Articles | Volume 15, issue 14
https://doi.org/10.5194/bg-15-4627-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-4627-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa
Nemesio J. Rodríguez-Fernández
CORRESPONDING AUTHOR
Centre d'Etudes Spatiales de la Biosphère (CESBIO),
Université de Toulouse, Centre National d'Etudes Spatiales (CNES),
Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Dévelopement (IRD),
Université Paul Sabatier, 18 av. Edouard Belin, bpi 2801, 31401 Toulouse, France
Arnaud Mialon
Centre d'Etudes Spatiales de la Biosphère (CESBIO),
Université de Toulouse, Centre National d'Etudes Spatiales (CNES),
Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Dévelopement (IRD),
Université Paul Sabatier, 18 av. Edouard Belin, bpi 2801, 31401 Toulouse, France
Stephane Mermoz
Centre d'Etudes Spatiales de la Biosphère (CESBIO),
Université de Toulouse, Centre National d'Etudes Spatiales (CNES),
Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Dévelopement (IRD),
Université Paul Sabatier, 18 av. Edouard Belin, bpi 2801, 31401 Toulouse, France
Alexandre Bouvet
Centre d'Etudes Spatiales de la Biosphère (CESBIO),
Université de Toulouse, Centre National d'Etudes Spatiales (CNES),
Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Dévelopement (IRD),
Université Paul Sabatier, 18 av. Edouard Belin, bpi 2801, 31401 Toulouse, France
Philippe Richaume
Centre d'Etudes Spatiales de la Biosphère (CESBIO),
Université de Toulouse, Centre National d'Etudes Spatiales (CNES),
Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Dévelopement (IRD),
Université Paul Sabatier, 18 av. Edouard Belin, bpi 2801, 31401 Toulouse, France
Ahmad Al Bitar
Centre d'Etudes Spatiales de la Biosphère (CESBIO),
Université de Toulouse, Centre National d'Etudes Spatiales (CNES),
Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Dévelopement (IRD),
Université Paul Sabatier, 18 av. Edouard Belin, bpi 2801, 31401 Toulouse, France
Amen Al-Yaari
Interactions Sol Plante Atmosphére (ISPA), Unité Mixte de Recherche 1391, Institut National de la Recherche Agronomique (INRA), CS 20032,
33882 Villenave d'Ornon CEDEX, France
Martin Brandt
Department of Geosciences and Natural Resources Management, University of Copenhagen, 1350 Copenhagen, Denmark
Thomas Kaminski
The inversion Lab, Martinistr. 21, 20251 Hamburg, Germany
Thuy Le Toan
Centre d'Etudes Spatiales de la Biosphère (CESBIO),
Université de Toulouse, Centre National d'Etudes Spatiales (CNES),
Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Dévelopement (IRD),
Université Paul Sabatier, 18 av. Edouard Belin, bpi 2801, 31401 Toulouse, France
Yann H. Kerr
Centre d'Etudes Spatiales de la Biosphère (CESBIO),
Université de Toulouse, Centre National d'Etudes Spatiales (CNES),
Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Dévelopement (IRD),
Université Paul Sabatier, 18 av. Edouard Belin, bpi 2801, 31401 Toulouse, France
Jean-Pierre Wigneron
Interactions Sol Plante Atmosphére (ISPA), Unité Mixte de Recherche 1391, Institut National de la Recherche Agronomique (INRA), CS 20032,
33882 Villenave d'Ornon CEDEX, France
Related authors
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 27, 1221–1242, https://doi.org/10.5194/hess-27-1221-2023, https://doi.org/10.5194/hess-27-1221-2023, 2023
Short summary
Short summary
We present an approach to estimate soil moisture (SM) at 1 km resolution using Sentinel-1 and Sentinel-3 satellites. The estimates were compared to other high-resolution (HR) datasets over Europe, northern Africa, Australia, and North America, showing good agreement. However, the discrepancies between the different HR datasets and their lower performances compared with in situ measurements and coarse-resolution datasets show the remaining challenges for large-scale HR SM mapping.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Clément Albergel, Yongjun Zheng, Bertrand Bonan, Emanuel Dutra, Nemesio Rodríguez-Fernández, Simon Munier, Clara Draper, Patricia de Rosnay, Joaquin Muñoz-Sabater, Gianpaolo Balsamo, David Fairbairn, Catherine Meurey, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 24, 4291–4316, https://doi.org/10.5194/hess-24-4291-2020, https://doi.org/10.5194/hess-24-4291-2020, 2020
Short summary
Short summary
LDAS-Monde is a global offline land data assimilation system (LDAS) that jointly assimilates satellite-derived observations of surface soil moisture (SSM) and leaf area index (LAI) into the ISBA (Interaction between Soil Biosphere and Atmosphere) land surface model (LSM). This study demonstrates that LDAS-Monde is able to detect, monitor and forecast the impact of extreme weather on land surface states.
