Articles | Volume 21, issue 16
https://doi.org/10.5194/bg-21-3691-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-3691-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
Magdalena Necpalova
Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
Marijn Van de Broek
Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
Marc Corbeels
AIDA, University of Montpellier, CIRAD, Avenue d’Agropolis, 34398 Montpellier, France
International Institute of Tropical Agriculture (IITA), c/o ICIPE Compound, P.O. Box 30772, 00100, Nairobi, Kenya
Samuel Mathu Ndungu
International Institute of Tropical Agriculture (IITA), c/o ICIPE Compound, P.O. Box 30772, 00100, Nairobi, Kenya
Monicah Wanjiku Mucheru-Muna
Department of Environmental Science and Education, Kenyatta University, P.O. Box 43844, 00100, Nairobi, Kenya
Daniel Mugendi
Department of Water and Agricultural Resource Management, University of Embu, P.O. Box 6, 60100, Embu, Kenya
Rebecca Yegon
Department of Water and Agricultural Resource Management, University of Embu, P.O. Box 6, 60100, Embu, Kenya
Wycliffe Waswa
International Institute of Tropical Agriculture (IITA), c/o ICIPE Compound, P.O. Box 30772, 00100, Nairobi, Kenya
Bernard Vanlauwe
International Institute of Tropical Agriculture (IITA), c/o ICIPE Compound, P.O. Box 30772, 00100, Nairobi, Kenya
Johan Six
Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
Related authors
Johan Six, Sebastian Doetterl, Moritz Laub, Claude R. Müller, and Marijn Van de Broek
SOIL, 10, 275–279, https://doi.org/10.5194/soil-10-275-2024, https://doi.org/10.5194/soil-10-275-2024, 2024
Short summary
Short summary
Soil C saturation has been tested in several recent studies and led to a debate about its existence. We argue that, to test C saturation, one should pay attention to six fundamental principles: the right measures, the right units, the right dispersive energy and application, the right soil type, the right clay type, and the right saturation level. Once we take care of those six rights across studies, we find support for a maximum of C stabilized by minerals and thus soil C saturation.
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024, https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
Short summary
To manage soil organic matter (SOM) sustainably, we need a better understanding of the role that soil microbes play in aggregate protection. Here, we propose the SAMM model, which connects soil aggregate formation to microbial growth. We tested it against data from a tropical long-term experiment and show that SAMM effectively represents the microbial growth, SOM, and aggregate dynamics and that it can be used to explore the importance of aggregate formation in SOM stabilization.
Moritz Laub, Marc Corbeels, Antoine Couëdel, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Magdalena Necpalova, Wycliffe Waswa, Marijn Van de Broek, Bernard Vanlauwe, and Johan Six
SOIL, 9, 301–323, https://doi.org/10.5194/soil-9-301-2023, https://doi.org/10.5194/soil-9-301-2023, 2023
Short summary
Short summary
In sub-Saharan Africa, long-term low-input maize cropping threatens soil fertility. We studied how different quality organic inputs combined with mineral N fertilizer could counteract this. Farmyard manure was the best input to counteract soil carbon loss; mineral N fertilizer had no effect on carbon. Yet, the rates needed to offset soil carbon losses are unrealistic for farmers (>10 t of dry matter per hectare and year). Additional agronomic measures may be needed.
Antoine de Clippele, Astrid C. H. Jaeger, Simon Baumgartner, Marijn Bauters, Pascal Boeckx, Clement Botefa, Glenn Bush, Jessica Carilli, Travis W. Drake, Christian Ekamba, Gode Lompoko, Nivens Bey Mukwiele, Kristof Van Oost, Roland A. Werner, Joseph Zambo, Johan Six, and Matti Barthel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3313, https://doi.org/10.5194/egusphere-2024-3313, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Tropical forest soils as a large terrestrial source of carbon dioxide (CO2) contribute to the GHG budgets. Despite this, carbon flux data from forested wetlands is scarce in tropical Africa. The study presents three years of semi-continuous measurements of surface CO2 fluxes within the Congo Basin. Although no seasonal patterns were evident, our results showed a positive effect of soil temperature and soil moisture, while a quadratic relationship was observed with the water table level.
Vira Leng, Rémi Cardinael, Florent Tivet, Vang Seng, Phearum Mark, Pascal Lienhard, Titouan Filloux, Johan Six, Lyda Hok, Stéphane Boulakia, Clever Briedis, João Carlos de Moraes Sá, and Laurent Thuriès
SOIL, 10, 699–725, https://doi.org/10.5194/soil-10-699-2024, https://doi.org/10.5194/soil-10-699-2024, 2024
Short summary
Short summary
We assessed the long-term impacts of no-till cropping systems on soil organic carbon and nitrogen dynamics down to 1 m depth under the annual upland crop productions (cassava, maize, and soybean) in the tropical climate of Cambodia. We showed that no-till systems combined with rotations and cover crops could store large amounts of carbon in the top and subsoil in both the mineral organic matter and particulate organic matter fractions. We also question nitrogen management in these systems.
Claude Raoul Müller, Johan Six, Daniel Mugendi Njiru, Bernard Vanlauwe, and Marijn Van de Broek
EGUsphere, https://doi.org/10.5194/egusphere-2024-2796, https://doi.org/10.5194/egusphere-2024-2796, 2024
Short summary
Short summary
We studied how different organic and inorganic nutrient inputs affect soil organic carbon (SOC) down to 70 cm in Kenya. After 19 years, all organic treatments increased SOC stocks as compared to the control, but mineral nitrogen had no significant effect. Manure was the organic treatment that significantly increased SOC the deepest as its effect could be observed down to 60 cm. Manure was the best strategy to limit SOC loss in croplands and maintain soil quality after deforestation.
Roxanne Daelman, Marijn Bauters, Matti Barthel, Emmanuel Bulonza, Lodewijk Lefevre, José Mbifo, Johan Six, Klaus Butterbach-Bahl, Benjamin Wolf, Ralf Kiese, and Pascal Boeckx
EGUsphere, https://doi.org/10.5194/egusphere-2024-2346, https://doi.org/10.5194/egusphere-2024-2346, 2024
Short summary
Short summary
The increase in atmospheric concentrations of several greenhouse gasses (GHG) since 1750 is attributed to human activity, however natural ecosystems, such as tropical forests, also contribute to GHG budgets. The Congo basin hosts the second largest tropical forest and is understudied. In this study, measurements of soil GHG exchange were carried out during 16 months in a tropical forest in the Congo Basin. Overall, the soil acted as a major source for CO2 and N2O and a minor sink for CH4.
Marijn Van de Broek, Gerard Govers, Marion Schrumpf, and Johan Six
EGUsphere, https://doi.org/10.5194/egusphere-2024-2205, https://doi.org/10.5194/egusphere-2024-2205, 2024
Short summary
Short summary
Soil organic carbon models are used to predict how soils affect the concentration of CO2 in the atmosphere. We show that equifinality – the phenomenon that different parameter values lead to correct overall model outputs, albeit with a different model behaviour – is an important source of model uncertainty. Our results imply that adding more complexity to soil organic carbon models is unlikely to lead to better predictions, as long as more data to constrain model parameters are not available.
Claude Raoul Müller, Johan Six, Liesa Brosens, Philipp Baumann, Jean Paolo Gomes Minella, Gerard Govers, and Marijn Van de Broek
SOIL, 10, 349–365, https://doi.org/10.5194/soil-10-349-2024, https://doi.org/10.5194/soil-10-349-2024, 2024
Short summary
Short summary
Subsoils in the tropics are not as extensively studied as those in temperate regions. In this study, the conversion of forest to agriculture in a subtropical region affected the concentration of stabilized organic carbon (OC) down to 90 cm depth, while no significant differences between 90 cm and 300 cm were detected. Our results suggest that subsoils below 90 cm are unlikely to accumulate additional stabilized OC through reforestation over decadal periods due to declining OC input with depth.
Johan Six, Sebastian Doetterl, Moritz Laub, Claude R. Müller, and Marijn Van de Broek
SOIL, 10, 275–279, https://doi.org/10.5194/soil-10-275-2024, https://doi.org/10.5194/soil-10-275-2024, 2024
Short summary
Short summary
Soil C saturation has been tested in several recent studies and led to a debate about its existence. We argue that, to test C saturation, one should pay attention to six fundamental principles: the right measures, the right units, the right dispersive energy and application, the right soil type, the right clay type, and the right saturation level. Once we take care of those six rights across studies, we find support for a maximum of C stabilized by minerals and thus soil C saturation.
Armwell Shumba, Regis Chikowo, Christian Thierfelder, Marc Corbeels, Johan Six, and Rémi Cardinael
SOIL, 10, 151–165, https://doi.org/10.5194/soil-10-151-2024, https://doi.org/10.5194/soil-10-151-2024, 2024
Short summary
Short summary
Conservation agriculture (CA), combining reduced or no tillage, permanent soil cover, and improved rotations, is often promoted as a climate-smart practice. However, our knowledge of the impact of CA on top- and subsoil soil organic carbon (SOC) stocks in the low-input cropping systems of sub-Saharan Africa is rather limited. Using two long-term experimental sites with different soil types, we found that mulch could increase top SOC stocks, but no tillage alone had a slightly negative impact.
Mosisa Tujuba Wakjira, Nadav Peleg, Johan Six, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-37, https://doi.org/10.5194/hess-2024-37, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
While rainwater is a key resource in crop production, its productivity faces challenges from climate change. Using a simple model of climate, water, and crop yield interactions, we found that rain-scarce croplands in Ethiopia are likely to experience decreases in crop yield during the main growing season, primarily due to future temperature increases. These insights are crucial for shaping future water management plans, policies, and informed decision-making for climate adaptation.
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024, https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
Short summary
To manage soil organic matter (SOM) sustainably, we need a better understanding of the role that soil microbes play in aggregate protection. Here, we propose the SAMM model, which connects soil aggregate formation to microbial growth. We tested it against data from a tropical long-term experiment and show that SAMM effectively represents the microbial growth, SOM, and aggregate dynamics and that it can be used to explore the importance of aggregate formation in SOM stabilization.
Moritz Laub, Marc Corbeels, Antoine Couëdel, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Magdalena Necpalova, Wycliffe Waswa, Marijn Van de Broek, Bernard Vanlauwe, and Johan Six
SOIL, 9, 301–323, https://doi.org/10.5194/soil-9-301-2023, https://doi.org/10.5194/soil-9-301-2023, 2023
Short summary
Short summary
In sub-Saharan Africa, long-term low-input maize cropping threatens soil fertility. We studied how different quality organic inputs combined with mineral N fertilizer could counteract this. Farmyard manure was the best input to counteract soil carbon loss; mineral N fertilizer had no effect on carbon. Yet, the rates needed to offset soil carbon losses are unrealistic for farmers (>10 t of dry matter per hectare and year). Additional agronomic measures may be needed.
