Articles | Volume 10, issue 12
Biogeosciences, 10, 8329–8351, 2013
https://doi.org/10.5194/bg-10-8329-2013
Biogeosciences, 10, 8329–8351, 2013
https://doi.org/10.5194/bg-10-8329-2013

Research article 16 Dec 2013

Research article | 16 Dec 2013

A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition

J. Y. Tang and W. J. Riley

Related authors

Large uncertainty in ecosystem carbon dynamics resulting from ambiguous numerical coupling of carbon and nitrogen biogeochemistry: A demonstration with the ACME land model
Jinyun Tang and William J. Riley
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-233,https://doi.org/10.5194/bg-2016-233, 2016
Preprint retracted
Technical Note: A generic law-of-the-minimum flux limiter for simulating substrate limitation in biogeochemical models
J. Y. Tang and W. J. Riley
Biogeosciences, 13, 723–735, https://doi.org/10.5194/bg-13-723-2016,https://doi.org/10.5194/bg-13-723-2016, 2016
Short summary
Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests
Q. Zhu, W. J. Riley, J. Tang, and C. D. Koven
Biogeosciences, 13, 341–363, https://doi.org/10.5194/bg-13-341-2016,https://doi.org/10.5194/bg-13-341-2016, 2016
Short summary
Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models
N. J. Bouskill, W. J. Riley, and J. Y. Tang
Biogeosciences, 11, 6969–6983, https://doi.org/10.5194/bg-11-6969-2014,https://doi.org/10.5194/bg-11-6969-2014, 2014
Technical Note: Simple formulations and solutions of the dual-phase diffusive transport for biogeochemical modeling
J. Y. Tang and W. J. Riley
Biogeosciences, 11, 3721–3728, https://doi.org/10.5194/bg-11-3721-2014,https://doi.org/10.5194/bg-11-3721-2014, 2014

Related subject area

Biogeochemistry: Modelling, Terrestrial
Organic phosphorus cycling may control grassland responses to nitrogen deposition: a long-term field manipulation and modelling study
Christopher R. Taylor, Victoria Janes-Bassett, Gareth K. Phoenix, Ben Keane, Iain P. Hartley, and Jessica A. C. Davies
Biogeosciences, 18, 4021–4037, https://doi.org/10.5194/bg-18-4021-2021,https://doi.org/10.5194/bg-18-4021-2021, 2021
Short summary
A triple tree-ring constraint for tree growth and physiology in a global land surface model
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021,https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Simulating shrubs and their energy and carbon dioxide fluxes in Canada's Low Arctic with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021,https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Competing effects of nitrogen deposition and ozone exposure on northern hemispheric terrestrial carbon uptake and storage, 1850–2099
Martina Franz and Sönke Zaehle
Biogeosciences, 18, 3219–3241, https://doi.org/10.5194/bg-18-3219-2021,https://doi.org/10.5194/bg-18-3219-2021, 2021
Short summary
Carbonyl sulfide: comparing a mechanistic representation of the vegetation uptake in a land surface model and the leaf relative uptake approach
Fabienne Maignan, Camille Abadie, Marine Remaud, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Róisín Commane, Richard Wehr, J. Elliott Campbell, Sauveur Belviso, Stephen A. Montzka, Nina Raoult, Ulli Seibt, Yoichi P. Shiga, Nicolas Vuichard, Mary E. Whelan, and Philippe Peylin
Biogeosciences, 18, 2917–2955, https://doi.org/10.5194/bg-18-2917-2021,https://doi.org/10.5194/bg-18-2917-2021, 2021
Short summary

Cited articles

Aber, J. D., Melillo, J. M., and Mcclaugherty, C. A.: Predicting long-term patterns of mass-loss, nitrogen dynamics, and soil organic-matter formation from initial fine litter chemistry in temperate forest ecosystems, Can. J. Bot., 68, 2201–2208, 1990.
Abrams, P. A. and Ginzburg, L. R.: The nature of predation: prey dependent, ratio dependent or neither?, Trends Ecol. Evol., 15, 337–341, https://doi.org/10.1016/S0169-5347(00)01908-X, 2000.
Allison, S. D.: A trait-based approach for modelling microbial litter decomposition, Ecol. Lett., 15, 1058–1070, https://doi.org/10.1111/j.1461-0248.2012.01807.x, 2012.
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/Ngeo846, 2010.
Andren, O. and Paustian, K.: Barley straw decomposition in the field – a comparison of models, Ecology, 68, 1190–1200, https://doi.org/10.2307/1939203, 1987.
Download
Altmetrics
Final-revised paper
Preprint