Articles | Volume 12, issue 9
https://doi.org/10.5194/bg-12-2809-2015
https://doi.org/10.5194/bg-12-2809-2015
Research article
 | 
13 May 2015
Research article |  | 13 May 2015

Bayesian inversions of a dynamic vegetation model at four European grassland sites

J. Minet, E. Laloy, B. Tychon, and L. François

Related authors

Temporal stability of soil moisture patterns measured by proximal ground-penetrating radar
J. Minet, N. E. C. Verhoest, S. Lambot, and M. Vanclooster
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-4063-2013,https://doi.org/10.5194/hessd-10-4063-2013, 2013
Revised manuscript has not been submitted

Related subject area

Earth System Science/Response to Global Change: Climate Change
Global and regional hydrological impacts of global forest expansion
James A. King, James Weber, Peter Lawrence, Stephanie Roe, Abigail L. S. Swann, and Maria Val Martin
Biogeosciences, 21, 3883–3902, https://doi.org/10.5194/bg-21-3883-2024,https://doi.org/10.5194/bg-21-3883-2024, 2024
Short summary
The biological and preformed carbon pumps in perpetually slower and warmer oceans
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024,https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
The Southern Ocean as the climate's freight train – driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences, 21, 3053–3073, https://doi.org/10.5194/bg-21-3053-2024,https://doi.org/10.5194/bg-21-3053-2024, 2024
Short summary
Mapping the future afforestation distribution of China constrained by a national afforestation plan and climate change
Shuaifeng Song, Xuezhen Zhang, and Xiaodong Yan
Biogeosciences, 21, 2839–2858, https://doi.org/10.5194/bg-21-2839-2024,https://doi.org/10.5194/bg-21-2839-2024, 2024
Short summary
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024,https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary

Cited articles

Ammann, C., Flechard, C. R., Leifeld, J., Neftel, A., and Fuhrer, J.: The carbon budget of newly established temperate grassland depends on management intensity, Agr. Ecosyst. Environ., 121, 5–20, https://doi.org/10.1016/j.agee.2006.12.002, 2007.
Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, 173–209, 2012.
Ball, Woodrow, I., and Berry, J.: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions, in: Progress in Photosynthesis Research, edited by: Biggins, J., 221–224, Springer Netherlands, https://doi.org/10.1007/978-94-017-0519-6_48, 1987.
Balzarolo, M., Boussetta, S., Balsamo, G., Beljaars, A., Maignan, F., Calvet, J.-C., Lafont, S., Barbu, A., Poulter, B., Chevallier, F., Szczypta, C., and Papale, D.: Evaluating the potential of large-scale simulations to predict carbon fluxes of terrestrial ecosystems over a European Eddy Covariance network, Biogeosciences, 11, 2661–2678, https://doi.org/10.5194/bg-11-2661-2014, 2014.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Glob. Change Biol., 13, 679–706, https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007.
Download
Short summary
We probabilistically invert the CARAIB dynamic vegetation model using a Markov chain Monte Carlo sampler, considering both homoscedastic and heteroscedastic eddy covariance residual errors with variances either fixed a priori or jointly inferred with the model parameters. A model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors result in more robust posterior parameter distributions.
Altmetrics
Final-revised paper
Preprint