Kristof Van Oost and Johan Six
Biogeosciences, 20, 635–646, https://doi.org/10.5194/bg-20-635-2023, https://doi.org/10.5194/bg-20-635-2023, 2023
Short summary
Short summary
The direction and magnitude of the net erosion-induced land–atmosphere C exchange have been the topic of a big scientific debate for more than a decade now. Many have assumed that erosion leads to a loss of soil carbon to the atmosphere, whereas others have shown that erosion ultimately leads to a carbon sink. Here, we show that the soil carbon erosion source–sink paradox is reconciled when the broad range of temporal and spatial scales at which the underlying processes operate are considered.
Charlotte Decock, Juhwan Lee, Matti Barthel, Elizabeth Verhoeven, Franz Conen, and Johan Six
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-221, https://doi.org/10.5194/bg-2022-221, 2022
Preprint withdrawn
Short summary
Short summary
One of the least well understood processes in the nitrogen (N) cycle is the loss of nitrogen gas (N2), referred to as total denitrification. This is mainly due to the difficulty of quantifying total denitrification in situ. In this study, we developed and tested a novel modeling approach to estimate total denitrification over the depth profile, based on concentrations and isotope values of N2O. Our method will help close N budgets and identify management strategies that reduce N pollution.
Tegawende Léa Jeanne Ilboudo, Lucien NGuessan Diby, Delwendé Innocent Kiba, Tor Gunnar Vågen, Leigh Ann Winowiecki, Hassan Bismarck Nacro, Johan Six, and Emmanuel Frossard
EGUsphere, https://doi.org/10.5194/egusphere-2022-209, https://doi.org/10.5194/egusphere-2022-209, 2022
Preprint withdrawn
Short summary
Short summary
Our results showed that at landscape level SOC stock variability was mainly explained by clay content. We found significant linear positive relationships between VC and SOC stocks for the land uses annual croplands, perennial croplands, grasslands and bushlands without soil depth restrictions until 110 cm. We concluded that in the forest-savanna transition zone, soil properties and topography determine land use, which in turn affects the stocks of SOC and TN and to some extent the VC stocks.
Rey Harvey Suello, Simon Lucas Hernandez, Steven Bouillon, Jean-Philippe Belliard, Luis Dominguez-Granda, Marijn Van de Broek, Andrea Mishell Rosado Moncayo, John Ramos Veliz, Karem Pollette Ramirez, Gerard Govers, and Stijn Temmerman
Biogeosciences, 19, 1571–1585, https://doi.org/10.5194/bg-19-1571-2022, https://doi.org/10.5194/bg-19-1571-2022, 2022
Short summary
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
Florian Lauryssen, Philippe Crombé, Tom Maris, Elliot Van Maldegem, Marijn Van de Broek, Stijn Temmerman, and Erik Smolders
Biogeosciences, 19, 763–776, https://doi.org/10.5194/bg-19-763-2022, https://doi.org/10.5194/bg-19-763-2022, 2022
Short summary
Short summary
Surface waters in lowland regions have a poor surface water quality, mainly due to excess nutrients like phosphate. Therefore, we wanted to know the phosphate levels without humans, also called the pre-industrial background. Phosphate binds strongly to sediment particles, suspended in the river water. In this research we used sediments deposited by a river as an archive for surface water phosphate back to 1800 CE. Pre-industrial phosphate levels were estimated at one-third of the modern levels.
Philipp Baumann, Juhwan Lee, Emmanuel Frossard, Laurie Paule Schönholzer, Lucien Diby, Valérie Kouamé Hgaza, Delwende Innocent Kiba, Andrew Sila, Keith Sheperd, and Johan Six
SOIL, 7, 717–731, https://doi.org/10.5194/soil-7-717-2021, https://doi.org/10.5194/soil-7-717-2021, 2021
Short summary
Short summary
This work delivers openly accessible and validated calibrations for diagnosing 26 soil properties based on mid-infrared spectroscopy. These were developed for four regions in Burkina Faso and Côte d'Ivoire, including 80 fields of smallholder farmers. The models can help to site-specifically and cost-efficiently monitor soil quality and fertility constraints to ameliorate soils and yields of yam or other staple crops in the four regions between the humid forest and the northern Guinean savanna.
Laura Summerauer, Philipp Baumann, Leonardo Ramirez-Lopez, Matti Barthel, Marijn Bauters, Benjamin Bukombe, Mario Reichenbach, Pascal Boeckx, Elizabeth Kearsley, Kristof Van Oost, Bernard Vanlauwe, Dieudonné Chiragaga, Aimé Bisimwa Heri-Kazi, Pieter Moonen, Andrew Sila, Keith Shepherd, Basile Bazirake Mujinya, Eric Van Ranst, Geert Baert, Sebastian Doetterl, and Johan Six
SOIL, 7, 693–715, https://doi.org/10.5194/soil-7-693-2021, https://doi.org/10.5194/soil-7-693-2021, 2021
Short summary
Short summary
We present a soil mid-infrared library with over 1800 samples from central Africa in order to facilitate soil analyses of this highly understudied yet critical area. Together with an existing continental library, we demonstrate a regional analysis and geographical extrapolation to predict total carbon and nitrogen. Our results show accurate predictions and highlight the value that the data contribute to existing libraries. Our library is openly available for public use and for expansion.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Philipp Baumann, Anatol Helfenstein, Andreas Gubler, Armin Keller, Reto Giulio Meuli, Daniel Wächter, Juhwan Lee, Raphael Viscarra Rossel, and Johan Six
SOIL, 7, 525–546, https://doi.org/10.5194/soil-7-525-2021, https://doi.org/10.5194/soil-7-525-2021, 2021
Short summary
Short summary
We developed the Swiss mid-infrared spectral library and a statistical model collection across 4374 soil samples with reference measurements of 16 properties. Our library incorporates soil from 1094 grid locations and 71 long-term monitoring sites. This work confirms once again that nationwide spectral libraries with diverse soils can reliably feed information to a fast chemical diagnosis. Our data-driven reduction of the library has the potential to accurately monitor carbon at the plot scale.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Anatol Helfenstein, Philipp Baumann, Raphael Viscarra Rossel, Andreas Gubler, Stefan Oechslin, and Johan Six
SOIL, 7, 193–215, https://doi.org/10.5194/soil-7-193-2021, https://doi.org/10.5194/soil-7-193-2021, 2021
Short summary
Short summary
In this study, we show that a soil spectral library (SSL) can be used to predict soil carbon at new and very different locations. The importance of this finding is that it requires less time-consuming lab work than calibrating a new model for every local application, while still remaining similar to or more accurate than local models. Furthermore, we show that this method even works for predicting (drained) peat soils, using a SSL with mostly mineral soils containing much less soil carbon.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Simon Baumgartner, Matti Barthel, Travis William Drake, Marijn Bauters, Isaac Ahanamungu Makelele, John Kalume Mugula, Laura Summerauer, Nora Gallarotti, Landry Cizungu Ntaboba, Kristof Van Oost, Pascal Boeckx, Sebastian Doetterl, Roland Anton Werner, and Johan Six
Biogeosciences, 17, 6207–6218, https://doi.org/10.5194/bg-17-6207-2020, https://doi.org/10.5194/bg-17-6207-2020, 2020
Short summary
Short summary
Soil respiration is an important carbon flux and key process determining the net ecosystem production of terrestrial ecosystems. The Congo Basin lacks studies quantifying carbon fluxes. We measured soil CO2 fluxes from different forest types in the Congo Basin and were able to show that, even though soil CO2 fluxes are similarly high in lowland and montane forests, the drivers were different: soil moisture in montane forests and C availability in the lowland forests.
Long Ho, Ruben Jerves-Cobo, Matti Barthel, Johan Six, Samuel Bode, Pascal Boeckx, and Peter Goethals
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-311, https://doi.org/10.5194/bg-2020-311, 2020
Revised manuscript not accepted
Short summary
Short summary
Rivers are being polluted by human activities, especially in urban areas. We studied the greenhouse gas (GHG) emissions from an urban river system. The results showed a clear trend between water quality and GHG emissions in which the more polluted the sites were, the higher were their emissions. When river water quality worsened, its contribution to global warming can go up by 10 times. Urban rivers emitted 4-times more than of the amount of GHGs compared to rivers in natural sites.
Marijn Van de Broek, Shiva Ghiasi, Charlotte Decock, Andreas Hund, Samuel Abiven, Cordula Friedli, Roland A. Werner, and Johan Six
Biogeosciences, 17, 2971–2986, https://doi.org/10.5194/bg-17-2971-2020, https://doi.org/10.5194/bg-17-2971-2020, 2020
Short summary
Short summary
Four wheat cultivars were labeled with 13CO2 to quantify the effect of rooting depth and root biomass on the belowground transfer of organic carbon. We found no clear relation between the time since cultivar development and the amount of carbon inputs to the soil. Therefore, the hypothesis that wheat cultivars with a larger root biomass and deeper roots promote carbon stabilization was rejected. The amount of root biomass that will be stabilized in the soil on the long term is, however, unknown.
Stephen J. Harris, Jesper Liisberg, Longlong Xia, Jing Wei, Kerstin Zeyer, Longfei Yu, Matti Barthel, Benjamin Wolf, Bryce F. J. Kelly, Dioni I. Cendón, Thomas Blunier, Johan Six, and Joachim Mohn
Atmos. Meas. Tech., 13, 2797–2831, https://doi.org/10.5194/amt-13-2797-2020, https://doi.org/10.5194/amt-13-2797-2020, 2020
Short summary
Short summary
The latest commercial laser spectrometers have the potential to revolutionize N2O isotope analysis. However, to do so, they must be able to produce trustworthy data. Here, we test the performance of widely used laser spectrometers for ambient air applications and identify instrument-specific dependencies on gas matrix and trace gas concentrations. We then provide a calibration workflow to facilitate the operation of these instruments in order to generate reproducible and accurate data.
Karl Voglmeier, Johan Six, Markus Jocher, and Christof Ammann
Biogeosciences, 16, 1685–1703, https://doi.org/10.5194/bg-16-1685-2019, https://doi.org/10.5194/bg-16-1685-2019, 2019
Tino Colombi, Florian Walder, Lucie Büchi, Marlies Sommer, Kexing Liu, Johan Six, Marcel G. A. van der Heijden, Raphaël Charles, and Thomas Keller
SOIL, 5, 91–105, https://doi.org/10.5194/soil-5-91-2019, https://doi.org/10.5194/soil-5-91-2019, 2019
Short summary
Short summary
The role of soil aeration in carbon sequestration in arable soils has only been explored little, especially at the farm level. The current study, which was conducted on 30 fields that belong to individual farms, reveals a positive relationship between soil gas transport capability and soil organic carbon content. We therefore conclude that soil aeration needs to be accounted for when developing strategies for carbon sequestration in arable soil.
