Articles | Volume 13, issue 9
Biogeosciences, 13, 2743–2755, 2016
https://doi.org/10.5194/bg-13-2743-2016

Special issue: Catastrophic reduction of sea ice in the Arctic Ocean...

Biogeosciences, 13, 2743–2755, 2016
https://doi.org/10.5194/bg-13-2743-2016

Research article 10 May 2016

Research article | 10 May 2016

Change in coccolith size and morphology due to response to temperature and salinity in coccolithophore Emiliania huxleyi (Haptophyta) isolated from the Bering and Chukchi seas

Kazuko Saruwatari et al.

Related authors

Wind-driven interannual variability of sea ice algal production in the western Arctic Chukchi Borderland
E. Watanabe, J. Onodera, N. Harada, M. N. Aita, A. Ishida, and M. J. Kishi
Biogeosciences, 12, 6147–6168, https://doi.org/10.5194/bg-12-6147-2015,https://doi.org/10.5194/bg-12-6147-2015, 2015
Short summary
Flux variations and vertical distributions of siliceous Rhizaria (Radiolaria and Phaeodaria) in the western Arctic Ocean: indices of environmental changes
T. Ikenoue, K. R. Bjørklund, S. B. Kruglikova, J. Onodera, K. Kimoto, and N. Harada
Biogeosciences, 12, 2019–2046, https://doi.org/10.5194/bg-12-2019-2015,https://doi.org/10.5194/bg-12-2019-2015, 2015
Diatom flux reflects water-mass conditions on the southern Northwind Abyssal Plain, Arctic Ocean
J. Onodera, E. Watanabe, N. Harada, and M. C. Honda
Biogeosciences, 12, 1373–1385, https://doi.org/10.5194/bg-12-1373-2015,https://doi.org/10.5194/bg-12-1373-2015, 2015

Related subject area

Biodiversity and Ecosystem Function: Marine
Effects of spatial variability on the exposure of fish to hypoxia: a modeling analysis for the Gulf of Mexico
Elizabeth D. LaBone, Kenneth A. Rose, Dubravko Justic, Haosheng Huang, and Lixia Wang
Biogeosciences, 18, 487–507, https://doi.org/10.5194/bg-18-487-2021,https://doi.org/10.5194/bg-18-487-2021, 2021
Short summary
Plant genotype determines biomass response to flooding frequency in tidal wetlands
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021,https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Factors controlling the competition between Phaeocystis and diatoms in the Southern Ocean and implications for carbon export fluxes
Cara Nissen and Meike Vogt
Biogeosciences, 18, 251–283, https://doi.org/10.5194/bg-18-251-2021,https://doi.org/10.5194/bg-18-251-2021, 2021
Short summary
Characterization of particle-associated and free-living bacterial and archaeal communities along the water columns of the South China Sea
Jiangtao Li, Lingyuan Gu, Shijie Bai, Jie Wang, Lei Su, Bingbing Wei, Li Zhang, and Jiasong Fang
Biogeosciences, 18, 113–133, https://doi.org/10.5194/bg-18-113-2021,https://doi.org/10.5194/bg-18-113-2021, 2021
Short summary
Adult life strategy affects distribution patterns in abyssal isopods – implications for conservation in Pacific nodule areas
Saskia Brix, Karen J. Osborn, Stefanie Kaiser, Sarit B. Truskey, Sarah M. Schnurr, Nils Brenke, Marina Malyutina, and Pedro Martinez Arbizu
Biogeosciences, 17, 6163–6184, https://doi.org/10.5194/bg-17-6163-2020,https://doi.org/10.5194/bg-17-6163-2020, 2020
Short summary

Cited articles

Bach, L. T., Bauke, C., Meier, K. J. S., Riebesell, U., and Schulz, K. G.: Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by Emiliania huxleyi, Biogeosciences, 9, 3449–3463, https://doi.org/10.5194/bg-9-3449-2012, 2012.
Beaufort, L., Probert, I., and Buchet, N.: Effects of acidification and primary production on coccolith weight: Implications for carbonate transfer from the surface to the deep ocean, Geochem. Geophy. Geosy., 8, Q08011, https://doi.org/10.1029/2006GC001493, 2007.
Beaufort, L., Probert, I., de Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R. E. M., and de Vargas, C.: Sensitivity of coccolithophores to carbonate chemistry and ocean acidification, Nature, 476, 80–83, https://doi.org/10.1038/nature10295, 2011.
Conte, M. H., Thompson, A., Lesley, D., and Harris, R. P.: Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceaniabout, Geochim. Cosmochim. Ac., 62, 51–68, https://doi.org/10.1016/S0016-7037(97)00327-X, 1998.
Cook, S. S., Whittock, L., Wright, S. W., and Hallegraeff, G. M.: Photosynthetic pigment and genetic differences between two Southern Ocean morphotypes of Emiliania huxleyi (Haptophyta), J. Phycol., 47, 615–626, https://doi.org/10.1111/j.1529-8817.2011.00992.x, 2011.
Download
Short summary
Coccolithophore Emiliania huxleyi (Haptophyta) strains collected from the subarctic North Pacific and Arctic oceans during the R/V MIRAI cruise in 2010 (MR10-05) were established as clone cultures. This is the first report of a detailed morphometric and morphological investigation of Arctic Ocean coccolithophore strains. Taken together, our results suggest that calcification productivity can be used to predict future oceanic environmental conditions in the polar regions.
Altmetrics
Final-revised paper
Preprint