Articles | Volume 21, issue 18
https://doi.org/10.5194/bg-21-4195-2024
https://doi.org/10.5194/bg-21-4195-2024
Research article
 | 
26 Sep 2024
Research article |  | 26 Sep 2024

Future projections of Siberian wildfire and aerosol emissions

Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata

Related authors

Process-based Modeling of Solar-induced Chlorophyll Fluorescence with VISIT-SIF version 1.0
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
EGUsphere, https://doi.org/10.5194/egusphere-2024-1542,https://doi.org/10.5194/egusphere-2024-1542, 2024
Short summary
Predicting dominant terrestrial biomes at a global scale using machine learning algorithms, climate variable indices, and extreme climate indices
Hisashi Sato
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-106,https://doi.org/10.5194/bg-2023-106, 2024
Preprint withdrawn
Short summary
Anthropogenic CO2 emission estimates in the Tokyo metropolitan area from ground-based CO2 column observations
Hirofumi Ohyama, Matthias M. Frey, Isamu Morino, Kei Shiomi, Masahide Nishihashi, Tatsuya Miyauchi, Hiroko Yamada, Makoto Saito, Masanobu Wakasa, Thomas Blumenstock, and Frank Hase
Atmos. Chem. Phys., 23, 15097–15119, https://doi.org/10.5194/acp-23-15097-2023,https://doi.org/10.5194/acp-23-15097-2023, 2023
Short summary
Modeling of non-structural carbohydrate dynamics by the spatially explicit individual-based dynamic global vegetation model SEIB-DGVM (SEIB-DGVM-NSC version 1.0)
Hideki Ninomiya, Tomomichi Kato, Lea Végh, and Lan Wu
Geosci. Model Dev., 16, 4155–4170, https://doi.org/10.5194/gmd-16-4155-2023,https://doi.org/10.5194/gmd-16-4155-2023, 2023
Short summary
Impact of changes in climate and CO2 on the carbon storage potential of vegetation under limited water availability using SEIB-DGVM version 3.02
Shanlin Tong, Weiguang Wang, Jie Chen, Chong-Yu Xu, Hisashi Sato, and Guoqing Wang
Geosci. Model Dev., 15, 7075–7098, https://doi.org/10.5194/gmd-15-7075-2022,https://doi.org/10.5194/gmd-15-7075-2022, 2022
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
Mechanisms of soil organic carbon and nitrogen stabilization in mineral-associated organic matter – insights from modeling in phase space
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024,https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024,https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024,https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
When and why microbial-explicit soil organic carbon models can be unstable
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024,https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024,https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary

Cited articles

Abaimov, A. P. and Sofronov, M. A.: The Main Trends of Post-Fire Succession in Near-Tundra Forests of Central Siberia, in: Fire in Ecosystems of Boreal Eurasia, edited by: Goldammer, J. G. and Furyaev, V. V., Forestry Sciences, vol 48, Springer, Dordrecht, 372–386, https://doi.org/10.1007/978-94-015-8737-2_33, 1996. 
Abaimov, A. P., Lesinski, J. A., Martinsson, O., and Milyutin, L. I.: Variability and ecology of Siberian larch species, Swedish Univ. of Agricultural Sciences, Umeaa (Sweden), Dept. of Silviculture, ISSN 0348-8969, 1998. 
Amiro, B. D., Cantin, A., Flannigan, M. D., and De Groot, W. J.: Future emissions from Canadian boreal forest fires, Can. J. Forest Res., 39, 383–395, https://doi.org/10.1139/X08-154, 2009. 
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019. 
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001. 
Download
Short summary
SPITFIRE (SPread and InTensity of FIRE) was integrated into a spatially explicit individual-based dynamic global vegetation model to improve the accuracy of depicting Siberian forest fire frequency, intensity, and extent. Fires showed increased greenhouse gas and aerosol emissions in 2006–2100 for Representative Concentration Pathways. This study contributes to understanding fire dynamics, land ecosystem–climate interactions, and global material cycles under the threat of escalating fires.
Altmetrics
Final-revised paper
Preprint