Elizabeth Verhoeven, Matti Barthel, Longfei Yu, Luisella Celi, Daniel Said-Pullicino, Steven Sleutel, Dominika Lewicka-Szczebak, Johan Six, and Charlotte Decock
Biogeosciences, 16, 383–408, https://doi.org/10.5194/bg-16-383-2019, https://doi.org/10.5194/bg-16-383-2019, 2019
Short summary
Short summary
This study utilized state-of-the-art measurements of nitrogen isotopes to evaluate nitrogen cycling and to assess the biological sources of the potent greenhouse gas, N2O, in response to water-saving practices in rice systems. Water-saving practices did emit more N2O, and high N2O production had a lower 15N isotope signature. Modeling and visual interpretation indicate that these emissions mostly came from denitrification or nitrifier denitrification, controlled upstream by nitrification rates.
Marijn Van de Broek, Stijn Temmerman, Roel Merckx, and Gerard Govers
Biogeosciences, 13, 6611–6624, https://doi.org/10.5194/bg-13-6611-2016, https://doi.org/10.5194/bg-13-6611-2016, 2016
Short summary
Short summary
The results of this study on the organic carbon (OC) stocks of tidal marshes show that variations in OC stocks along estuaries are important and should be taken into account to make accurate estimates of the total amount of OC stored in these ecosystems. Moreover, our results clearly show that most studies underestimate the variation in OC stocks along estuaries due to a shallow sampling depth, neglecting the variation in OC decomposition after burial along estuaries.
R. Hüppi, R. Felber, A. Neftel, J. Six, and J. Leifeld
SOIL, 1, 707–717, https://doi.org/10.5194/soil-1-707-2015, https://doi.org/10.5194/soil-1-707-2015, 2015
Short summary
Short summary
Biochar is considered an opportunity to tackle major environmental issues in agriculture. Adding pyrolised organic residues to soil may sequester carbon, increase yields and reduce nitrous oxide emissions from soil. It is unknown, whether the latter is induced by changes in soil pH. We show that biochar application substantially reduces nitrous oxide emissions from a temperate maize cropping system. However, the reduction was only achieved with biochar but not with liming.
C. Decock, J. Lee, M. Necpalova, E. I. P. Pereira, D. M. Tendall, and J. Six
SOIL, 1, 687–694, https://doi.org/10.5194/soil-1-687-2015, https://doi.org/10.5194/soil-1-687-2015, 2015
Short summary
Short summary
Further progress in understanding and mitigating N2O emissions from soil lies within transdisciplinary research that reaches across spatial scales and takes an ambitious look into the future.
M. S. Torn, A. Chabbi, P. Crill, P. J. Hanson, I. A. Janssens, Y. Luo, C. H. Pries, C. Rumpel, M. W. I. Schmidt, J. Six, M. Schrumpf, and B. Zhu
SOIL, 1, 575–582, https://doi.org/10.5194/soil-1-575-2015, https://doi.org/10.5194/soil-1-575-2015, 2015
B. Vanlauwe, K. Descheemaeker, K. E. Giller, J. Huising, R. Merckx, G. Nziguheba, J. Wendt, and S. Zingore
SOIL, 1, 491–508, https://doi.org/10.5194/soil-1-491-2015, https://doi.org/10.5194/soil-1-491-2015, 2015
Short summary
Short summary
The "local adaptation" component of integrated soil fertility management operates at field and farm scale. At field scale, the application of implements other than improved germplasm, fertilizer, and organic inputs can enhance the agronomic efficiency (AE) of fertilizer. Examples include the application of lime, secondary and micronutrients, water harvesting, and soil tillage practices. At farm scale, targeting fertilizer within variable farms is shown to significantly affect AE of fertilizer.
B. Wolf, L. Merbold, C. Decock, B. Tuzson, E. Harris, J. Six, L. Emmenegger, and J. Mohn
Biogeosciences, 12, 2517–2531, https://doi.org/10.5194/bg-12-2517-2015, https://doi.org/10.5194/bg-12-2517-2015, 2015
S. Doetterl, J.-T. Cornelis, J. Six, S. Bodé, S. Opfergelt, P. Boeckx, and K. Van Oost
Biogeosciences, 12, 1357–1371, https://doi.org/10.5194/bg-12-1357-2015, https://doi.org/10.5194/bg-12-1357-2015, 2015
Short summary
Short summary
We link the mineralogy of soils affected by erosion and deposition to the distribution of soil carbon fractions, their turnover and microbial activity. We show that the weathering status of soils and their history are controlling the stabilization of carbon with minerals. After burial, aggregated C is preserved more efficiently while non-aggregated C can be released and younger C re-sequestered more easily. Weathering changes the effectiveness of stabilization mechanism limiting this C sink.
E. C. Brevik, A. Cerdà, J. Mataix-Solera, L. Pereg, J. N. Quinton, J. Six, and K. Van Oost
SOIL, 1, 117–129, https://doi.org/10.5194/soil-1-117-2015, https://doi.org/10.5194/soil-1-117-2015, 2015
Short summary
Short summary
This paper provides a brief accounting of some of the many ways that the study of soils can be interdisciplinary, therefore giving examples of the types of papers we hope to see submitted to SOIL.
Related subject area
Biogeochemistry: Modelling, Terrestrial
Development of the DO3SE-Crop model to assess ozone effects on crop phenology, biomass, and yield
Future methane fluxes of peatlands are controlled by management practices and fluctuations in hydrological conditions due to climatic variability
Understanding and simulating cropland and non-cropland burning in Europe using the BASE (Burnt Area Simulator for Europe) model
Representation of the terrestrial carbon cycle in CMIP6
Does dynamically modeled leaf area improve predictions of land surface water and carbon fluxes? Insights into dynamic vegetation modules
Observational benchmarks inform representation of soil organic carbon dynamics in land surface models
X-BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X
A 2001–2022 global gross primary productivity dataset using an ensemble model based on the random forest method
Future projections of Siberian wildfire and aerosol emissions
Mechanisms of soil organic carbon and nitrogen stabilization in mineral-associated organic matter – insights from modeling in phase space
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Estimates of critical loads and exceedances of acidity and nutrient nitrogen for mineral soils in Canada for 2014–2016 average annual sulphur and nitrogen atmospheric deposition
When and why microbial-explicit soil organic carbon models can be unstable
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Climate-based prediction of carbon fluxes from deadwood in Australia
Integration of tree hydraulic processes and functional impairment to capture the drought resilience of a semiarid pine forest
The effect of temperature on photosystem II efficiency across plant functional types and climate
Modeling microbial carbon fluxes and stocks in global soils from 1901 to 2016
Elevated atmospheric CO2 concentration and vegetation structural changes contributed to gross primary productivity increase more than climate and forest cover changes in subtropical forests of China
Non-steady-state stomatal conductance modeling and its implications: from leaf to ecosystem
Modelled forest ecosystem carbon–nitrogen dynamics with integrated mycorrhizal processes under elevated CO2
A chemical kinetics theory for interpreting the non-monotonic temperature dependence of enzymatic reactions
Using Free Air CO2 Enrichment data to constrain land surface model projections of the terrestrial carbon cycle
Multiscale assessment of North American terrestrial carbon balance
Simulating net ecosystem exchange under seasonal snow cover at an Arctic tundra site
Spatial biases reduce the ability of Earth system models to simulate soil heterotrophic respiration fluxes
Tropical dry forest response to nutrient fertilization: a model validation and sensitivity analysis
Connecting competitor, stress-tolerator and ruderal (CSR) theory and Lund Potsdam Jena managed Land 5 (LPJmL 5) to assess the role of environmental conditions, management and functional diversity for grassland ecosystem functions
A global fuel characteristic model and dataset for wildfire prediction
Can models adequately reflect how long-term nitrogen enrichment alters the forest soil carbon cycle?
Temporal variability of observed and simulated gross primary productivity, modulated by vegetation state and hydrometeorological drivers
Empirical upscaling of OzFlux eddy covariance for high-resolution monitoring of terrestrial carbon uptake in Australia
A modeling approach to investigate drivers, variability and uncertainties in O2 fluxes and O2 : CO2 exchange ratios in a temperate forest
Modeling coupled nitrification–denitrification in soil with an organic hotspot
A new method for estimating carbon dioxide emissions from drained peatland forest soils for the greenhouse gas inventory of Finland
Enabling a process-oriented hydro-biogeochemical model to simulate soil erosion and nutrient losses
Potassium limitation of forest productivity – Part 1: A mechanistic model simulating the effects of potassium availability on canopy carbon and water fluxes in tropical eucalypt stands
Potassium limitation of forest productivity – Part 2: CASTANEA-MAESPA-K shows a reduction in photosynthesis rather than a stoichiometric limitation of tissue formation
Global evaluation of terrestrial biogeochemistry in the Energy Exascale Earth System Model (E3SM) and the role of the phosphorus cycle in the historical terrestrial carbon balance
Assessing carbon storage capacity and saturation across six central US grasslands using data–model integration
Optimizing the carbonic anhydrase temperature response and stomatal conductance of carbonyl sulfide leaf uptake in the Simple Biosphere model (SiB4)
Exploring environmental and physiological drivers of the annual carbon budget of biocrusts from various climatic zones with a mechanistic data-driven model
Improved process representation of leaf phenology significantly shifts climate sensitivity of ecosystem carbon balance
Mapping of ESA's Climate Change Initiative land cover data to plant functional types for use in the CLASSIC land model
Exploring the impacts of unprecedented climate extremes on forest ecosystems: hypotheses to guide modeling and experimental studies
Effect of droughts and climate change on future soil weathering rates in Sweden
Information content in time series of litter decomposition studies and the transit time of litter in arid lands
Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China
Towards an ensemble-based evaluation of land surface models in light of uncertain forcings and observations
Effect of land-use legacy on the future carbon sink for the conterminous US
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
Biogeosciences, 22, 181–212, https://doi.org/10.5194/bg-22-181-2025, https://doi.org/10.5194/bg-22-181-2025, 2025
Short summary
Short summary
The DO3SE-Crop model extends the DO3SE to simulate ozone's impact on crops with modules for ozone uptake, damage, and crop growth from JULES-crop. It's versatile, suits China's varied agriculture, and improves yield predictions under ozone stress. It is essential for policy, water management, and climate response, and it integrates into Earth system models for a comprehensive understanding of agriculture's interaction with global systems.
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024, https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary
Short summary
Drainage of boreal peatlands strongly influences soil methane fluxes, with important implications for climatic impacts. Here we simulate methane fluxes in forestry-drained and restored peatlands during the 21st century. We found that restoration turned peatlands into a source of methane, but the magnitude varied regionally. In forests, changes in the water table level influenced methane fluxes, and in general, the sink was weaker under rotational forestry compared to continuous cover forestry.
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe, but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data, and socioeconomic data to determine what affects burning in cropland and non-cropland areas of Europe. We found different drivers of burning in cropland burning vs. non-cropland to the point that some variables, e.g. population density, had the complete opposite effects.