Nemesio J. Rodríguez-Fernández, Joaquin Muñoz Sabater, Philippe Richaume, Patricia de Rosnay, Yann H. Kerr, Clement Albergel, Matthias Drusch, and Susanne Mecklenburg
Hydrol. Earth Syst. Sci., 21, 5201–5216, https://doi.org/10.5194/hess-21-5201-2017, https://doi.org/10.5194/hess-21-5201-2017, 2017
Short summary
Short summary
The new SMOS satellite near-real-time (NRT) soil moisture (SM) product based on a neural network is presented. The NRT SM product has been evaluated with respect to the SMOS Level 2 product and against a large number of in situ measurements showing performances similar to those of the Level 2 product but it is available in less than 3.5 h after sensing. The new product is distributed by the European Space Agency and the European Organisation for the Exploitation of Meteorological Satellites.
Ahmad Al Bitar, Arnaud Mialon, Yann H. Kerr, François Cabot, Philippe Richaume, Elsa Jacquette, Arnaud Quesney, Ali Mahmoodi, Stéphane Tarot, Marie Parrens, Amen Al-Yaari, Thierry Pellarin, Nemesio Rodriguez-Fernandez, and Jean-Pierre Wigneron
Earth Syst. Sci. Data, 9, 293–315, https://doi.org/10.5194/essd-9-293-2017, https://doi.org/10.5194/essd-9-293-2017, 2017
Short summary
Short summary
Surface soil moisture is a control variable for many processes linked to the water and carbon cycles. The global maps of soil moisture and brightness temperature using multiple orbits from the SMOS (Soil Moisture and Ocean Salinity) mission are presented in this paper. The maps showed an increased number of retrievals over forest areas (9 %) compared to single-orbit retrievals. The brightness temperature observations from the L-band missions SMOS (ESA) and SMAP (NASA) are close (bias < −4 K).
Shengli Tao, Zurui Ao, Jean-Pierre Wigneron, Sassan Saatchi, Philippe Ciais, Jérôme Chave, Thuy Le Toan, Pierre-Louis Frison, Xiaomei Hu, Chi Chen, Lei Fan, Mengjia Wang, Jiangling Zhu, Xia Zhao, Xiaojun Li, Xiangzhuo Liu, Yanjun Su, Tianyu Hu, Qinghua Guo, Zhiheng Wang, Zhiyao Tang, Yi Y. Liu, and Jingyun Fang
Earth Syst. Sci. Data, 15, 1577–1596, https://doi.org/10.5194/essd-15-1577-2023, https://doi.org/10.5194/essd-15-1577-2023, 2023
Short summary
Short summary
We provide the first long-term (since 1992), high-resolution (8.9 km) satellite radar backscatter data set (LHScat) with a C-band (5.3 GHz) signal dynamic for global lands. LHScat was created by fusing signals from ERS (1992–2001; C-band), QSCAT (1999–2009; Ku-band), and ASCAT (since 2007; C-band). LHScat has been validated against independent ERS-2 signals. It could be used in a variety of studies, such as vegetation monitoring and hydrological modelling.
