Cambridge, Cambridge University Press, ISBN 978-0521114202,
2009.
Jurado, A., Borges, A. V., and Brouyère, S.: Dynamics and emissions of
N2O in groundwater: A review, Sci. Total Environ., 584–585, 207–218,
2017.
Jurasinski, G., Janssen, M., Voss, M., Böttcher, M. E., Brede, M., Burchard, H., Forster, S., Gosch, L., Gräwe, U., Gründling-Pfaff, S., Haider F.,
Ibenthal, M., Karow, N., Karsten, U.,
Kreuzburg, M., Lange, X., Leinweber, P., Massmann, G., Ptak, T., Rezanezhad F., Rehder, G., Romoth, K., Schade, H., Schubert, H., Schulz-Vogt, H.,
Sokolova, I. M., Strehse, R., Unger, V.,
Westphal, J., and Lennartz, B.: Understanding the Coastal ecocline: Assessing sea-land-interactions
at non-tidal, low-lying coasts through interdisciplinary research, Front.
Mar. Sci., 5, 1–22, https://doi.org/10.3389/fmars.2018.00342, 2018.
Keller, G. V.: Rock and Mineral Properties, in: Electromagnetic Methods in
Applied Geophysics, edited by: Nabighian, M., 1, II. Series: Investigations in
Geophysics, SEG, ISBN 1-56080-069-0, 1987.
Kim, G. and Hwang, D.-W.: Tidal pumping of groundwater into the coastal
ocean revealed from submarine 222Rn and CH4 monitoring, Geophys.
Res. Lett., 29, 1678, https://doi.org/10.1029/2002GL015093, 2002.
Kim, J. and Kim, G.: Inputs of humic fluorescent dissolved organic matter
via submarine groundwater discharge to coastal waters off a volcanic island
(Jeju, Korea), Sci. Rep., 7, 7921, https://doi.org/10.1038/s41598-017-08518-5,
2017.
Kirsch, R. (Ed.): Groundwater Geophysics, A Tool for Hydrogeology, Springer
ISBN 10 3-540-29383-3, 2006.
Knee, K. L. and Paytan, A.: Submarine Groundwater Discharge: A source of
nutrients, metals, and pollutants to the coastal ocean, in: Treatise on Estuarine and Coastal Science, edited by: Wolanski, E. and
McLusky, D. S., Vol. 4,
205–233, Academic Press, Waltham, https://doi.org/10.1016/B978-0-12-374711-2.00410-1, 2011.
Kohout, F. A.: The flow of fresh water and salt water in the Biscayne Bay
Aquifer of the Miami area, Florida, in: Sea Water in Coastal Aquifers, edited by: Cooper, H. H., Kohout, F. A., Henry,
H. R., and Glover, R. E., Geological
survey water-supply paper, 1613-C, USGS, Washington, D.C., 12–32,
1964.
Kolker, D., Bookman, R., Herut, B., David, N., and Silverman, J.: An initial
assessment of the contribution of fresh submarine ground water discharge to
the alkalinity budget of the Mediterranean Sea, J. Geophys. Res.-Oceans,
126, e2020JC017085, https://doi.org/10.1029/2020JC017085, 2021.
Konikow, L. F.: Contribution of global groundwater depletion since 1900 to sea-level rise, Geophys. Res. Lett., 38, L17401, https://doi.org/10.1029/2011GL048604, 2011.
Kooi, H. and Groen, K.: Offshore continuation of coastal groundwater
systems; predictions using sharp-interface approximations and
variable-density flow modelling, J. Hydrol., 246, 19–35,
https://doi.org/10.1016/S0022-1694(01)00354-7, 2001.
Kotwicki, L., Grzelak, K., Czub, M., Dellwig, O., Gentz, T., Szymczycha, B.,
and Böttcher, M. E.: Submarine groundwater discharge to the Baltic
coastal zone: Impacts on the meiofaunal community, J. Marine Syst., 129,
118–126, 2014.