Bettina K. Gier, Manuel Schlund, Pierre Friedlingstein, Chris D. Jones, Colin Jones, Sönke Zaehle, and Veronika Eyring
Biogeosciences, 21, 5321–5360, https://doi.org/10.5194/bg-21-5321-2024, https://doi.org/10.5194/bg-21-5321-2024, 2024
Short summary
Short summary
This study investigates present-day carbon cycle variables in CMIP5 and CMIP6 simulations. Overall, CMIP6 models perform better but also show many remaining biases. A significant improvement in the simulation of photosynthesis in models with a nitrogen cycle is found, with only small differences between emission- and concentration-based simulations. Thus, we recommend using emission-driven simulations in CMIP7 by default and including the nitrogen cycle in all future carbon cycle models.
Sven Armin Westermann, Anke Hildebrandt, Souhail Bousetta, and Stephan Thober
Biogeosciences, 21, 5277–5303, https://doi.org/10.5194/bg-21-5277-2024, https://doi.org/10.5194/bg-21-5277-2024, 2024
Short summary
Short summary
Plants at the land surface mediate between soil and the atmosphere regarding water and carbon transport. Since plant growth is a dynamic process, models need to consider these dynamics. Two models that predict water and carbon fluxes by considering plant temporal evolution were tested against observational data. Currently, dynamizing plants in these models did not enhance their representativeness, which is caused by a mismatch between implemented physical relations and observable connections.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences, 21, 5173–5183, https://doi.org/10.5194/bg-21-5173-2024, https://doi.org/10.5194/bg-21-5173-2024, 2024
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon–climate feedbacks. Using machine learning, we develop and compare predictive relationships in observations (Obs) and ESMs. We find different relationships between environmental factors and SOC stocks in Obs and ESMs. SOC prediction in ESMs may be improved by representing the functional relationships of environmental controllers in a way consistent with observations.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Xin Chen, Tiexi Chen, Xiaodong Li, Yuanfang Chai, Shengjie Zhou, Renjie Guo, and Jie Dai
Biogeosciences, 21, 4285–4300, https://doi.org/10.5194/bg-21-4285-2024, https://doi.org/10.5194/bg-21-4285-2024, 2024
Short summary
Short summary
We provide an ensemble-model-based GPP dataset (ERF_GPP) that explains 85.1 % of the monthly variation in GPP across 170 sites, which is higher than other GPP estimate models. In addition, ERF_GPP improves the phenomenon of “high-value underestimation and low-value overestimation” in GPP estimation to some extent. Overall, ERF_GPP provides a more reliable estimate of global GPP and will facilitate further development of carbon cycle research.
Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata
Biogeosciences, 21, 4195–4227, https://doi.org/10.5194/bg-21-4195-2024, https://doi.org/10.5194/bg-21-4195-2024, 2024
Short summary
Short summary
SPITFIRE (SPread and InTensity of FIRE) was integrated into a spatially explicit individual-based dynamic global vegetation model to improve the accuracy of depicting Siberian forest fire frequency, intensity, and extent. Fires showed increased greenhouse gas and aerosol emissions in 2006–2100 for Representative Concentration Pathways. This study contributes to understanding fire dynamics, land ecosystem–climate interactions, and global material cycles under the threat of escalating fires.
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024, https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Short summary
Organic carbon and nitrogen are stabilized in soils via microbial assimilation and stabilization of necromass (in vivo pathway) or via adsorption of the products of extracellular decomposition (ex vivo pathway). Here we use a diagnostic model to quantify which stabilization pathway is prevalent using data on residue-derived carbon and nitrogen incorporation in mineral-associated organic matter. We find that the in vivo pathway is dominant in fine-textured soils with low organic matter content.
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024, https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Short summary
Ecosystem carbonyl sulfide (COS) fluxes were employed to optimize GPP estimation across ecosystems with the Biosphere-atmosphere Exchange Process Simulator (BEPS), which was developed for simulating the canopy COS uptake under its state-of-the-art two-leaf modeling framework. Our results showcased the efficacy of COS in improving model prediction and reducing prediction uncertainty of GPP and enhanced insights into the sensitivity, identifiability, and interactions of parameters related to COS.
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
EGUsphere, https://doi.org/10.5194/egusphere-2024-2371, https://doi.org/10.5194/egusphere-2024-2371, 2024
Short summary
Short summary
Deposition from sulfur and nitrogen pollution can harm ecosystems, and recovery from this type of pollution can take decades or longer. To identify risk to Canadian soils, we created maps showing sensitivity to sulfur and nitrogen pollution. Results show that some ecosystems are at risk from acid and nutrient nitrogen deposition; 10 % of protected areas are receiving acid deposition beyond their damage threshold and 70 % may be receiving nitrogen deposition that could cause biodiversity loss.
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024, https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
Short summary
The occurrence of unstable equilibrium points (EPs) could impede the applicability of microbial-explicit soil organic carbon models. For archetypal model versions we identify when instability can occur and describe mathematical conditions to avoid such unstable EPs. We discuss implications for further model development, highlighting the important role of considering basic ecological principles to ensure biologically meaningful models.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024, https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Short summary
Terrestrial biosphere models can either prescribe the geographical distribution of biomes or simulate them dynamically, capturing climate-change-driven biome shifts. We isolate and examine the differences between these different land cover implementations. We find that the simulated terrestrial carbon sink at the end of the 21st century is twice as large in simulations with dynamic land cover than in simulations with prescribed land cover due to important range shifts in the Arctic and Amazon.
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024, https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary
Short summary
Understanding the link between climate and carbon fluxes is crucial for predicting how climate change will impact carbon sinks. We estimated carbon dioxide (CO2) fluxes from deadwood in tropical Australia using wood moisture content and temperature. Our model predicted that the majority of deadwood carbon is released as CO2, except when termite activity is detected. Future models should also incorporate wood traits, like species and chemical composition, to better predict fluxes.
Daniel Nadal-Sala, Rüdiger Grote, David Kraus, Uri Hochberg, Tamir Klein, Yael Wagner, Fedor Tatarinov, Dan Yakir, and Nadine K. Ruehr
Biogeosciences, 21, 2973–2994, https://doi.org/10.5194/bg-21-2973-2024, https://doi.org/10.5194/bg-21-2973-2024, 2024
Short summary
Short summary
A hydraulic model approach is presented that can be added to any physiologically based ecosystem model. Simulated plant water potential triggers stomatal closure, photosynthesis decline, root–soil resistance increases, and sapwood and foliage senescence. The model has been evaluated at an extremely dry site stocked with Aleppo pine and was able to represent gas exchange, soil water content, and plant water potential. The model also responded realistically regarding leaf senescence.
Patrick Neri, Lianhong Gu, and Yang Song
Biogeosciences, 21, 2731–2758, https://doi.org/10.5194/bg-21-2731-2024, https://doi.org/10.5194/bg-21-2731-2024, 2024
Short summary
Short summary
A first-of-its-kind global-scale model of temperature resilience and tolerance of photosystem II maximum quantum yield informs how plants maintain their efficiency of converting light energy to chemical energy for photosynthesis under temperature changes. Our finding explores this variation across plant functional types and habitat climatology, highlighting diverse temperature response strategies and a method to improve global-scale photosynthesis modeling under climate change.
Liyuan He, Jorge L. Mazza Rodrigues, Melanie A. Mayes, Chun-Ta Lai, David A. Lipson, and Xiaofeng Xu
Biogeosciences, 21, 2313–2333, https://doi.org/10.5194/bg-21-2313-2024, https://doi.org/10.5194/bg-21-2313-2024, 2024
Short summary
Short summary
Soil microbes are the driving engine for biogeochemical cycles of carbon and nutrients. This study applies a microbial-explicit model to quantify bacteria and fungal biomass carbon in soils from 1901 to 2016. Results showed substantial increases in bacterial and fungal biomass carbon over the past century, jointly influenced by vegetation growth and soil temperature and moisture. This pioneering century-long estimation offers crucial insights into soil microbial roles in global carbon cycling.
Tao Chen, Félicien Meunier, Marc Peaucelle, Guoping Tang, Ye Yuan, and Hans Verbeeck
Biogeosciences, 21, 2253–2272, https://doi.org/10.5194/bg-21-2253-2024, https://doi.org/10.5194/bg-21-2253-2024, 2024
Short summary
Short summary
Chinese subtropical forest ecosystems are an extremely important component of global forest ecosystems and hence crucial for the global carbon cycle and regional climate change. However, there is still great uncertainty in the relationship between subtropical forest carbon sequestration and its drivers. We provide first quantitative estimates of the individual and interactive effects of different drivers on the gross primary productivity changes of various subtropical forest types in China.
Ke Liu, Yujie Wang, Troy S. Magney, and Christian Frankenberg
Biogeosciences, 21, 1501–1516, https://doi.org/10.5194/bg-21-1501-2024, https://doi.org/10.5194/bg-21-1501-2024, 2024
Short summary
Short summary
Stomata are pores on leaves that regulate gas exchange between plants and the atmosphere. Existing land models unrealistically assume stomata can jump between steady states when the environment changes. We implemented dynamic modeling to predict gradual stomatal responses at different scales. Results suggested that considering this effect on plant behavior patterns in diurnal cycles was important. Our framework also simplified simulations and can contribute to further efficiency improvements.
Melanie A. Thurner, Silvia Caldararu, Jan Engel, Anja Rammig, and Sönke Zaehle
Biogeosciences, 21, 1391–1410, https://doi.org/10.5194/bg-21-1391-2024, https://doi.org/10.5194/bg-21-1391-2024, 2024
Short summary
Short summary
Due to their crucial role in terrestrial ecosystems, we implemented mycorrhizal fungi into the QUINCY terrestrial biosphere model. Fungi interact with mineral and organic soil to support plant N uptake and, thus, plant growth. Our results suggest that the effect of mycorrhizal interactions on simulated ecosystem dynamics is minor under constant environmental conditions but necessary to reproduce and understand observed patterns under changing conditions, such as rising atmospheric CO2.
Jinyun Tang and William J. Riley
Biogeosciences, 21, 1061–1070, https://doi.org/10.5194/bg-21-1061-2024, https://doi.org/10.5194/bg-21-1061-2024, 2024
Short summary
Short summary
A chemical kinetics theory is proposed to explain the non-monotonic relationship between temperature and biochemical rates. It incorporates the observed thermally reversible enzyme denaturation that is ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution and three well-established theories: (1) law of mass action, (2) diffusion-limited chemical reaction theory, and (3) transition state theory.
Nina Raoult, Louis-Axel Edouard-Rambaut, Nicolas Vuichard, Vladislav Bastrikov, Anne Sofie Lansø, Bertrand Guenet, and Philippe Peylin
Biogeosciences, 21, 1017–1036, https://doi.org/10.5194/bg-21-1017-2024, https://doi.org/10.5194/bg-21-1017-2024, 2024
Short summary
Short summary
Observations are used to reduce uncertainty in land surface models (LSMs) by optimising poorly constraining parameters. However, optimising against current conditions does not necessarily ensure that the parameters treated as invariant will be robust in a changing climate. Manipulation experiments offer us a unique chance to optimise our models under different (here atmospheric CO2) conditions. By using these data in optimisations, we gain confidence in the future projections of LSMs.
