Articles | Volume 14, issue 12
https://doi.org/10.5194/bg-14-2903-2017
https://doi.org/10.5194/bg-14-2903-2017
Research article
 | 
19 Jun 2017
Research article |  | 19 Jun 2017

OzFlux data: network integration from collection to curation

Peter Isaac, James Cleverly, Ian McHugh, Eva van Gorsel, Cacilia Ewenz, and Jason Beringer

Related authors

A comparison of gap-filling algorithms for eddy covariance fluxes and their drivers
Atbin Mahabbati, Jason Beringer, Matthias Leopold, Ian McHugh, James Cleverly, Peter Isaac, and Azizallah Izady
Geosci. Instrum. Method. Data Syst., 10, 123–140, https://doi.org/10.5194/gi-10-123-2021,https://doi.org/10.5194/gi-10-123-2021, 2021
Short summary
How representative are FLUXNET measurements of surface fluxes during temperature extremes?
Sophie V. J. van der Horst, Andrew J. Pitman, Martin G. De Kauwe, Anna Ukkola, Gab Abramowitz, and Peter Isaac
Biogeosciences, 16, 1829–1844, https://doi.org/10.5194/bg-16-1829-2019,https://doi.org/10.5194/bg-16-1829-2019, 2019
Short summary
Upside-down fluxes Down Under: CO2 net sink in winter and net source in summer in a temperate evergreen broadleaf forest
Alexandre A. Renchon, Anne Griebel, Daniel Metzen, Christopher A. Williams, Belinda Medlyn, Remko A. Duursma, Craig V. M. Barton, Chelsea Maier, Matthias M. Boer, Peter Isaac, David Tissue, Victor Resco de Dios, and Elise Pendall
Biogeosciences, 15, 3703–3716, https://doi.org/10.5194/bg-15-3703-2018,https://doi.org/10.5194/bg-15-3703-2018, 2018
Short summary
Preface: OzFlux: a network for the study of ecosystem carbon and water dynamics across Australia and New Zealand
Eva van Gorsel, James Cleverly, Jason Beringer, Helen Cleugh, Derek Eamus, Lindsay B. Hutley, Peter Isaac, and Suzanne Prober
Biogeosciences, 15, 349–352, https://doi.org/10.5194/bg-15-349-2018,https://doi.org/10.5194/bg-15-349-2018, 2018
Net ecosystem carbon exchange of a dry temperate eucalypt forest
Nina Hinko-Najera, Peter Isaac, Jason Beringer, Eva van Gorsel, Cacilia Ewenz, Ian McHugh, Jean-François Exbrayat, Stephen J. Livesley, and Stefan K. Arndt
Biogeosciences, 14, 3781–3800, https://doi.org/10.5194/bg-14-3781-2017,https://doi.org/10.5194/bg-14-3781-2017, 2017
Short summary

Related subject area

Biogeochemistry: Air - Land Exchange
Monitoring cropland daily carbon dioxide exchange at field scales with Sentinel-2 satellite imagery
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024,https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Compound soil and atmospheric drought (CSAD) events and CO2 fluxes of a mixed deciduous forest: the occurrence, impact, and temporal contribution of main drivers
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024,https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
The influence of plant water stress on vegetation–atmosphere exchanges: implications for ozone modelling
Tamara Emmerichs, Yen-Sen Lu, and Domenico Taraborrelli
Biogeosciences, 21, 3251–3269, https://doi.org/10.5194/bg-21-3251-2024,https://doi.org/10.5194/bg-21-3251-2024, 2024
Short summary
High interspecific variability in ice nucleation activity suggests pollen ice nucleators are incidental
Nina L. H. Kinney, Charles A. Hepburn, Matthew I. Gibson, Daniel Ballesteros, and Thomas F. Whale
Biogeosciences, 21, 3201–3214, https://doi.org/10.5194/bg-21-3201-2024,https://doi.org/10.5194/bg-21-3201-2024, 2024
Short summary
Using automated machine learning for the upscaling of gross primary productivity
Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan
Biogeosciences, 21, 2447–2472, https://doi.org/10.5194/bg-21-2447-2024,https://doi.org/10.5194/bg-21-2447-2024, 2024
Short summary

Cited articles

Abramowitz, G: Towards a benchmark for land surface models, Geophys. Res. Lett., 32, L22702, https://doi.org/10.1029/2005GL024419, 2005.
Abramowitz, G., Gupta, H., Pitman, A., Wang, Y., Leuning, R., Cleugh, H., and Hsu, K. L.: Neural Error Regression Diagnosis (NERD): A tool for model bias identification and prognostic data assimilation, J. Hydrometeorol., 7, 160–177, 2006.
Arndt, S.: Wombat State Forest OzFlux-tower site OzFlux: Australian and New Zealand Flux Research and Monitoring hdl: 102.100.100/14237, 2013.
Aubinet M: Eddy covariance CO2 flux measurements in nocturnal conditions: An analysis of the problem, Ecol. Appl., 18, 1368–1378, 2008.
Download
Short summary
Networks of flux towers present diverse challenges to data collectors, managers and users. For data collectors, the goal is to minimise the time spent producing usable data sets. For data managers, the challenge is making data available in a timely and broad manner. For data users, the quest is for consistency in data processing across sites and networks. The OzFlux data path was developed to address these disparate needs and serves as an example of intra- and inter-network integration.
Altmetrics
Final-revised paper
Preprint