Kwon, H. K., Kang, H., Oh, Y. H., Park, S. R., and Kim, G.: Green tide
development associated with submarine groundwater discharge in a coastal
harbor, Jeju, Korea, Sci. Rep., 7, 6325,
https://doi.org/10.1038/s41598-017-06711-0, 2017.
Kyle, J., Eydal, H., Ferris, F., and Pedersen, K.: Viruses in granitic groundwater from
69 to 450 m depth of the Äspö hard rock laboratory, Sweden, ISME J.,
2, 571–574, https://doi.org/10.1038/ismej.2008.18, 2008.
Ikonen, J., Hendriksson, N., Luoma, S., Lahaye, Y., and Virtasalo, J. J.:
Behavior of Li, S and Sr isotopes in the subterranean estuary and seafloor
pockmarks of the Hanko submarine groundwater discharge site in Finland,
northern Baltic Sea, Appl. Geochem., 147, 105471,
https://doi.org/10.1016/j.apgeochem.2022.105471, 2022.
Lecher, A. and Mackey, K.: Synthesizing the effects of submarine
groundwater discharge on Marine Biota, Hydrology, 5, 60, https://doi.org/10.3390/hydrology5040060, 2018.
Lee, D. R.: A device for measuring seepage flux in lakes and estuaries,
Limnol. Oceanogr., 22, 140–147, 1977.
Lee, E., Yoon, H., Hyun, S. P., Burnett, W. C., Koh, D. C., Ha, K., Kim, D.-J., Kim, Y., and Kang, K.-M.: Unmanned aerial vehicles (UAVs)-based thermal infrared (TIR) mapping, a
novel approach to assess groundwater discharge into the coastal zone,
Limnol. Oceanogr., 14, 725–735, https://doi.org/10.1002/lom3.10132, 2016.
Leitão, F., Encarnação, J., Range, P., Schmelz, R. M.,
Teodósio, M. A., and Chícharo, L.: Submarine groundwater discharges
create unique benthic communities in a coastal sandy marine environment,
Estuar. Coast. Shelf S., 163, 93–98, 2015.
Liu, J., Su, N., Wang, X., and Du, J.: Submarine groundwater discharge and
associated nutrient fluxes into the Southern Yellow Sea: A case study for
semi-enclosed and oligotrophic seas – implication for green tide bloom, J.
Geophys. Res.-Oceans, 122, 139–152, https://doi.org/10.1002/2016JC012282, 2017.
Liu, K.-K., Atkinson, L., Quiñones, R., and Talaue-McManus, L. (Eds.):
Carbon and nutrient fluxes in continental margins: A global synthesis, Springer,
Berlin & Heidelberg, 741 pp., 2010.
Lofi, J., Pezard, P., Bouchette, F., Raynal, O., Sabatier, P., Denchik, N., Levannier, A., Dezileau, L., and Certain, R.: Integrated onshore-offshore investigation of a Mediterranean layered
coastal aquifer, Groundwater, 51, 550–561, 2013.
Londoño-Londoño, J. E., Condesso de Melo, M. T., and Silva, A. C.
F.: Groundwater discharge locally shapes the rocky shore macroinvertebrate
community in South-Southwest Portugal, Mar. Environ. Res., 179, 105672,
https://doi.org/10.1016/j.marenvres.2022.105672, 2022a.
Londoño-Londoño, J. E., Condesso de Melo, M. T., Nascimento, J. N.,
and Silva, A. C. F.: Thermal-Based Remote Sensing Solution for Identifying
Coastal Zones with Potential Groundwater Discharge, J. Mar. Sci. Eng.,
10, 414, https://doi.org/10.3390/jmse10030414, 2022b.
Luijendijk, E., Gleeson, T., and Moorsdorf, N.: Fresh groundwater discharge
insignificant for the world's oceans but important for coastal ecosystems,
Nat. Commun., 11, 1260, https://doi.org/10.1038/s41467-020-15064-8, 2020.
Mallast, U. and Siebert, C.: Combining continuous spatial and temporal scales for SGD investigations using UAV-based thermal infrared measurements, Hydrol. Earth Syst. Sci., 23, 1375–1392, https://doi.org/10.5194/hess-23-1375-2019, 2019.