Kelsey T. Foster, Wu Sun, Yoichi P. Shiga, Jiafu Mao, and Anna M. Michalak
Biogeosciences, 21, 869–891, https://doi.org/10.5194/bg-21-869-2024, https://doi.org/10.5194/bg-21-869-2024, 2024
Short summary
Short summary
Assessing agreement between bottom-up and top-down methods across spatial scales can provide insights into the relationship between ensemble spread (difference across models) and model accuracy (difference between model estimates and reality). We find that ensemble spread is unlikely to be a good indicator of actual uncertainty in the North American carbon balance. However, models that are consistent with atmospheric constraints show stronger agreement between top-down and bottom-up estimates.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Oliver Sonnentag, Gabriel Hould Gosselin, Melody Sandells, Chris Derksen, Branden Walker, Gesa Meyer, Richard Essery, Richard Kelly, Phillip Marsh, Julia Boike, and Matteo Detto
Biogeosciences, 21, 825–841, https://doi.org/10.5194/bg-21-825-2024, https://doi.org/10.5194/bg-21-825-2024, 2024
Short summary
Short summary
We undertake a sensitivity study of three different parameters on the simulation of net ecosystem exchange (NEE) during the snow-covered non-growing season at an Arctic tundra site. Simulations are compared to eddy covariance measurements, with near-zero NEE simulated despite observed CO2 release. We then consider how to parameterise the model better in Arctic tundra environments on both sub-seasonal timescales and cumulatively throughout the snow-covered non-growing season.
Bertrand Guenet, Jérémie Orliac, Lauric Cécillon, Olivier Torres, Laura Sereni, Philip A. Martin, Pierre Barré, and Laurent Bopp
Biogeosciences, 21, 657–669, https://doi.org/10.5194/bg-21-657-2024, https://doi.org/10.5194/bg-21-657-2024, 2024
Short summary
Short summary
Heterotrophic respiration fluxes are a major flux between surfaces and the atmosphere, but Earth system models do not yet represent them correctly. Here we benchmarked Earth system models against observation-based products, and we identified the important mechanisms that need to be improved in the next-generation Earth system models.
Shuyue Li, Bonnie Waring, Jennifer Powers, and David Medvigy
Biogeosciences, 21, 455–471, https://doi.org/10.5194/bg-21-455-2024, https://doi.org/10.5194/bg-21-455-2024, 2024
Short summary
Short summary
We used an ecosystem model to simulate primary production of a tropical forest subjected to 3 years of nutrient fertilization. Simulations parameterized such that relative allocation to fine roots increased with increasing soil phosphorus had leaf, wood, and fine root production consistent with observations. However, these simulations seemed to over-allocate to fine roots on multidecadal timescales, affecting aboveground biomass. Additional observations across timescales would benefit models.
Stephen Björn Wirth, Arne Poyda, Friedhelm Taube, Britta Tietjen, Christoph Müller, Kirsten Thonicke, Anja Linstädter, Kai Behn, Sibyll Schaphoff, Werner von Bloh, and Susanne Rolinski
Biogeosciences, 21, 381–410, https://doi.org/10.5194/bg-21-381-2024, https://doi.org/10.5194/bg-21-381-2024, 2024
Short summary
Short summary
In dynamic global vegetation models (DGVMs), the role of functional diversity in forage supply and soil organic carbon storage of grasslands is not explicitly taken into account. We introduced functional diversity into the Lund Potsdam Jena managed Land (LPJmL) DGVM using CSR theory. The new model reproduced well-known trade-offs between plant traits and can be used to quantify the role of functional diversity in climate change mitigation using different functional diversity scenarios.
Joe R. McNorton and Francesca Di Giuseppe
Biogeosciences, 21, 279–300, https://doi.org/10.5194/bg-21-279-2024, https://doi.org/10.5194/bg-21-279-2024, 2024
Short summary
Short summary
Wildfires have wide-ranging consequences for local communities, air quality and ecosystems. Vegetation amount and moisture state are key components to forecast wildfires. We developed a combined model and satellite framework to characterise vegetation, including the type of fuel, whether it is alive or dead, and its moisture content. The daily data is at high resolution globally (~9 km). Our characteristics correlate with active fire data and can inform fire danger and spread modelling efforts.
Brooke A. Eastman, William R. Wieder, Melannie D. Hartman, Edward R. Brzostek, and William T. Peterjohn
Biogeosciences, 21, 201–221, https://doi.org/10.5194/bg-21-201-2024, https://doi.org/10.5194/bg-21-201-2024, 2024
Short summary
Short summary
We compared soil model performance to data from a long-term nitrogen addition experiment in a forested ecosystem. We found that in order for soil carbon models to accurately predict future forest carbon sequestration, two key processes must respond dynamically to nitrogen availability: (1) plant allocation of carbon to wood versus roots and (2) rates of soil organic matter decomposition. Long-term experiments can help improve our predictions of the land carbon sink and its climate impact.
Jan De Pue, Sebastian Wieneke, Ana Bastos, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Maral Maleki, Fabienne Maignan, Françoise Gellens-Meulenberghs, Ivan Janssens, and Manuela Balzarolo
Biogeosciences, 20, 4795–4818, https://doi.org/10.5194/bg-20-4795-2023, https://doi.org/10.5194/bg-20-4795-2023, 2023
Short summary
Short summary
The gross primary production (GPP) of the terrestrial biosphere is a key source of variability in the global carbon cycle. To estimate this flux, models can rely on remote sensing data (RS-driven), meteorological data (meteo-driven) or a combination of both (hybrid). An intercomparison of 11 models demonstrated that RS-driven models lack the sensitivity to short-term anomalies. Conversely, the simulation of soil moisture dynamics and stress response remains a challenge in meteo-driven models.
Chad A. Burton, Luigi J. Renzullo, Sami W. Rifai, and Albert I. J. M. Van Dijk
Biogeosciences, 20, 4109–4134, https://doi.org/10.5194/bg-20-4109-2023, https://doi.org/10.5194/bg-20-4109-2023, 2023
Short summary
Short summary
Australia's land-based ecosystems play a critical role in controlling the variability in the global land carbon sink. However, uncertainties in the methods used for quantifying carbon fluxes limit our understanding. We develop high-resolution estimates of Australia's land carbon fluxes using machine learning methods and find that Australia is, on average, a stronger carbon sink than previously thought and that the seasonal dynamics of the fluxes differ from those described by other methods.
Yuan Yan, Anne Klosterhalfen, Fernando Moyano, Matthias Cuntz, Andrew C. Manning, and Alexander Knohl
Biogeosciences, 20, 4087–4107, https://doi.org/10.5194/bg-20-4087-2023, https://doi.org/10.5194/bg-20-4087-2023, 2023
Short summary
Short summary
A better understanding of O2 fluxes, their exchange ratios with CO2 and their interrelations with environmental conditions would provide further insights into biogeochemical ecosystem processes. We, therefore, used the multilayer canopy model CANVEG to simulate and analyze the flux exchange for our forest study site for 2012–2016. Based on these simulations, we further successfully tested the application of various micrometeorological methods and the prospects of real O2 flux measurements.
Jie Zhang, Elisabeth Larsen Kolstad, Wenxin Zhang, Iris Vogeler, and Søren O. Petersen
Biogeosciences, 20, 3895–3917, https://doi.org/10.5194/bg-20-3895-2023, https://doi.org/10.5194/bg-20-3895-2023, 2023
Short summary
Short summary
Manure application to agricultural land often results in large and variable N2O emissions. We propose a model with a parsimonious structure to investigate N transformations around such N2O hotspots. The model allows for new detailed insights into the interactions between transport and microbial activities regarding N2O emissions in heterogeneous soil environments. It highlights the importance of solute diffusion to N2O emissions from such hotspots which are often ignored by process-based models.
Jukka Alm, Antti Wall, Jukka-Pekka Myllykangas, Paavo Ojanen, Juha Heikkinen, Helena M. Henttonen, Raija Laiho, Kari Minkkinen, Tarja Tuomainen, and Juha Mikola
Biogeosciences, 20, 3827–3855, https://doi.org/10.5194/bg-20-3827-2023, https://doi.org/10.5194/bg-20-3827-2023, 2023
Short summary
Short summary
In Finland peatlands cover one-third of land area. For half of those, with 4.3 Mha being drained for forestry, Finland reports sinks and sources of greenhouse gases in forest lands on organic soils following its UNFCCC commitment. We describe a new method for compiling soil CO2 balance that follows changes in tree volume, tree harvests and temperature. An increasing trend of emissions from 1.4 to 7.9 Mt CO2 was calculated for drained peatland forest soils in Finland for 1990–2021.
Siqi Li, Bo Zhu, Xunhua Zheng, Pengcheng Hu, Shenghui Han, Jihui Fan, Tao Wang, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, Wei Zhang, and Yong Li
Biogeosciences, 20, 3555–3572, https://doi.org/10.5194/bg-20-3555-2023, https://doi.org/10.5194/bg-20-3555-2023, 2023
Short summary
Short summary
Physical soil erosion and particulate carbon, nitrogen and phosphorus loss modules were incorporated into the process-oriented hydro-biogeochemical model CNMM-DNDC to realize the accurate simulation of water-induced erosion and subsequent particulate nutrient losses at high spatiotemporal resolution.
Ivan Cornut, Nicolas Delpierre, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, Otavio Campoe, Jose Luiz Stape, Vitoria Fernanda Santos, and Guerric le Maire
Biogeosciences, 20, 3093–3117, https://doi.org/10.5194/bg-20-3093-2023, https://doi.org/10.5194/bg-20-3093-2023, 2023
Short summary
Short summary
Potassium is an essential element for living organisms. Trees are dependent upon this element for certain functions that allow them to build their trunks using carbon dioxide. Using data from experiments in eucalypt plantations in Brazil and a simplified computer model of the plantations, we were able to investigate the effect that a lack of potassium can have on the production of wood. Understanding nutrient cycles is useful to understand the response of forests to environmental change.
Ivan Cornut, Guerric le Maire, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, and Nicolas Delpierre
Biogeosciences, 20, 3119–3135, https://doi.org/10.5194/bg-20-3119-2023, https://doi.org/10.5194/bg-20-3119-2023, 2023
Short summary
Short summary
After simulating the effects of low levels of potassium on the canopy of trees and the uptake of carbon dioxide from the atmosphere by leaves in Part 1, here we tried to simulate the way the trees use the carbon they have acquired and the interaction with the potassium cycle in the tree. We show that the effect of low potassium on the efficiency of the trees in acquiring carbon is enough to explain why they produce less wood when they are in soils with low levels of potassium.