Chenwei Xiao, Sönke Zaehle, Hui Yang, Jean-Pierre Wigneron, and Ana Bastos
EGUsphere, https://doi.org/10.5194/egusphere-2023-304, https://doi.org/10.5194/egusphere-2023-304, 2023
Short summary
Short summary
Ecosystem resistance reflects their susceptibility during adverse conditions and can be modulated by land management. We estimate ecosystem resistance to drought and heat globally. We find a higher resistance to drought in forests compared to croplands and an evident loss of resistance to drought when primary forests are converted to secondary forests. Old-growth trees tend to be more resistant than younger trees in some forests and crops benefit from irrigation during drought periods.
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 27, 1221–1242, https://doi.org/10.5194/hess-27-1221-2023, https://doi.org/10.5194/hess-27-1221-2023, 2023
Short summary
Short summary
We present an approach to estimate soil moisture (SM) at 1 km resolution using Sentinel-1 and Sentinel-3 satellites. The estimates were compared to other high-resolution (HR) datasets over Europe, northern Africa, Australia, and North America, showing good agreement. However, the discrepancies between the different HR datasets and their lower performances compared with in situ measurements and coarse-resolution datasets show the remaining challenges for large-scale HR SM mapping.
Taeken Wijmer, Ahmad Al Bitar, Ludovic Arnaud, Rémy Fieuzal, and Eric Ceschia
EGUsphere, https://doi.org/10.5194/egusphere-2023-48, https://doi.org/10.5194/egusphere-2023-48, 2023
Short summary
Short summary
Quantification of Carbon fluxes of crops is an essential brick for the construction of a Monitoring, Reporting and Verification approach. We developed an end-to-end platform (AgriCarbon-EO) that assimilates through an efficient Bayesian approach, high resolution (10 m) optical remote sensing data into radiative transfer and crop modelling at regional scale (100 x 100 km). Large-scale estimates of carbon flux are validated against in-situ flux towers, yield maps, and analysed at regional scale.
Chiara Corbari, Nicola Paciolla, Giada Restuccia, and Ahmad Al Bitar
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-260, https://doi.org/10.5194/nhess-2022-260, 2022
Revised manuscript under review for NHESS
Short summary
Short summary
We developed an EO-based agricultural drought index (ADMOS) for irrigation management. ADMOS identifies drought levels using rainfall, soil moisture, surface temperature and vegetation anomalies from multiple satellite data. ADMOS was tested in two Italian areas, diverse in climate, crop and irrigation. In one, ADMOS and irrigation volumes were negatively correlated; while in the other, no correlation was found, because the same irrigation is applied every year.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Roiya Souissi, Mehrez Zribi, Chiara Corbari, Marco Mancini, Sekhar Muddu, Sat Kumar Tomer, Deepti B. Upadhyaya, and Ahmad Al Bitar
Hydrol. Earth Syst. Sci., 26, 3263–3297, https://doi.org/10.5194/hess-26-3263-2022, https://doi.org/10.5194/hess-26-3263-2022, 2022
Short summary
Short summary
In this study, we investigate the combination of surface soil moisture information with process-related features, namely, evaporation efficiency, soil water index and normalized difference vegetation index, using artificial neural networks to predict root-zone soil moisture. The joint use of process-related features yielded more accurate predictions in the case of arid and semiarid conditions. However, they have no to little added value in temperate to tropical conditions.