Manheim, F. T.: Section of geological sciences: evidence for submarine
discharge of water on the Atlantic continental slope of the southern United
States, and suggestions for further search, T. New York
Acad. Sci., 29, 839–853, 1967.
McDonough, L. K., Andersen, M. S., Behnke, M. I., Rutlidge, H., Oudone, P., Meredith, K., O'Carroll, D. M., Santos, I. R., Marjo, C. E., Spencer, R. G. M., McKenna, A., M., and Baker, A.: A new conceptual
framework for the transformation of groundwater dissolved organic matter,
Nat. Commun., 13, 2153, https://doi.org/10.1038/s41467-022-29711-9, 2022.
Micallef, A.: Global database of offshore freshened groundwater records, Zenodo [data set], https://doi.org/10.5281/zenodo.4247833, 2020.
Micallef, A., Person, M., Haroon, A., Weymer, B. A., Jegen, M., Schwalenberg, K., Faghih, Z., Duan, S., Cohen, D., Mountjoy, J. J., Woelz, S., Gable, S. W., Averes, T., and Tiwari, A. K.: 3D characterisation and
quantification of an offshore freshened groundwater system in the Canterbury
Bight, Nat. Commun., 11, 1372, https://doi.org/10.1038/s41467-020-14770-7,
2020.
Micallef, A., Person, M., Berndt, C., Bertoni, C., Cohen, D., Dugan, B., Evans, R., Haroon, A., Hensen, C., Jegen, M., Key, K., Kooi, H., Liebetrau, V., Lofi, J., Mailloux, B. J., Martin-Nagle, R., Michael, H. A., Müller, T., Schmidt, M., Schwalenberg, K., Trembath-Reichert, E., Weymer, B. A., Zhang, Y., and Thomas, A.: Offshore freshened
groundwater in continental margins, Rev. Geophys., 58, e2020RG000706,
https://doi.org/10.1029/2020RG000706, 2021.
Michael, H. A., Scott, K. C., Koneshloo, M., Yu, X., Khan, M. R., and Li,
K.: Geologic influence on groundwater salinity drives large seawater
circulation through the continental shelf, Geophys. Res. Lett., 43,
10782–10791, https://doi.org/10.1002/2016GL070863, 2016.
Moore, W. S.: The Effect of Submarine Groundwater Discharge on the Ocean,
Annu. Rev. Mar. Sci., 2, 59–88, 2010.
Moore, W. S. and Joye, S. B.: Saltwater Intrusion and Submarine Groundwater
Discharge: Acceleration
of Biogeochemical Reactions in Changing Coastal Aquifers, Front. Earth Sci.,
9, 600710, https://doi.org/10.3389/feart.2021.600710, 2021.
Moore, W. S., Beck, M., Riedel, T., Rutgers van der Loeff, M., Dellwig, O.,
Shaw, T. J., Schnetger, B., and Brumsack, H.-J.: Radium-based pore water
fluxes of silica, alkalinity, manganese, DOC, and uranium: a decade of
studies in the German Wadden Sea, Geochim. Cosmochim. Ac., 75, 6535–6555,
2011.
Moosdorf, N., Böttcher, M. E., Adyasari, D., Erkul, E., Gilfedder, B.
S., Greskowiak, J., Jenner, A.-K., Kotwicki, L., Massmann, G.,
Müller-Petke, M., Oehler, T., Post, V., Prien, R., Scholten, J., Siemon,
B., Ehlert von Ahn, C. M., Walther, M., Waska, H., Wunderlich, T., and
Mallast, U.: A State-Of-The-Art Perspective on the Characterization of
Subterranean Estuaries at the Regional Scale, Front. Earth Sci., 9, 601293,
https://doi.org/10.3389/feart.2021.601293, 2021.
Mountain, G.: Portable hires multi-channel seismic shot data from the New
Jersey slope acquired during the r/v oceanus expedition oc270 (1995), nterdisciplinary Earth Data Alliance (IEDA) [data set],
https://doi.org/10.1594/IEDA/307762, 2008.