Xiaojuan Yang, Peter Thornton, Daniel Ricciuto, Yilong Wang, and Forrest Hoffman
Biogeosciences, 20, 2813–2836, https://doi.org/10.5194/bg-20-2813-2023, https://doi.org/10.5194/bg-20-2813-2023, 2023
Short summary
Short summary
We evaluated the performance of a land surface model (ELMv1-CNP) that includes both nitrogen (N) and phosphorus (P) limitation on carbon cycle processes. We show that ELMv1-CNP produces realistic estimates of present-day carbon pools and fluxes. We show that global C sources and sinks are significantly affected by P limitation. Our study suggests that introduction of P limitation in land surface models is likely to have substantial consequences for projections of future carbon uptake.
Kevin R. Wilcox, Scott L. Collins, Alan K. Knapp, William Pockman, Zheng Shi, Melinda D. Smith, and Yiqi Luo
Biogeosciences, 20, 2707–2725, https://doi.org/10.5194/bg-20-2707-2023, https://doi.org/10.5194/bg-20-2707-2023, 2023
Short summary
Short summary
The capacity for carbon storage (C capacity) is an attribute that determines how ecosystems store carbon in the future. Here, we employ novel data–model integration techniques to identify the carbon capacity of six grassland sites spanning the US Great Plains. Hot and dry sites had low C capacity due to less plant growth and high turnover of soil C, so they may be a C source in the future. Alternately, cooler and wetter ecosystems had high C capacity, so these systems may be a future C sink.
Ara Cho, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Richard Wehr, and Maarten C. Krol
Biogeosciences, 20, 2573–2594, https://doi.org/10.5194/bg-20-2573-2023, https://doi.org/10.5194/bg-20-2573-2023, 2023
Short summary
Short summary
Carbonyl sulfide (COS) is a useful constraint for estimating photosynthesis. To simulate COS leaf flux better in the SiB4 model, we propose a novel temperature function for enzyme carbonic anhydrase (CA) activity and optimize conductances using observations. The optimal activity of CA occurs below 40 °C, and Ball–Woodrow–Berry parameters are slightly changed. These reduce/increase uptakes in the tropics/higher latitudes and contribute to resolving discrepancies in the COS global budget.
Yunyao Ma, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada
Biogeosciences, 20, 2553–2572, https://doi.org/10.5194/bg-20-2553-2023, https://doi.org/10.5194/bg-20-2553-2023, 2023
Short summary
Short summary
We found that the modelled annual carbon balance of biocrusts is strongly affected by both the environment (mostly air temperature and CO2 concentration) and physiology, such as temperature response of respiration. However, the relative impacts of these drivers vary across regions with different climates. Uncertainty in driving factors may lead to unrealistic carbon balance estimates, particularly in temperate climates, and may be explained by seasonal variation of physiology due to acclimation.
Alexander J. Norton, A. Anthony Bloom, Nicholas C. Parazoo, Paul A. Levine, Shuang Ma, Renato K. Braghiere, and T. Luke Smallman
Biogeosciences, 20, 2455–2484, https://doi.org/10.5194/bg-20-2455-2023, https://doi.org/10.5194/bg-20-2455-2023, 2023
Short summary
Short summary
This study explores how the representation of leaf phenology affects our ability to predict changes to the carbon balance of land ecosystems. We calibrate a new leaf phenology model against a diverse range of observations at six forest sites, showing that it improves the predictive capability of the processes underlying the ecosystem carbon balance. We then show how changes in temperature and rainfall affect the ecosystem carbon balance with this new model.
Libo Wang, Vivek K. Arora, Paul Bartlett, Ed Chan, and Salvatore R. Curasi
Biogeosciences, 20, 2265–2282, https://doi.org/10.5194/bg-20-2265-2023, https://doi.org/10.5194/bg-20-2265-2023, 2023
Short summary
Short summary
Plant functional types (PFTs) are groups of plant species used to represent vegetation distribution in land surface models. There are large uncertainties associated with existing methods for mapping land cover datasets to PFTs. This study demonstrates how fine-resolution tree cover fraction and land cover datasets can be used to inform the PFT mapping process and reduce the uncertainties. The proposed largely objective method makes it easier to implement new land cover products in models.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Veronika Kronnäs, Klas Lucander, Giuliana Zanchi, Nadja Stadlinger, Salim Belyazid, and Cecilia Akselsson
Biogeosciences, 20, 1879–1899, https://doi.org/10.5194/bg-20-1879-2023, https://doi.org/10.5194/bg-20-1879-2023, 2023
Short summary
Short summary
In a future climate, extreme droughts might become more common. Climate change and droughts can have negative effects on soil weathering and plant health.
In this study, climate change effects on weathering were studied on sites in Sweden using the model ForSAFE, a climate change scenario and an extreme drought scenario. The modelling shows that weathering is higher during summer and increases with global warming but that weathering during drought summers can become as low as winter weathering.
Agustín Sarquis and Carlos A. Sierra
Biogeosciences, 20, 1759–1771, https://doi.org/10.5194/bg-20-1759-2023, https://doi.org/10.5194/bg-20-1759-2023, 2023
Short summary
Short summary
Although plant litter is chemically and physically heterogenous and undergoes multiple transformations, models that represent litter dynamics often ignore this complexity. We used a multi-model inference framework to include information content in litter decomposition datasets and studied the time it takes for litter to decompose as measured by the transit time. In arid lands, the median transit time of litter is about 3 years and has a negative correlation with mean annual temperature.
Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers
Biogeosciences, 20, 1635–1648, https://doi.org/10.5194/bg-20-1635-2023, https://doi.org/10.5194/bg-20-1635-2023, 2023
Short summary
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
Vivek K. Arora, Christian Seiler, Libo Wang, and Sian Kou-Giesbrecht
Biogeosciences, 20, 1313–1355, https://doi.org/10.5194/bg-20-1313-2023, https://doi.org/10.5194/bg-20-1313-2023, 2023
Short summary
Short summary
The behaviour of natural systems is now very often represented through mathematical models. These models represent our understanding of how nature works. Of course, nature does not care about our understanding. Since our understanding is not perfect, evaluating models is challenging, and there are uncertainties. This paper illustrates this uncertainty for land models and argues that evaluating models in light of the uncertainty in various components provides useful information.
Benjamin S. Felzer
Biogeosciences, 20, 573–587, https://doi.org/10.5194/bg-20-573-2023, https://doi.org/10.5194/bg-20-573-2023, 2023
Short summary
Short summary
The future of the terrestrial carbon sink depends upon the legacy of past land use, which determines the stand age of the forest and nutrient levels in the soil, both of which affect vegetation growth. This study uses a modeling approach to determine the effects of land-use legacy in the conterminous US from 1750 to 2099. Not accounting for land legacy results in a low carbon sink and high biomass, while water variables are not as highly affected.
Cited articles
Abramoff, R., Xu, X., Hartman, M., O’Brien, S., Feng, W., Davidson, E., Finzi, A., Moorhead, D., Schimel, J., Torn, M., and Mayes, M. A.: The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century, Biogeochemistry, 137, 51–71, https://doi.org/10.1007/s10533-017-0409-7, 2018. a, b
Abramoff, R. Z., Guenet, B., Zhang, H., Georgiou, K., Xu, X., Viscarra Rossel, R. A., Yuan, W., and Ciais, P.: Improved global-scale predictions of soil carbon stocks with Millennial Version 2, Soil Biol. Biochem., 164, 108466, https://doi.org/10.1016/j.soilbio.2021.108466, 2022. a
Ahrens, B., Guggenberger, G., Rethemeyer, J., John, S., Marschner, B., Heinze, S., Angst, G., Mueller, C. W., Kögel-Knabner, I., Leuschner, C., Hertel, D., Bachmann, J., Reichstein, M., and Schrumpf, M.: Combination of energy limitation and sorption capacity explains 14C depth gradients, Soil Biol. Biochem., 148, 107912, https://doi.org/10.1016/j.soilbio.2020.107912, 2020. a
Arias-Navarro, C., Díaz-Pinés, E., Klatt, S., Brandt, P., Rufino, M. C., Butterbach-Bahl, K., and Verchot, L. V.: Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical montane forest in Kenya, J. Geophys. Res.-Biogeo., 122, 514–527, https://doi.org/10.1002/2016JG003667, 2017. a
Barthel, M., Bauters, M., Baumgartner, S., Drake, T. W., Bey, N. M., Bush, G., Boeckx, P., Botefa, C. I., Dériaz, N., Ekamba, G. L., Gallarotti, N., Mbayu, F. M., Mugula, J. K., Makelele, I. A., Mbongo, C. E., Mohn, J., Mandea, J. Z., Mpambi, D. M., Ntaboba, L. C., Rukeza, M. B., Spencer, R. G. M., Summerauer, L., Vanlauwe, B., Van Oost, K., Wolf, B., and Six, J.: Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin, Nat. Commun., 13, 330, https://doi.org/10.1038/s41467-022-27978-6, 2022. a
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015. a
Chivenge, P., Vanlauwe, B., Gentile, R., Wangechi, H., Mugendi, D., Kessel, C. v., and Six, J.: Organic and Mineral Input Management to Enhance Crop Productivity in Central Kenya, Agron. J., 101, 1266–1275, https://doi.org/10.2134/agronj2008.0188x, 2009. a, b
Chivenge, P., Vanlauwe, B., and Six, J.: Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis, Plant Soil, 342, 1–30, https://doi.org/10.1007/s11104-010-0626-5, 2011. a, b
Clark, M. and Tilman, D.: Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice, Environ. Res. Lett., 12, 064016, https://doi.org/10.1088/1748-9326/aa6cd5, 2017. a
