Articles | Volume 10, issue 12
https://doi.org/10.5194/bg-10-8329-2013
https://doi.org/10.5194/bg-10-8329-2013
Research article
 | 
16 Dec 2013
Research article |  | 16 Dec 2013

A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition

J. Y. Tang and W. J. Riley

Related authors

Large uncertainty in ecosystem carbon dynamics resulting from ambiguous numerical coupling of carbon and nitrogen biogeochemistry: A demonstration with the ACME land model
Jinyun Tang and William J. Riley
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-233,https://doi.org/10.5194/bg-2016-233, 2016
Preprint retracted
Technical Note: A generic law-of-the-minimum flux limiter for simulating substrate limitation in biogeochemical models
J. Y. Tang and W. J. Riley
Biogeosciences, 13, 723–735, https://doi.org/10.5194/bg-13-723-2016,https://doi.org/10.5194/bg-13-723-2016, 2016
Short summary
Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests
Q. Zhu, W. J. Riley, J. Tang, and C. D. Koven
Biogeosciences, 13, 341–363, https://doi.org/10.5194/bg-13-341-2016,https://doi.org/10.5194/bg-13-341-2016, 2016
Short summary
Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models
N. J. Bouskill, W. J. Riley, and J. Y. Tang
Biogeosciences, 11, 6969–6983, https://doi.org/10.5194/bg-11-6969-2014,https://doi.org/10.5194/bg-11-6969-2014, 2014
Technical Note: Simple formulations and solutions of the dual-phase diffusive transport for biogeochemical modeling
J. Y. Tang and W. J. Riley
Biogeosciences, 11, 3721–3728, https://doi.org/10.5194/bg-11-3721-2014,https://doi.org/10.5194/bg-11-3721-2014, 2014

Related subject area

Biogeochemistry: Modelling, Terrestrial
Estimates of critical loads and exceedances of acidity and nutrient nitrogen for mineral soils in Canada for 2014–2016 average annual sulfur and nitrogen atmospheric deposition
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
Biogeosciences, 22, 535–554, https://doi.org/10.5194/bg-22-535-2025,https://doi.org/10.5194/bg-22-535-2025, 2025
Short summary
Development of the DO3SE-Crop model to assess ozone effects on crop phenology, biomass, and yield
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
Biogeosciences, 22, 181–212, https://doi.org/10.5194/bg-22-181-2025,https://doi.org/10.5194/bg-22-181-2025, 2025
Short summary
Future methane fluxes of peatlands are controlled by management practices and fluctuations in hydrological conditions due to climatic variability
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024,https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary
Understanding and simulating cropland and non-cropland burning in Europe using the BASE (Burnt Area Simulator for Europe) model
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024,https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Representation of the terrestrial carbon cycle in CMIP6
Bettina K. Gier, Manuel Schlund, Pierre Friedlingstein, Chris D. Jones, Colin Jones, Sönke Zaehle, and Veronika Eyring
Biogeosciences, 21, 5321–5360, https://doi.org/10.5194/bg-21-5321-2024,https://doi.org/10.5194/bg-21-5321-2024, 2024
Short summary

Cited articles

Aber, J. D., Melillo, J. M., and Mcclaugherty, C. A.: Predicting long-term patterns of mass-loss, nitrogen dynamics, and soil organic-matter formation from initial fine litter chemistry in temperate forest ecosystems, Can. J. Bot., 68, 2201–2208, 1990.
Abrams, P. A. and Ginzburg, L. R.: The nature of predation: prey dependent, ratio dependent or neither?, Trends Ecol. Evol., 15, 337–341, https://doi.org/10.1016/S0169-5347(00)01908-X, 2000.
Allison, S. D.: A trait-based approach for modelling microbial litter decomposition, Ecol. Lett., 15, 1058–1070, https://doi.org/10.1111/j.1461-0248.2012.01807.x, 2012.
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/Ngeo846, 2010.
Andren, O. and Paustian, K.: Barley straw decomposition in the field – a comparison of models, Ecology, 68, 1190–1200, https://doi.org/10.2307/1939203, 1987.
Download
Share
Altmetrics
Final-revised paper
Preprint