Müller, H., von Dobeneck, T., Nehmiz, W., and Hamer, K.: Near-surface
electromagnetic, rock magnetic, and geochemical fingerprinting of submarine
freshwater seepage at Eckernförde Bay (SW Baltic Sea), Geo-Mar. Lett.,
31, 123–140, https://doi.org/10.1007/s00367-010-0220-0, 2011.
Null, K. A., Knee, K. L., Crook, E. D., de Sieyes, N. R., Rebolledo-Vieyra,
M., Hernández-Terrones, L., and Paytan, A.: Composition and fluxes of
submarine groundwater along the Caribbean coast of the Yucatan Peninsula,
Cont. Shelf Res., 77, 38–50, https://doi.org/10.1016/j.csr.2014.01.011,
2014.
Oberle, F. K. J., Prouty, N. G., Swarzenski, P. W., and Storlazzi, C. D.: High-resolution
observations of submarine groundwater discharge reveal the fine spatial and
temporal scales of nutrient exposure on a coral reef: Faga'alu, AS, Coral
Reefs, 41, 849–854, https://doi.org/10.1007/s00338-022-02245-8, 2022.
Oehler, T., Bakti, H., Lubis, R. F., Purwoarminta, A., Delinom, R., and
Moosdorf, N.: Nutrient dynamics in submarine groundwater discharge through a
coral reef (western Lombok, Indonesia), Limnol. Oceanogr., 64,
2646–2661, 2019.
Oehler, T., Ramasamy, M., Mintu, E. G., Babu, S. D. S., Dähnke, K.,
Ankele, M., Böttcher, M. E., Santos, I. R., and Moosdorf, N.: Tropical
Beaches Attenuate Groundwater Nitrogen Pollution
Flowing to the Ocean, Environ. Sci. Technol., 55, 8432–8438, 2021.
Paldor, A., Katz, O., Aharonov, E., Weinstein, Y., Roditi-Elasar, M., Lazar,
A., and Lazar, B.: Deep submarine groundwater discharge–evidence from
Achziv submarine canyon at the exposure of the Judea group confined aquifer,
Eastern Mediterranean, J. Geophys. Res.-Oceans, 125, e2019JC015435, https://doi.org/10.1029/2019JC015435, 2020.
Peterson, C. D., Jol, H. M., Percy, D., and Perkins, R.: Use of Ground
Penetrating Radar, Hydrogeochemical Testing, and Aquifer Characterization to
Establish Shallow Groundwater Supply to the Rehabilitated Ni-les' tun Unit
Floodplain: Bandon Marsh, Coquille Estuary, Oregon, USA, J. Geogr. Geol.,
12, 25–49, 2020.
Pisternick, T., Lilkendey, J., Audit-Manna, A., Dumur Neelayya, D., Neehaul,
Y., and Moosdorf, N.: Submarine groundwater springs are characterized by
distinct fish communities, Mar. Ecol., 41, e12610,
https://doi.org/10.1111/maec.12610, 2020.
Pohlman, J. W.: The biogeochemistry of anchialine caves: progress and
possibilities, Hydrobiologia, 677, 33–51, 2011.
Pondthai, P., Everett, M. E., Micallef, A., Weymer, B. A., Faghih, Z.,
Haroon, A., and Jegen, M.: 3D Characterization of a Coastal Freshwater
Aquifer in SE Malta (Mediterranean Sea) by Time-Domain Electromagnetics,
Water, 12, 1566, https://doi.org/10.3390/w12061566, 2020.
Post, V. E. A., Groen, J., Kooi, H., Person, M., Ge, S., and Edmunds, W. M.:
Offshore fresh groundwater reserves as a global phenomenon, Nature,
504, 71–78, https://doi.org/10.1038/nature12858, 2013.
Purkamo, L., Milene, C., von Ahn, E., Jilbert, T., Muniruzzaman, M., Bange,
H. W., Jenner, A.-K., Böttcher, M. E., and Virtasalo, J. J.: Impact of
submarine groundwater discharge on biogeochemistry and microbial communities
in pockmarks, Geochim. Cosmochim. Ac., 334, 14–44, 2022.