Clifford, D., Pagendam, D., Baldock, J., Cressie, N., Farquharson, R., Farrell, M., Macdonald, L., and Murray, L.: Rethinking soil carbon modelling: a stochastic approach to quantify uncertainties, Environmetrics, 25, 265–278, https://doi.org/10.1002/env.2271, 2014. a
Corbeels, M., Cardinael, R., Naudin, K., Guibert, H., and Torquebiau, E.: The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa, Soil Till. Res., 188, 16–26, https://doi.org/10.1016/j.still.2018.02.015, 2019. a
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?, Glob. Change Biol., 19, 988–995, https://doi.org/10.1111/gcb.12113, 2013. a, b
Dangal, S. R. S., Schwalm, C., Cavigelli, M. A., Gollany, H. T., Jin, V. L., and Sanderman, J.: Improving Soil Carbon Estimates by Linking Conceptual Pools Against Measurable Carbon Fractions in the DAYCENT Model Version 4.5, J. Adv. Model. Earth Sy., 14, e2021MS002622, https://doi.org/10.1029/2021MS002622, 2022. a
Del Grosso, S. J., Parton, W. J., Mosier, A. R., Hartman, M. D.,Brenner, J., Ojima, D. S., and Schimel, D. S.: Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model, in: Modeling Carbon and Nitrogen Dynamics for Soil Management, edited by: Schaffer, M., Ma, L., and Hansen, S., CRC Press, Boca Raton, Florida, 303–332, ISBN 978-0-367-80137-3, https://www.taylorfrancis.com/books/edit/ (last access: 19 August 2024), 2001. a, b
Del Grosso, S., Parton, W., Mosier, A., Holland, E., Pendall, E., Schimel, D., and Ojima, D.: Modeling soil CO2 emissions from ecosystems, Biogeochemistry, 73, 71–91, https://doi.org/10.1007/s10533-004-0898-z, 2005. a
Denef, K., Plante, A. F., and Six, J.: Characterization of soil organic matter, in: Soil Carbon Dynamics: An Integrated Methodology, edited by Heinemeyer, A., Bahn, M., and Kutsch, W. L., Cambridge University Press, Cambridge, 91–126, ISBN 978-0-521-86561-6, https://doi.org/10.1017/CBO9780511711794.007, 2009. a
dos Reis Martins, M., Necpalova, M., Ammann, C., Buchmann, N., Calanca, P., Flechard, C. R., Hartman, M. D., Krauss, M., Le Roy, P., Mäder, P., Maier, R., Morvan, T., Nicolardot, B., Skinner, C., Six, J., and Keel, S. G.: Modeling N2O emissions of complex cropland management in Western Europe using DayCent: Performance and scope for improvement, Eur. J. Agron., 141, 126613, https://doi.org/10.1016/j.eja.2022.126613, 2022. a
FAO: FAOSTAT Online Database, FAO, https://www.fao.org/faostat/en/#data/QCL (last access: 28 April 2023), 2023. a
Frimmel, F. H. and Christman, R. F.: Humic substances and their role in the environment, edited by: Frimmel, F. H., Bracewell, J. M., and Christman, R. F., John Wiley and Sons Ltd., ISBN 9780471918172, 1988. a
Gauch, H. G., Hwang, J. T. G., and Fick, G. W.: Model Evaluation by Comparison of Model-Based Predictions and Measured Values, Agron. J., 95, 1442–1442, https://doi.org/10.2134/agronj2003.1442, 2003. a
Gentile, R., Vanlauwe, B., and Six, J.: Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions, Ecol. Soc. Am., 21, 695–703, https://doi.org/10.1890/09-2325.1, 2011. a
Gurung, R. B., Ogle, S. M., Breidt, F. J., Williams, S. A., and Parton, W. J.: Bayesian calibration of the DayCent ecosystem model to simulate soil organic carbon dynamics and reduce model uncertainty, Geoderma, 376, 114529, https://doi.org/10.1016/j.geoderma.2020.114529, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Gurung, R. B., Ogle, S. M., Breidt, F. J., Parton, W. J., Del Grosso, S. J., Zhang, Y., Hartman, M. D., Williams, S. A., and Venterea, R. T.: Modeling nitrous oxide mitigation potential of enhanced efficiency nitrogen fertilizers from agricultural systems, Sci. Total Environ., 801, 149342, https://doi.org/10.1016/j.scitotenv.2021.149342, 2021. a, b, c
Hartman, M., Parton, W., Del Grosso, S., Easter, M., Hendryx, J., Hilinski, T., Kelly, R., Keough, C., Killian, K., Lutz, S., Marx, E., McKeown, R., Ogle, S., Ojima, D., Paustian, K., Swan, A., and Williams, S.: The Daily Century Ecosystem, Soil Organic Matter, Nutrient Cycling, Nitrogen Trace Gas, and Methane Model, User Manual, Scientific Basis, and Technical Documentation, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 2020. a, b, c, d
Hodnett, M. G. and Tomasella, J.: Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils, Geoderma, 108, 155–180, https://doi.org/10.1016/S0016-7061(02)00105-2, 2002. a, b, c
Hutchinson, G. L. and Mosier, A. R.: Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes, Soil Sci. Soc. Am. J., 45, 311–316, https://doi.org/10.2136/sssaj1981.03615995004500020017x, 1981. a
Iooss, B., Veiga, S. D., Janon, A., Pujol, G., Broto, W. C. F. B., Boumhaout, K., Delage, T., Amri, R. E., Fruth, J., Gilquin, L., Guillaume, J., Idrissi, M. I., Gratiet, L. L., Lemaitre, P., Marrel, A., Meynaoui, A., Nelson, B. L., Monari, F., Oomen, R., Rakovec, O., Ramos, B., Roustant, O., Song, E., Staum, J., Sueur, R., Touati, T., and Weber, F.: sensitivity: Global Sensitivity Analysis of Model Outputs, https://CRAN.R-project.org/package=sensitivity (last access: 23 February 2023), 2021. a
Ittersum, M. K. v., Bussel, L. G. J. v., Wolf, J., Grassini, P., Wart, J. v., Guilpart, N., Claessens, L., Groot, H. d., Wiebe, K., Mason-D’Croz, D., Yang, H., Boogaard, H., Oort, P. A. J. v., Loon, M. P. v., Saito, K., Adimo, O., Adjei-Nsiah, S., Agali, A., Bala, A., Chikowo, R., Kaizzi, K., Kouressy, M., Makoi, J. H. J. R., Ouattara, K., Tesfaye, K., and Cassman, K. G.: Can sub-Saharan Africa feed itself?, P. Natl. Acad. Sci. USA, 113, 14964–14969, https://doi.org/10.1073/pnas.1610359113,2016. a
Kallenbach, C. M., Frey, S. D., and Grandy, A. S.: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls, Nat. Commun., 7, 1–10, https://doi.org/10.1038/ncomms13630, 2016. a, b
Kamoni, P. T., Gicheru, P. T., Wokabi, S. M., Easter, M., Milne, E., Coleman, K., Falloon, P., and Paustian, K.: Predicted soil organic carbon stocks and changes in Kenya between 1990 and 2030, Agr. Ecosyst. Environ., 122, 105–113, https://doi.org/10.1016/j.agee.2007.01.024, 2007. a
Laub, M., Demyan, M. S., Nkwain, Y. F., Blagodatsky, S., Kätterer, T., Piepho, H.-p., and Cadisch, G.: DRIFTS band areas as measured pool size proxy to reduce parameter uncertainty in soil organic matter models, Biogeosciences, 17, 1393–1413, https://doi.org/10.5194/bg-17-1393-2020, 2020. a
Laub, M., Corbeels, M., Couëdel, A., Ndungu, S. M., Mucheru-Muna, M. W., Mugendi, D., Necpalova, M., Waswa, W., Van de Broek, M., Vanlauwe, B., and Six, J.: Managing soil organic carbon in tropical agroecosystems: evidence from four long-term experiments in Kenya, SOIL, 9, 301–323, https://doi.org/10.5194/soil-9-301-2023, 2023a. a, b, c, d, e, f, g, h, i
Laub, M., Corbeels, M., Mathu Ndungu, S., Mucheru-Muna, M. W., Mugendi, D., Necpalova, M., Van de Broek, M., Waswa, W., Vanlauwe, B., and Six, J.: Combining manure with mineral N fertilizer maintains maize yields: Evidence from four long-term experiments in Kenya, Field Crops Res., 291, 108788, https://doi.org/10.1016/j.fcr.2022.108788, 2023b. a, b, c, d
Laub, M., Blagodatsky, S., Van de Broek, M., Schlichenmaier, S., Kunlanit, B., Six, J., Vityakon, P., and Cadisch, G.: SAMM version 1.0: a numerical model for microbial- mediated soil aggregate formation, Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024, 2024. a, b, c
Lee, J., Hopmans, J. W., Rolston, D. E., Baer, S. G., and Six, J.: Determining soil carbon stock changes: Simple bulk density corrections fail, Agr. Ecosyst. Environ., 134, 251–256, https://doi.org/10.1016/j.agee.2009.07.006, 2009. a
Lee, J., Necpálová, M., and Six, J.: Biophysical potential of organic cropping practices as a sustainable alternative in Switzerland, Agr. Syst., 181, 102822, https://doi.org/10.1016/j.agsy.2020.102822, 2020. a, b
Leitner, S., Pelster, D. E., Werner, C., Merbold, L., Baggs, E. M., Mapanda, F., and Butterbach-Bahl, K.: Closing maize yield gaps in sub-Saharan Africa will boost soil N2O emissions, Current Opinion in Environ. Sustain., 47, 95–105, https://doi.org/10.1016/j.cosust.2020.08.018, 2020. a, b
Lemma, B., Williams, S., and Paustian, K.: Long term soil carbon sequestration potential of smallholder croplands in southern Ethiopia with DAYCENT model, J. Environ. Manag., 294, 112893, https://doi.org/10.1016/j.jenvman.2021.112893, 2021. a
Levavasseur, F., Mary, B., and Houot, S.: C and N dynamics with repeated organic amendments can be simulated with the STICS model, Nutr. Cycl. Agroecosys., 119, 103–121, https://doi.org/10.1007/s10705-020-10106-5, 2021. a
Levy, P. E., Cowan, N., van Oijen, M., Famulari, D., Drewer, J., and Skiba, U.: Estimation of cumulative fluxes of nitrous oxide: uncertainty in temporal upscaling and emission factors, Eur. J. Soil Sci., 68, 400–411, https://doi.org/10.1111/ejss.12432, 2017. a
Loague, K. and Green, R. E.: Statistical and graphical methods for evaluating solute transport models: Overview and application, J. Contamin. Hydrol., 7, 51–73, https://doi.org/10.1016/0169-7722(91)90038-3, 1991. a
Lobell, D. B., Bänziger, M., Magorokosho, C., and Vivek, B.: Nonlinear heat effects on African maize as evidenced by historical yield trials, Nat. Clim. Change, 1, 42–45, https://doi.org/10.1038/nclimate1043, 2011. a
Mainka, M., Summerauer, L., Wasner, D., Garland, G., Griepentrog, M., Berhe, A. A., and Doetterl, S.: Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence, Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, 2022. a
Mathers, C., Black, C. K., Segal, B. D., Gurung, R. B., Zhang, Y., Easter, M. J., Williams, S., Motew, M., Campbell, E. E., Brummitt, C. D., Paustian, K., and Kumar, A. A.: Validating DayCent-CR for cropland soil carbon offset reporting at a national scale, Geoderma, 438, 116647, https://doi.org/10.1016/j.geoderma.2023.116647, 2023. a, b, c, d, e