M. C. A. Picoli, J. Radoux, X. Tong, A. Bey, P. Rufin, M. Brandt, R. Fensholt, and P. Meyfroidt
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 975–981, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-975-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-975-2022, 2022
Guillaume Marie, B. Sebastiaan Luyssaert, Cecile Dardel, Thuy Le Toan, Alexandre Bouvet, Stéphane Mermoz, Ludovic Villard, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 15, 2599–2617, https://doi.org/10.5194/gmd-15-2599-2022, https://doi.org/10.5194/gmd-15-2599-2022, 2022
Short summary
Short summary
Most Earth system models make use of vegetation maps to initialize a simulation at global scale. Satellite-based biomass map estimates for Africa were used to estimate cover fractions for the 15 land cover classes. This study successfully demonstrates that satellite-based biomass maps can be used to better constrain vegetation maps. Applying this approach at the global scale would increase confidence in assessments of present-day biomass stocks.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Hiroki Mizuochi, Agnès Ducharne, Frédérique Cheruy, Josefine Ghattas, Amen Al-Yaari, Jean-Pierre Wigneron, Vladislav Bastrikov, Philippe Peylin, Fabienne Maignan, and Nicolas Vuichard
Hydrol. Earth Syst. Sci., 25, 2199–2221, https://doi.org/10.5194/hess-25-2199-2021, https://doi.org/10.5194/hess-25-2199-2021, 2021
Clément Albergel, Yongjun Zheng, Bertrand Bonan, Emanuel Dutra, Nemesio Rodríguez-Fernández, Simon Munier, Clara Draper, Patricia de Rosnay, Joaquin Muñoz-Sabater, Gianpaolo Balsamo, David Fairbairn, Catherine Meurey, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 24, 4291–4316, https://doi.org/10.5194/hess-24-4291-2020, https://doi.org/10.5194/hess-24-4291-2020, 2020
Short summary
Short summary
LDAS-Monde is a global offline land data assimilation system (LDAS) that jointly assimilates satellite-derived observations of surface soil moisture (SSM) and leaf area index (LAI) into the ISBA (Interaction between Soil Biosphere and Atmosphere) land surface model (LSM). This study demonstrates that LDAS-Monde is able to detect, monitor and forecast the impact of extreme weather on land surface states.
Jérémy Guilhen, Ahmad Al Bitar, Sabine Sauvage, Marie Parrens, Jean-Michel Martinez, Gwenael Abril, Patricia Moreira-Turcq, and José-Miguel Sánchez-Pérez
Biogeosciences, 17, 4297–4311, https://doi.org/10.5194/bg-17-4297-2020, https://doi.org/10.5194/bg-17-4297-2020, 2020
Short summary
Short summary
The quantity of greenhouse gases (GHGs) released to the atmosphere by human industries and agriculture, such as carbon dioxide (CO2) and nitrous oxide (N2O), has been constantly increasing for the last few decades.
This work develops a methodology which makes consistent both satellite observations and modelling of the Amazon basin to identify and quantify the role of wetlands in GHG emissions. We showed that these areas produce non-negligible emissions and are linked to land use.
Marion Leduc-Leballeur, Ghislain Picard, Giovanni Macelloni, Arnaud Mialon, and Yann H. Kerr
The Cryosphere, 14, 539–548, https://doi.org/10.5194/tc-14-539-2020, https://doi.org/10.5194/tc-14-539-2020, 2020
Short summary
Short summary
To study the coast and ice shelves affected by melt in Antarctica during the austral summer, we exploited the 1.4 GHz radiometric satellite observations. We showed that this frequency provides additional information on melt occurrence and on the location of the water in the snowpack compared to the 19 GHz observations. This opens an avenue for improving the melting season monitoring with a combination of both frequencies and exploring the possibility of deep-water detection in the snowpack.
S. Ferrant, A. Selles, M. Le Page, A. AlBitar, S. Mermoz, S. Gascoin, A. Bouvet, S. Ahmed, and Y. Kerr
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W6, 285–292, https://doi.org/10.5194/isprs-archives-XLII-3-W6-285-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W6-285-2019, 2019
Thomas Kaminski, Frank Kauker, Leif Toudal Pedersen, Michael Voßbeck, Helmuth Haak, Laura Niederdrenk, Stefan Hendricks, Robert Ricker, Michael Karcher, Hajo Eicken, and Ola Gråbak
The Cryosphere, 12, 2569–2594, https://doi.org/10.5194/tc-12-2569-2018, https://doi.org/10.5194/tc-12-2569-2018, 2018
Short summary
Short summary
We present mathematically rigorous assessments of the observation impact (added value) of remote-sensing products and in terms of the uncertainty reduction in a 4-week forecast of sea ice volume and snow volume for three regions along the Northern Sea Route by a coupled model of the sea-ice–ocean system. We quantify the difference in impact between rawer (freeboard) and higher-level (sea ice thickness) products, and the impact of adding a snow depth product.