Reading, M. J., Tait, D. R., Maher, D. T., Jeffrey, L. C., Correa, R. E.,
Tucker, J. P., Shishaye, H. A., and Santos, I. R.: Submarine groundwater
discharge drives nitrous oxide source/sink dynamics in a metropolitan
estuary, Limnol. Oceanogr., 66, 1665–1686,
https://doi.org/10.1002/lno.11710, 2021.
Rocha, C., Robinson, C. E., Santos, I. R., Waska, H., Michael, H. A., and
Bokuniewicz, H. J.: A place for subterranean estuaries in the coastal zone,
Estuar. Coast. Shelf S., 250, 107167, https://doi.org/10.1016/j.ecss.2021.107167 2021.
Rodellas, V., Garcia-Orellana, J., Masque, P., Feldman, M., and Weinstein,
Y.: Submarine groundwater discharge as a major source of nutrients to the
Mediterranean Sea, P. Natl. Acad. Sci. USA, 112, 3926–3930, 2015.
Roxburgh, I. S.: Thermal infrared detection of submarine springs associated
with the Plymouth Limestone, Hydrolog. Sci. J., 30, 185–196, 1985.
Röper, T., Greskowiak, J., and Massmann, G.: Detecting small groundwater
discharge springs using handheld thermal infrared imagery, Groundwater,
52, 936–942, 2014.
Ruiz-González, C., Rodellas, V., and Garcia-Orellana, J.: The microbial
dimension of submarine groundwater discharge: current challenges and future
directions, FEMS Microbiol. Rev., 45, fuab010,
https://doi.org/10.1093/femsre/fuab010, 2021.
Santos, I. R., Chen, X., Lecher, A. L., Sawyer, A. H., Moosdorf, N.,
Rodellas, V., Tamborski, J., Cho, H.-M., Dimova, N., Sugimoto, R., Bonaglia,
S., Li, H., Hajati, M.-C., and Li, L.: Submarine groundwater discharge
impacts on coastal nutrient biogeochemistry, Nat. Rev. Earth. Environ, 2,
307–323, https://doi.org/10.1038/s43017-021-00152-0, 2021.
Sawyer, A. H., David, C. H., and Famiglietti, J. S.: Continental patterns of
submarine groundwater discharge reveal coastal vulnerabilities, Science,
353, 7005–707, 2016.
Schubert, M., Scholten, J., Schmidt, A., Comanducci, J. F., Pham, M. K.,
Mallast, U., and Knoeller, K.: Submarine Groundwater Discharge at a Single
Spot Location: Evaluation of Different Detection Approaches, Water, 6,
584–601, https://doi.org/10.3390/w6030584, 2014.
Shlklomanov, I. A.: World fresh water resources, in:
Water in Crisis: A Guide to the World's Fresh Water Resources, edited by: Gleick, P. H., Oxford
University Press, New York, 13–24, ISBN 0-19507628-1, 1993.
Siemon, B., Ibs-von Seht, M., Steuer, A., Deus, N., and Wiederhold, H.:
Airborne Electromagnetic, Magnetic, and Radiometric Surveys at the German
North Sea Coast Applied to Groundwater and Soil Investigations, Remote
Sens., 12, 1629, https://doi.org/10.3390/rs12101629, 2020.
Sorensen, J. P. R., Aldous, P., Bunting, S. Y., McNally, S., Townsend, B.
R., Barnett, M. J., Harding, T., La Ragione, R. M., Stuart, M. E., Tipper,
H. J., and Pedley, S.: Seasonality of enteric viruses in groundwater-derived
public water sources, Water Res., 207, 117813,
https://doi.org/10.1016/j.watres.2021.117813, 2021.
Sugimoto, R., Kitagawa, K., Nishi, S., Honda, H., Yamada, M., Kobayashi, S.,
Shoji, J., Ohsawa, S., Taniguchi, M., and Tominaga, O.: Phytoplankton
primary productivity around submarine groundwater discharge in nearshore
coasts, Mar. Ecol.-Prog. Ser., 563, 25–33, 2017.
Szymczycha, B., Vogler, S., and Pempkowiak, J.: Nutrients fluxes via
submarine groundwater discharge to the Bay of Puck, Southern Baltic, Sci.