Mtangadura, T. J., Mtambanengwe, F., Nezomba, H., Rurinda, J., and Mapfumo, P.: Why organic resources and current fertilizer formulations in Southern Africa cannot sustain maize productivity: Evidence from a long-term experiment in Zimbabwe, PLOS ONE, 12, e0182840, https://doi.org/10.1371/journal.pone.0182840, 2017. a
Mueller, T., Jensen, L. S., Magid, J., and Nielsen, N. E.: Temporal variation of C and N turnover in soil after oilseed rape straw incorporation in the field: simulations with the soil-plant-atmosphere model DAISY, Ecol. Model., 99, 247–262, https://doi.org/10.1016/S0304-3800(97)01959-5, 1997. a
Mutuku, E. A., Roobroeck, D., Vanlauwe, B., Boeckx, P., and Cornelis, W. M.: Maize production under combined Conservation Agriculture and Integrated Soil Fertility Management in the sub-humid and semi-arid regions of Kenya, Field Crops Res., 254, 107833, https://doi.org/10.1016/j.fcr.2020.107833, 2020. a
Möhring, J. and Piepho, H.-P.: Comparison of Weighting in Two-Stage Analysis of Plant Breeding Trials, Crop Sci., 49, 1977–1988, https://doi.org/10.2135/cropsci2009.02.0083, 2009. a
Necpalova, M., Lee, J., Skinner, C., Büchi, L., Wittwer, R., Gattinger, A., van der Heijden, M., Mäder, P., Charles, R., Berner, A., Mayer, J., and Six, J.: Potentials to mitigate greenhouse gas emissions from Swiss agriculture, Agr. Ecosyst. Environ., 265, 84–102, https://doi.org/10.1016/j.agee.2018.05.013, 2018. a, b, c, d
Necpálová, M., Anex, R. P., Fienen, M. N., Del Grosso, S. J., Castellano, M. J., Sawyer, J. E., Iqbal, J., Pantoja, J. L., and Barker, D. W.: Understanding the DayCent model: Calibration, sensitivity, and identifiability through inverse modeling, Environ. Model. Softw., 66, 110–130, https://doi.org/10.1016/j.envsoft.2014.12.011, 2015. a, b, c, d, e
Nezomba, H., Mtambanengwe, F., Rurinda, J., and Mapfumo, P.: Integrated soil fertility management sequences for reducing climate risk in smallholder crop production systems in southern Africa, Field Crops Res., 224, 102–114, https://doi.org/10.1016/j.fcr.2018.05.003, 2018. a
Nyawira, S. S., Hartman, M. D., Nguyen, T. H., Margenot, A. J., Kihara, J., Paul, B. K., Williams, S., Bolo, P., and Sommer, R.: Simulating soil organic carbon in maize-based systems under improved agronomic management in Western Kenya, Soil Till. Res., 211, 105000, https://doi.org/10.1016/j.still.2021.105000, 2021. a, b, c, d
Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands, Soil Sci. Soc. Am. J., 51, 1173–1179, https://doi.org/10.2136/sssaj1987.03615995005100050015x, 1987. a
Parton, W. J., Hartman, M., Ojima, D., and Schimel, D.: DAYCENT and its land surface submodel: description and testing, Glob. Planet. Change, 19, 35–48, https://doi.org/10.1016/S0921-8181(98)00040-X, 1998. a
Pelster, D., Rufino, M., Rosenstock, T., Mango, J., Saiz, G., Diaz-Pines, E., Baldi, G., and Butterbach-Bahl, K.: Smallholder farms in eastern African tropical highlands have low soil greenhouse gas fluxes, Biogeosciences, 14, 187–202, https://doi.org/10.5194/bg-14-187-2017, 2017. a
Puttaso, A., Vityakon, P., Rasche, F., Saenjan, P., Treloges, V., and Cadisch, G.: Does Organic Residue Quality Influence Carbon Retention in a Tropical Sandy Soil?, Soil Sci. Soc. Am. J., 77, 1001–1001, https://doi.org/10.2136/sssaj2012.0209, 2013. a
Rattalino Edreira, J. I., Andrade, J. F., Cassman, K. G., van Ittersum, M. K., van Loon, M. P., and Grassini, P.: Spatial frameworks for robust estimation of yield gaps, Nature Food, 2, 773–779, https://doi.org/10.1038/s43016-021-00365-y, 2021. a
Reichenbach, M., Fiener, P., Garland, G., Griepentrog, M., Six, J., and Doetterl, S.: The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils, SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, 2021. a
Saito, K., Six, J., Komatsu, S., Snapp, S., Rosenstock, T., Arouna, A., Cole, S., Taulya, G., and Vanlauwe, B.: Agronomic gain: Definition, approach, and application, Field Crops Res., 270, 108193, https://doi.org/10.1016/j.fcr.2021.108193, 2021. a
Saltelli, A.: Making best use of model evaluations to compute sensitivity indices, Comput. Phys. Commun., 145, 280–297, https://doi.org/10.1016/S0010-4655(02)00280-1, 2002a. a
Saltelli, A.: Sensitivity Analysis for Importance Assessment, Risk Anal., 22, 579–590, https://doi.org/10.1111/0272-4332.00040, 2002b. a
Saxton, K. E. and Rawls, W. J.: Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions, Soil Sci. Soc. Am. J., 70, 1569–1578, https://doi.org/10.2136/sssaj2005.0117, 2006. a, b
Sommer, R., Paul, B. K., Mukalama, J., and Kihara, J.: Reducing losses but failing to sequester carbon in soils – the case of Conservation Agriculture and Integrated Soil Fertility Management in the humid tropical agro-ecosystem of Western Kenya, Agr. Ecosyst. Environ., 254, 82–91, https://doi.org/10.1016/j.agee.2017.11.004, 2018. a
Stella, T., Mouratiadou, I., Gaiser, T., Berg-Mohnicke, M., Wallor, E., Ewert, F., and Nendel, C.: Estimating the contribution of crop residues to soil organic carbon conservation, Environ. Res. Lett., 14, 094008–094008, https://doi.org/10.1088/1748-9326/ab395c, 2019. a
Tuszynski, J.: caTools: Tools: Moving Window Statistics, GIF, Base64, ROC AUC, etc., https://CRAN.R-project.org/package=caTools (last access: 19 August 2024), 2021. a
van Genuchten, M.: A comparison of numerical solutions of the one-dimensional unsaturated–saturated flow and mass transport equations, Adv. Water Res., 5, 47–55, https://doi.org/10.1016/0309-1708(82)90028-8, 1982. a
van Oijen, M.: Bayesian Compendium, Springer International Publishing, Cham, ISBN 978-3-030-55896-3 978-3-030-55897-0, https://doi.org/10.1007/978-3-030-55897-0, 2020. a
Vanlauwe, B., Bationo, A., Chianu, J., Giller, K., Merckx, R., Mokwunye, U., Ohiokpehai, O., Pypers, P., Tabo, R., Shepherd, K., Smaling, E., Woomer, P., and Sanginga, N.: Integrated Soil Fertility Management: Operational Definition and Consequences for Implementation and Dissemination, Outlook Agr., 39, 17–24, https://doi.org/10.5367/000000010791169998, 2010. a, b, c
Vanlauwe, B., Six, J., Laub, M., Mathu, S., and Mugendi, D.: ISFM/SOM long-term trials soil data, IITA [data set], https://doi.org/10.25502/wdh5-6c13/d, 2022a. a
Vanlauwe, B., Six, J., Laub, M., Mathu, S., and Mugendi, D.: ISFM/SOM long-term trials maize, IITA [data set], https://doi.org/10.25502/be9y-xh75/d, 2022b. a
Wang, Q., Barré, P., Baudin, F., Clivot, H., Ferchaud, F., Li, Y., Gao, X., and Le Noë, J.: The AMG model coupled with Rock-Eval® analysis accurately predicts cropland soil organic carbon dynamics in the Tuojiang River Basin, Southwest China, J. Environ. Manag., 345, 118850, https://doi.org/10.1016/j.jenvman.2023.118850, 2023. a
Wang, Y., Dou, F., Paustian, K. H., Grosso, S. J. D., Storlien, J. O., Wight, J. P., and Hons, F. M.: Simulating impacts of nitrogen fertilization using DAYCENT to optimize economic returns and environmental services from bioenergy sorghum production, Agron. J., 112, 4861–4878, https://doi.org/10.1002/agj2.20390, 2020. a
Wendt, J. W. and Hauser, S.: An equivalent soil mass procedure for monitoring soil organic carbon in multiple soil layers, Eur. J. Soil Sci., 64, 58–65, https://doi.org/10.1111/ejss.12002, 2013. a
World-Bank: Arable land (% of land area) – Kenya – Data, https://data.worldbank.org/indicator/AG.LND.ARBL.ZS?locations=KE (last access: 21 April 2021), 2021a. a
World-Bank: Prevalence of severe food insecurity in the population (%) – Kenya, World, Sub-Saharan Africa, Malawi – Data, https://data.worldbank.org/indicator/SN.ITK.SVFI.ZS?locations=KE-1W-ZG-MW (last access: 21 April 2021), 2021b. a
Xiao, Q., Huang, Y., Wu, L., Tian, Y., Wang, Q., Wang, B., Xu, M., and Zhang, W.: Long-term manuring increases microbial carbon use efficiency and mitigates priming effect via alleviated soil acidification and resource limitation, Biol. Fertil. Soil., 57, 925–934, https://doi.org/10.1007/s00374-021-01583-z, 2021. a
Yang, Y., Ogle, S., Grosso, S. D., Mueller, N., Spencer, S., and Ray, D.: Regionalizing crop types to enhance global ecosystem modeling of maize production, Environ. Res. Lett., 17, 014013, https://doi.org/10.1088/1748-9326/ac3f06, 2021. a, b, c, d
Zhai, R., Tao, F., Lall, U., and Elliott, J.: Africa Would Need to Import More Maize in the Future Even Under 1.5 °C Warming Scenario, Earth's Future, 9, e2020EF001574, https://doi.org/10.1029/2020EF001574, 2021. a
Zhang, Y. and Yu, Q.: Does agroecosystem model improvement increase simulation accuracy for agricultural N2O emissions?, Agr. Forest Meteorol., 297, 108281, https://doi.org/10.1016/j.agrformet.2020.108281, 2021. a
Zhou, W., Guan, K., Peng, B., Margenot, A., Lee, D., Tang, J., Jin, Z., Grant, R., DeLucia, E., Qin, Z., Wander, M. M., and Wang, S.: How does uncertainty of soil organic carbon stock affect the calculation of carbon budgets and soil carbon credits for croplands in the US Midwest?, Geoderma, 429, 116254, https://doi.org/10.1016/j.geoderma.2022.116254, 2023. a, b
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., and Fuhrer, J.: Measured soil organic matter fractions can be related to pools in the RothC model, Eur. J. Soil Sci., 58, 658–667, https://doi.org/10.1111/j.1365-2389.2006.00855.x, 2007. a
Short summary
We used the DayCent model to assess the potential impact of integrated soil fertility management (ISFM) on maize production, soil fertility, and greenhouse gas emission in Kenya. After adjustments, DayCent represented measured mean yields and soil carbon stock changes well and N2O emissions acceptably. Our results showed that soil fertility losses could be reduced but not completely eliminated with ISFM and that, while N2O emissions increased with ISFM, emissions per kilogram yield decreased.
We used the DayCent model to assess the potential impact of integrated soil fertility management...
Altmetrics
Final-revised paper
Preprint