Wenmin Zhang, Martin Brandt, Xiaoye Tong, Qingjiu Tian, and Rasmus Fensholt
Biogeosciences, 15, 319–330, https://doi.org/10.5194/bg-15-319-2018, https://doi.org/10.5194/bg-15-319-2018, 2018
Thomas Kaminski and Peter Julian Rayner
Biogeosciences, 14, 4755–4766, https://doi.org/10.5194/bg-14-4755-2017, https://doi.org/10.5194/bg-14-4755-2017, 2017
Short summary
Short summary
Observations can reduce uncertainties in past, current, and predicted natural and anthropogenic CO2 fluxes. They provide independent information for verification of actions as requested by the Paris Agreement. Quantitative network design (QND) is an objective approach to optimise in situ networks and space missions to achieve an optimal use of the observational capabilities. We describe recent progress and advocate an integrated QND system that simultaneously evaluates multiple data streams.
Nemesio J. Rodríguez-Fernández, Joaquin Muñoz Sabater, Philippe Richaume, Patricia de Rosnay, Yann H. Kerr, Clement Albergel, Matthias Drusch, and Susanne Mecklenburg
Hydrol. Earth Syst. Sci., 21, 5201–5216, https://doi.org/10.5194/hess-21-5201-2017, https://doi.org/10.5194/hess-21-5201-2017, 2017
Short summary
Short summary
The new SMOS satellite near-real-time (NRT) soil moisture (SM) product based on a neural network is presented. The NRT SM product has been evaluated with respect to the SMOS Level 2 product and against a large number of in situ measurements showing performances similar to those of the Level 2 product but it is available in less than 3.5 h after sensing. The new product is distributed by the European Space Agency and the European Organisation for the Exploitation of Meteorological Satellites.
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Abbas Fayad, Simon Gascoin, Ghaleb Faour, Pascal Fanise, Laurent Drapeau, Janine Somma, Ali Fadel, Ahmad Al Bitar, and Richard Escadafal
Earth Syst. Sci. Data, 9, 573–587, https://doi.org/10.5194/essd-9-573-2017, https://doi.org/10.5194/essd-9-573-2017, 2017
Short summary
Short summary
Snowmelt plays a key role in the replenishment of the karst groundwater in Lebanon. The proper estimation of the water contained in the snowpack is one of Lebanon's most challenging questions. In this paper, we present continuous meteorological and snow course observations for the first time in the snow-dominated regions of Mount Lebanon. This new dataset can be used to feed an advanced snowpack model and is the first step towards a better evaluation of the snowmelt in Lebanon.
Ahmad Al Bitar, Arnaud Mialon, Yann H. Kerr, François Cabot, Philippe Richaume, Elsa Jacquette, Arnaud Quesney, Ali Mahmoodi, Stéphane Tarot, Marie Parrens, Amen Al-Yaari, Thierry Pellarin, Nemesio Rodriguez-Fernandez, and Jean-Pierre Wigneron
Earth Syst. Sci. Data, 9, 293–315, https://doi.org/10.5194/essd-9-293-2017, https://doi.org/10.5194/essd-9-293-2017, 2017
Short summary
Short summary
Surface soil moisture is a control variable for many processes linked to the water and carbon cycles. The global maps of soil moisture and brightness temperature using multiple orbits from the SMOS (Soil Moisture and Ocean Salinity) mission are presented in this paper. The maps showed an increased number of retrievals over forest areas (9 %) compared to single-orbit retrievals. The brightness temperature observations from the L-band missions SMOS (ESA) and SMAP (NASA) are close (bias < −4 K).
Thomas Kaminski, Bernard Pinty, Michael Voßbeck, Maciej Lopatka, Nadine Gobron, and Monica Robustelli
Biogeosciences, 14, 2527–2541, https://doi.org/10.5194/bg-14-2527-2017, https://doi.org/10.5194/bg-14-2527-2017, 2017
Short summary
Short summary
We present the Joint Research Centre Two-stream Inversion Package (JRC-TIP) for retrieval of variables characterising the state of the vegetation–soil system. The system provides a set of land surface variables that satisfy all requirements for assimilation into the land component of climate and numerical weather prediction models.