Total Environ., 438, 86–93, 2012.
Szymczycha, B., Borecka, M., Białk-Bielińskab, A., Siedlewicz, G., and
Pazdro, K.: Submarine groundwater discharge as a source of pharmaceutical
and caffeine residues in coastal ecosystem: Bay of Puck, southern Baltic Sea
case study, Sci. Total Environ., 713, 136522, https://doi.org/10.1016/j.scitotenv.2020.136522, 2020.
Taniguchi, M., Burnett, W. C., Cable, J. E., and Turner, J. V.:
Investigation of submarine groundwater discharge, Hydrol. Process., 16,
2115–2129, https://doi.org/10.1002/hyp.1145, 2002.
Taniguchi, M., Dulai, H., Burnett, K. M, Santos, I. R., Sugimoto, R., Stieglitz, T., Kim, G., Moorsdorf, N., and Burnett, W. C.: Submarine Groundwater
Discharge: Updates on Its Measurement Techniques, Geophysical Drivers,
Magnitudes, and Effects, Front.
Environ. Sci., 7, 141, https://doi.org/10.3389/fenvs.2019.00141, 2019.
Taylor, R., Scanlon, B., Döll, P., Rodell, M., van Beek., R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J.-F., Holman, I., and Treidel, H.: Ground water and climate
change, Nat. Clim. Change, 3, 322–329, 2013.
Thomas, A. T., Reiche, S., Riedel, M., and Clauser, C.: The fate of
submarine fresh groundwater reservoirs at the New Jersey shelf, USA,
Hydrogeol. J., 27, 2673–2694,
https://doi.org/10.1007/s10040-019-01997-y, 2019.
Thomas, A. T., von Harten, J., Jusri, T., Reiche, S., and Wellmann, F.: An
integrated modeling scheme for characterizing 3D hydrogeological
heterogeneity of the New Jersey shelf, Mar. Geophys. Res., 43, 1–19,
2022.
Thomas, B. F. and Famiglietti, J. S.: Identifying Climate-Induced
Groundwater Depletion in GRACE
Observations, Sci. Rep., 9, 4124, https://doi.org/10.1038/s41598-019-40155-y, 2019.
Van Geldern, R., Hayashi, T., Bottcher, M. E., Mottl, M., Barth, J. A. C.,
and Stadler, S.: Stable isotope geochemistry of pore waters and marine
sediments from the New Jersey shelf: Methane formation and fluid origin,
Geosphere, 9, 96–112, https://doi.org/10.1130/GES00859.1, 2013.
Van Meter, K. J., Van Cappellen, P., and Basu, N. B.: Legacy nitrogen may
prevent achievement of water quality goals in the Gulf of Mexico, Science,
360, 427–430, 2018.
Varma, S. and Michael, K.: Impact of multi-purpose aquifer utilisation on a
variable-density groundwater flow system in the Gippsland Basin, Australia,
Hydrogeol. J., 20, 119–134, https://doi.org/10.1007/s10040-011-0800-8,
2012.
Viaroli, S., Lancia, M., and Re, V.: Microplastics contamination of
groundwater: Current evidence and future perspectives. A review, Sci. Total
Environ., 824, 153851, https://doi.org/10.1016/j.scitotenv.2022.153851, 2022.
Virtasalo, J. J., Schröder, J. F., Luoma, S., Majaniemi, J., Mursu, J., and Scholten, J.: Submarine groundwater discharge site in the First Salpausselkä ice-marginal formation, south Finland, Solid Earth, 10, 405–423, https://doi.org/10.5194/se-10-405-2019, 2019.
von Ahn, C. M. E., Scholten, J., Malik, C., Feldens, P., Liu, B., Dellwig,
O., Jenner, A.-K., Papenmeier, S., Schmiedinger, I., Zeller, M. A., and
Böttcher, M. E.: A multi-tracer study of fresh submarine and surface
water sources for a temperate urbanized coastal bay, Front. Environ. Sci.,
9, 642346, https://doi.org/10.3389/fenvs.2021.642346, 2021.
