Articles | Volume 13, issue 12
Biogeosciences, 13, 3549–3571, 2016
https://doi.org/10.5194/bg-13-3549-2016
Biogeosciences, 13, 3549–3571, 2016
https://doi.org/10.5194/bg-13-3549-2016
Research article
17 Jun 2016
Research article | 17 Jun 2016

Ecological controls on N2O emission in surface litter and near-surface soil of a managed grassland: modelling and measurements

Robert F. Grant et al.

Related authors

Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020,https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Modelling nitrification inhibitor effects on N2O emissions after fall- and spring-applied slurry by reducing nitrifier NH4+ oxidation rate
Robert F. Grant, Sisi Lin, and Guillermo Hernandez-Ramirez
Biogeosciences, 17, 2021–2039, https://doi.org/10.5194/bg-17-2021-2020,https://doi.org/10.5194/bg-17-2021-2020, 2020
Short summary
Large carbon cycle sensitivities to climate across a permafrost thaw gradient in subarctic Sweden
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, Virginia I. Rich, and Scott R. Saleska
The Cryosphere, 13, 647–663, https://doi.org/10.5194/tc-13-647-2019,https://doi.org/10.5194/tc-13-647-2019, 2019
Short summary
Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange
Mohammad Mezbahuddin, Robert F. Grant, and Lawrence B. Flanagan
Biogeosciences, 14, 5507–5531, https://doi.org/10.5194/bg-14-5507-2017,https://doi.org/10.5194/bg-14-5507-2017, 2017
Modelling effects of seasonal variation in water table depth on net ecosystem CO2 exchange of a tropical peatland
M. Mezbahuddin, R. F. Grant, and T. Hirano
Biogeosciences, 11, 577–599, https://doi.org/10.5194/bg-11-577-2014,https://doi.org/10.5194/bg-11-577-2014, 2014

Related subject area

Biogeochemistry: Modelling, Terrestrial
Modeling nitrous oxide emissions from agricultural soil incubation experiments using CoupModel
Jie Zhang, Wenxin Zhang, Per-Erik Jansson, and Søren O. Petersen
Biogeosciences, 19, 4811–4832, https://doi.org/10.5194/bg-19-4811-2022,https://doi.org/10.5194/bg-19-4811-2022, 2022
Short summary
Local-scale evaluation of the simulated interactions between energy, water and vegetation in ISBA, ORCHIDEE and a diagnostic model
Jan De Pue, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Manuela Balzarolo, Fabienne Maignan, and Françoise Gellens-Meulenberghs
Biogeosciences, 19, 4361–4386, https://doi.org/10.5194/bg-19-4361-2022,https://doi.org/10.5194/bg-19-4361-2022, 2022
Short summary
Implementation and initial calibration of carbon-13 soil organic matter decomposition in the Yasso model
Jarmo Mäkelä, Laura Arppe, Hannu Fritze, Jussi Heinonsalo, Kristiina Karhu, Jari Liski, Markku Oinonen, Petra Straková, and Toni Viskari
Biogeosciences, 19, 4305–4313, https://doi.org/10.5194/bg-19-4305-2022,https://doi.org/10.5194/bg-19-4305-2022, 2022
Short summary
The carbon budget of the managed grasslands of Great Britain – informed by earth observations
Vasileios Myrgiotis, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 19, 4147–4170, https://doi.org/10.5194/bg-19-4147-2022,https://doi.org/10.5194/bg-19-4147-2022, 2022
Short summary
Accounting for non-rainfall moisture and temperature improves litter decay model performance in a fog-dominated dryland system
J. Robert Logan, Kathe E. Todd-Brown, Kathryn M. Jacobson, Peter J. Jacobson, Roland Vogt, and Sarah E. Evans
Biogeosciences, 19, 4129–4146, https://doi.org/10.5194/bg-19-4129-2022,https://doi.org/10.5194/bg-19-4129-2022, 2022
Short summary

Cited articles

Ammann, C., Fléchard, C., Leifeld, J., Neftel, A., and Fuhrer, J.:. The carbon budget of newly established temperate grassland depends on management intensity, Agr. Ecosyst. Environ., 121, 5–20, 2007.
Ammann, C., Spirig, C., Leifeld, J., and Neftel, A.: Assessment of the nitrogen and carbon budget of two managed temperate grassland fields, Agr. Ecosyst. Environ., 133, 150–162, 2009.
Bessou, C., Mary, B., Léonard, J., Roussel, M., Gréhan, E., and Gabrielle, B.: Modelling soil compaction impacts on nitrous oxide emissions in arable fields, Eur. J. Soil Sci., 61, 348–363, 2010.
Betlach, M. R. and Tiedje, J. M.: Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl. Environ. Microb., 42, 1074–1084, 1981.
Chatskikh, D. D., Olesen, J. E., Berntsen, J., Regina, K., and Yamulki, S.: Simulation of effects of soils, climate and management on N2O emission from grasslands, Biogeochemistry, 76, 395–419, 2005.
Download
Short summary
The magnitude of N2O emissions from managed grasslands depends on weather and on harvesting and fertilizer practices. Modelling provides a means to predict these emissions under diverse weather and management types. In this modelling study, we show that N2O emissions depend on how weather affects temperatures and water contents of surface litter and near-surface soil. N2O emissions modelled from the grassland were increased by suboptimal harvesting practices, fertilizer timing and soil properties.
Altmetrics
Final-revised paper
Preprint