Thomas Kaminski and Pierre-Philippe Mathieu
Biogeosciences, 14, 2343–2357, https://doi.org/10.5194/bg-14-2343-2017, https://doi.org/10.5194/bg-14-2343-2017, 2017
Short summary
Short summary
This paper provides the formalism and examples of how observation operators can be used, in combination with data assimilation or retrieval techniques, to better ingest satellite products in a manner consistent with the dynamics of the Earth system expressed by models.
Sander Houweling, Peter Bergamaschi, Frederic Chevallier, Martin Heimann, Thomas Kaminski, Maarten Krol, Anna M. Michalak, and Prabir Patra
Atmos. Chem. Phys., 17, 235–256, https://doi.org/10.5194/acp-17-235-2017, https://doi.org/10.5194/acp-17-235-2017, 2017
Short summary
Short summary
The aim of this paper is to present an overview of inverse modeling methods, developed over the years, for estimating the global sources and sinks of the greenhouse gas methane from atmospheric measurements. It provides insight into how techniques and estimates have evolved over time, what the remaining shortcomings are, new developments, and promising future directions.
Gregor J. Schürmann, Thomas Kaminski, Christoph Köstler, Nuno Carvalhais, Michael Voßbeck, Jens Kattge, Ralf Giering, Christian Rödenbeck, Martin Heimann, and Sönke Zaehle
Geosci. Model Dev., 9, 2999–3026, https://doi.org/10.5194/gmd-9-2999-2016, https://doi.org/10.5194/gmd-9-2999-2016, 2016
Short summary
Short summary
We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS). The system improves the modelled carbon cycle of the terrestrial biosphere by systematically confronting (or assimilating) the model with observations of atmospheric CO2 and fractions of absorbed photosynthetically active radiation. Jointly assimilating both data streams outperforms the single-data stream experiments, thus showing the value of a multi-data stream assimilation.
Tongxi Hu, Tianjie Zhao, Jiancheng Shi, Tianxing Wang, Dabin Ji, Ahmad Al Bitar, Bin Peng, and Yurong Cui
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-115, https://doi.org/10.5194/tc-2016-115, 2016
Revised manuscript not accepted
Short summary
Short summary
We present an approach of satellite remote sensing to derive a continuous long term and stable data record of the near-surface freeze/thaw cycle over the permafrost and seasonally frozen ground. We find that the distribution of the frost days and its trend variations are consistent with the minimum temperature anomalies. Analysis over the Qinghai-Tibetan Plateau demonstrates that the frost period is shortening slightly over the past decade, and the last frost date is advanced in most regions.
Dmitry A. Belikov, Shamil Maksyutov, Alexey Yaremchuk, Alexander Ganshin, Thomas Kaminski, Simon Blessing, Motoki Sasakawa, Angel J. Gomez-Pelaez, and Alexander Starchenko
Geosci. Model Dev., 9, 749–764, https://doi.org/10.5194/gmd-9-749-2016, https://doi.org/10.5194/gmd-9-749-2016, 2016
T. Kaminski, F. Kauker, H. Eicken, and M. Karcher
The Cryosphere, 9, 1721–1733, https://doi.org/10.5194/tc-9-1721-2015, https://doi.org/10.5194/tc-9-1721-2015, 2015
Short summary
Short summary
We present a quantitative network design study of the Arctic sea ice-ocean system. For a demonstration, we evaluate two idealised hypothetical flight transects derived from NASA’s Operation IceBridge airborne ice surveys in terms of their potential to improve 10-day to 5-month sea ice forecasts. Our analysis quantifies the benefits of sampling upstream of the target area and of reducing the sampling uncertainty. It further quantifies the complementarity of combining two flight transects.