Waska, H. and Kim, G.: Differences in microphytobenthos and macrofaunal
abundances associated with groundwater discharge in the intertidal zone,
Mar. Ecol.-Prog. Ser., 407, 159–172, 2010.
Waska, H. and Kim, G.: Submarine groundwater discharge (SGD) as a main
nutrient source for benthic and water-column primary production in a large
intertidal environment of the Yellow Sea, J. Sea Res., 65, 103–113, https://doi.org/10.1016/j.seares.2010.08.001, 2011.
Waska, H., Geskowiak, J., Ahrens, J., Beck, M., Ahmerkamp, S., Böning,
P., Brusmack, H. J., Degenhardt, J., Ehlert, C., Engelen, B., Grünebaum,
N., Holtappels, M., Pahnke, K., Marchant, H. K., Massmann, G., Meier, D.,
Schnetger, B., Schwalfenberg, K., Simon, H., Vandieken, V., Tzielinski, O.,
and Dittmar, T.: Spatial and temporal patterns of pore water chemistry in
the inter-tidal zone of a high energy beach, Front. Mar. Sci., 6, 154,
https://doi.org/10.3389/fmars.2019.00154, 2019.
Weymer, B. A., Everett, M. E., Smet, T. S., and Houser, C.: Review of
electromagnetic induction for mapping barrier island framework geology,
Sediment. Geol., 321, 11–24, 2015.
Weymer, B. A., Wernette, P. A., Everett, M. E., Pondthai, P., Jegen, M., and
Micallef, A.: Multi-layered high permeability conduits connecting onshore
and offshore coastal aquifers, Front. Mar. Sci., 7, 531293,
https://doi.org/10.3389/fmars.2020.531293, 2020.
Whiticar, M. J.: Diagenetic relationships of methanogenesis, nutrients,
acoustic turbidity, pockmarks and freshwater seepages in Eckernförde
Bay, Mar. Geol., 182, 29–53,
https://doi.org/10.1016/S0025-3227(01)00227-4, 2002.
Wilson, J. and Rocha, C.: Regional scale assessment of Submarine
Groundwater Discharge in Ireland combining medium resolution satellite
imagery and geochemical tracing techniques, Remote Sens. Environ., 119,
21–34, https://doi.org/10.1016/j.rse.2011.11.018, 2012.
Worzewski, T., Jegen, M., and Swidinsky, A.: Approximation for the 2D coast
effect on marine magnetotelluric data, Geophys. J. Int., 189, 357–368,
https://doi.org/10.1111/j.1365-246X.2012.05385.x, 2012.
Yu, X. and Michael, H. A.: Mechanisms, configuration typology, and
vulnerability of pumping-induced seawater intrusion in heterogeneous
aquifers, Adv. Water Resour., 128, 117–128, https://doi.org/10.1016/j.advwatres.2019.04.013, 2019a.
Yu, X. and Michael, H. A.: Offshore pumping impacts onshore groundwater
resources and land subsidence, Geophys. Res. Lett., 46, 2553–2562,
https://doi.org/10.1029/2019GL081910, 2019b.
Zamrsky, D., Essink, G. H. O., Sutanudjaja, E. H., van Beek, L. R., and
Bierkens, M. F.: Offshore fresh groundwater in coastal unconsolidated
sediment systems as a potential fresh water source in the 21st century,
Environ. Res. Lett., 17, 014021, https://doi.org/10.1088/1748-9326/ac4073, 2021.
Zhao, S., Xu, B., Yao, Q., Burnett, W. C., Charette, M. A., Su, R., Lian,
E., and Yu, Z.: Nutrient-rich submarine groundwater discharge fuels the
largest green tide in the world, Sci. Total Environ., 770, 144845,
https://doi.org/10.1016/j.scitotenv.2020.144845, 2021.
Zipperle, A. and Reise, K.: Freshwater springs on intertidal sand flats
cause a switch in dominance among polychaete worms, J. Sea Res., 54,
143–150, https://doi.org/10.1016/j.seares.2005.01.003, 2005.
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the...
Altmetrics
Final-revised paper
Preprint