Articles | Volume 13, issue 12
https://doi.org/10.5194/bg-13-3549-2016
https://doi.org/10.5194/bg-13-3549-2016
Research article
 | 
17 Jun 2016
Research article |  | 17 Jun 2016

Ecological controls on N2O emission in surface litter and near-surface soil of a managed grassland: modelling and measurements

Robert F. Grant, Albrecht Neftel, and Pierluigi Calanca

Related authors

Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020,https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Modelling nitrification inhibitor effects on N2O emissions after fall- and spring-applied slurry by reducing nitrifier NH4+ oxidation rate
Robert F. Grant, Sisi Lin, and Guillermo Hernandez-Ramirez
Biogeosciences, 17, 2021–2039, https://doi.org/10.5194/bg-17-2021-2020,https://doi.org/10.5194/bg-17-2021-2020, 2020
Short summary
Large carbon cycle sensitivities to climate across a permafrost thaw gradient in subarctic Sweden
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, Virginia I. Rich, and Scott R. Saleska
The Cryosphere, 13, 647–663, https://doi.org/10.5194/tc-13-647-2019,https://doi.org/10.5194/tc-13-647-2019, 2019
Short summary
Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange
Mohammad Mezbahuddin, Robert F. Grant, and Lawrence B. Flanagan
Biogeosciences, 14, 5507–5531, https://doi.org/10.5194/bg-14-5507-2017,https://doi.org/10.5194/bg-14-5507-2017, 2017
Modelling effects of seasonal variation in water table depth on net ecosystem CO2 exchange of a tropical peatland
M. Mezbahuddin, R. F. Grant, and T. Hirano
Biogeosciences, 11, 577–599, https://doi.org/10.5194/bg-11-577-2014,https://doi.org/10.5194/bg-11-577-2014, 2014

Related subject area

Biogeochemistry: Modelling, Terrestrial
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024,https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Climate-based prediction of carbon fluxes from deadwood in Australia
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024,https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary
Integration of tree hydraulic processes and functional impairment to capture the drought resilience of a semiarid pine forest
Daniel Nadal-Sala, Rüdiger Grote, David Kraus, Uri Hochberg, Tamir Klein, Yael Wagner, Fedor Tatarinov, Dan Yakir, and Nadine K. Ruehr
Biogeosciences, 21, 2973–2994, https://doi.org/10.5194/bg-21-2973-2024,https://doi.org/10.5194/bg-21-2973-2024, 2024
Short summary
The effect of temperature on photosystem II efficiency across plant functional types and climate
Patrick Neri, Lianhong Gu, and Yang Song
Biogeosciences, 21, 2731–2758, https://doi.org/10.5194/bg-21-2731-2024,https://doi.org/10.5194/bg-21-2731-2024, 2024
Short summary
Modeling microbial carbon fluxes and stocks in global soils from 1901 to 2016
Liyuan He, Jorge L. Mazza Rodrigues, Melanie A. Mayes, Chun-Ta Lai, David A. Lipson, and Xiaofeng Xu
Biogeosciences, 21, 2313–2333, https://doi.org/10.5194/bg-21-2313-2024,https://doi.org/10.5194/bg-21-2313-2024, 2024
Short summary

Cited articles

Ammann, C., Fléchard, C., Leifeld, J., Neftel, A., and Fuhrer, J.:. The carbon budget of newly established temperate grassland depends on management intensity, Agr. Ecosyst. Environ., 121, 5–20, 2007.
Ammann, C., Spirig, C., Leifeld, J., and Neftel, A.: Assessment of the nitrogen and carbon budget of two managed temperate grassland fields, Agr. Ecosyst. Environ., 133, 150–162, 2009.
Bessou, C., Mary, B., Léonard, J., Roussel, M., Gréhan, E., and Gabrielle, B.: Modelling soil compaction impacts on nitrous oxide emissions in arable fields, Eur. J. Soil Sci., 61, 348–363, 2010.
Betlach, M. R. and Tiedje, J. M.: Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl. Environ. Microb., 42, 1074–1084, 1981.
Chatskikh, D. D., Olesen, J. E., Berntsen, J., Regina, K., and Yamulki, S.: Simulation of effects of soils, climate and management on N2O emission from grasslands, Biogeochemistry, 76, 395–419, 2005.
Download
Short summary
The magnitude of N2O emissions from managed grasslands depends on weather and on harvesting and fertilizer practices. Modelling provides a means to predict these emissions under diverse weather and management types. In this modelling study, we show that N2O emissions depend on how weather affects temperatures and water contents of surface litter and near-surface soil. N2O emissions modelled from the grassland were increased by suboptimal harvesting practices, fertilizer timing and soil properties.
Altmetrics
Final-revised paper
Preprint