S. Kemp, M. Scholze, T. Ziehn, and T. Kaminski
Geosci. Model Dev., 7, 1609–1619, https://doi.org/10.5194/gmd-7-1609-2014, https://doi.org/10.5194/gmd-7-1609-2014, 2014
W. Knorr, T. Kaminski, A. Arneth, and U. Weber
Biogeosciences, 11, 1085–1102, https://doi.org/10.5194/bg-11-1085-2014, https://doi.org/10.5194/bg-11-1085-2014, 2014
Related subject area
Biogeochemistry: Modelling, Terrestrial
Information content in time series of litter decomposition studies and the transit time of litter in arid lands
Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China
Towards an ensemble-based evaluation of land surface models in light of uncertain forcings and observations
Effect of land-use legacy on the future carbon sink for the conterminous US
Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: a process-based biogeochemistry model analysis
Improved representation of phosphorus exchange on soil mineral surfaces reduces estimates of phosphorus limitation in temperate forest ecosystems
Improved process representation of leaf phenology significantly shifts climate sensitivity of ecosystem carbon balance
A coupled ground heat flux–surface energy balance model of evaporation using thermal remote sensing observations
Optimizing the Carbonic Anhydrase temperature response and stomatal conductance of carbonyl sulfide leaf uptake in the simple biosphere model (SiB4)
Modeling nitrous oxide emissions from agricultural soil incubation experiments using CoupModel
Mapping of ESA-CCI land cover data to plant functional types for use in the CLASSIC land model
Key drivers of the annual carbon budget of biocrusts from various climatic zones determined with a mechanistic data-driven model
Local-scale evaluation of the simulated interactions between energy, water and vegetation in ISBA, ORCHIDEE and a diagnostic model
Implementation and initial calibration of carbon-13 soil organic matter decomposition in the Yasso model
Potassium-limitation of forest productivity, part 1: A mechanistic model simulating the effects of potassium availability on canopy carbon and water fluxes in tropical eucalypt stands
Potassium-limitation of forest productivity, part 2: CASTANEA-MAESPA-K shows a reduction in photosynthesis rather than a stoichiometric limitation of tissue formation
The carbon budget of the managed grasslands of Great Britain – informed by earth observations
Accounting for non-rainfall moisture and temperature improves litter decay model performance in a fog-dominated dryland system
Assessing carbon storage capacity and saturation across six central US grasslands using data-model integration
Ideas and perspectives: Allocation of carbon from net primary production in models is inconsistent with observations of the age of respired carbon
Exploring the role of bedrock representation on plant transpiration response during dry periods at four forested sites in Europe
Effects of climate change in European croplands and grasslands: productivity, greenhouse gas balance and soil carbon storage
Assimilation of passive microwave vegetation optical depth in LDAS-Monde: a case study over the continental USA
Global modelling of soil carbonyl sulfide exchanges
Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss, and crop production – a modelling study in eastern Africa
The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition
Exploring the impacts of unprecedented climate extremes on forest ecosystems: hypotheses to guide modeling and experimental studies
Effect of droughts on future weathering rates in Sweden
Resolving temperature limitation on spring productivity in an evergreen conifer forest using a model–data fusion framework
A robust initialization method for accurate soil organic carbon simulations
Evaluation of carbonyl sulfide biosphere exchange in the Simple Biosphere Model (SiB4)
Model simulations of arctic biogeochemistry and permafrost extent are highly sensitive to the implemented snow scheme in LPJ-GUESS
Theoretical insights from upscaling Michaelis–Menten microbial dynamics in biogeochemical models: a dimensionless approach
Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change
An improved process-oriented hydro-biogeochemical model for simulating dynamic fluxes of methane and nitrous oxide in alpine ecosystems with seasonally frozen soils
A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF)
Organic phosphorus cycling may control grassland responses to nitrogen deposition: a long-term field manipulation and modelling study
A triple tree-ring constraint for tree growth and physiology in a global land surface model
Simulating shrubs and their energy and carbon dioxide fluxes in Canada's Low Arctic with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)
Competing effects of nitrogen deposition and ozone exposure on northern hemispheric terrestrial carbon uptake and storage, 1850–2099
Carbonyl sulfide: comparing a mechanistic representation of the vegetation uptake in a land surface model and the leaf relative uptake approach
Optimal model complexity for terrestrial carbon cycle prediction
CO2 physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon
Plant phenology evaluation of CRESCENDO land surface models – Part 1: Start and end of the growing season
Understanding the effect of fire on vegetation composition and gross primary production in a semi-arid shrubland ecosystem using the Ecosystem Demography (EDv2.2) model
Impacts of fertilization on grassland productivity and water quality across the European Alps under current and warming climate: insights from a mechanistic model
The climate benefit of carbon sequestration
Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2
Improving the representation of high-latitude vegetation distribution in dynamic global vegetation models
Robust processing of airborne laser scans to plant area density profiles
Agustín Sarquis and Carlos A. Sierra
Biogeosciences, 20, 1759–1771, https://doi.org/10.5194/bg-20-1759-2023, https://doi.org/10.5194/bg-20-1759-2023, 2023
Short summary
Short summary
Although plant litter is chemically and physically heterogenous and undergoes multiple transformations, models that represent litter dynamics often ignore this complexity. We used a multi-model inference framework to include information content in litter decomposition datasets and studied the time it takes for litter to decompose as measured by the transit time. In arid lands, the median transit time of litter is about 3 years and has a negative correlation with mean annual temperature.
Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers
Biogeosciences, 20, 1635–1648, https://doi.org/10.5194/bg-20-1635-2023, https://doi.org/10.5194/bg-20-1635-2023, 2023
Short summary
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
Vivek K. Arora, Christian Seiler, Libo Wang, and Sian Kou-Giesbrecht
Biogeosciences, 20, 1313–1355, https://doi.org/10.5194/bg-20-1313-2023, https://doi.org/10.5194/bg-20-1313-2023, 2023
Short summary
Short summary
The behaviour of natural systems is now very often represented through mathematical models. These models represent our understanding of how nature works. Of course, nature does not care about our understanding. Since our understanding is not perfect, evaluating models is challenging, and there are uncertainties. This paper illustrates this uncertainty for land models and argues that evaluating models in light of the uncertainty in various components provides useful information.
Benjamin S. Felzer
Biogeosciences, 20, 573–587, https://doi.org/10.5194/bg-20-573-2023, https://doi.org/10.5194/bg-20-573-2023, 2023
Short summary
Short summary
The future of the terrestrial carbon sink depends upon the legacy of past land use, which determines the stand age of the forest and nutrient levels in the soil, both of which affect vegetation growth. This study uses a modeling approach to determine the effects of land-use legacy in the conterminous US from 1750 to 2099. Not accounting for land legacy results in a low carbon sink and high biomass, while water variables are not as highly affected.
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023, https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary
Short summary
In this study, we use a process-based model to simulate the northern peatland's C dynamics in response to future climate change during 1990–2300. Northern peatlands are projected to be a C source under all climate scenarios except for the mildest one before 2100 and C sources under all scenarios afterwards.
We find northern peatlands are a C sink until pan-Arctic annual temperature reaches −2.09 to −2.89 °C. This study emphasizes the vulnerability of northern peatlands to climate change.
Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Biogeosciences, 20, 57–73, https://doi.org/10.5194/bg-20-57-2023, https://doi.org/10.5194/bg-20-57-2023, 2023
Short summary
Short summary
In this study, we addressed a key weakness in current ecosystem models regarding the phosphorus exchange in the soil and developed a new scheme to describe this process. We showed that the new scheme improved the model performance for plant productivity, soil organic carbon, and soil phosphorus content at five beech forest sites in Germany. We claim that this new model could be used as a better tool to study ecosystems under future climate change, particularly phosphorus-limited systems.
Alexander J. Norton, A. Anthony Bloom, Nicholas C. Parazoo, Paul A. Levine, Shuang Ma, Renato K. Braghiere, and Luke T. Smallman
EGUsphere, https://doi.org/10.5194/egusphere-2022-1265, https://doi.org/10.5194/egusphere-2022-1265, 2022
Short summary
Short summary
This study explores how the representation of leaf phenology affects our ability to predict changes to the carbon balance of land ecosystems. We calibrate a new leaf phenology model against a diverse range of observations at six forest sites, showing that it improves the predictive capability of the processes underlying the ecosystem carbon balance. We then show how changes in temperature and rainfall affect the ecosystem carbon balance with this new model.
Bimal K. Bhattacharya, Kaniska Mallick, Devansh Desai, Ganapati S. Bhat, Ross Morrison, Jamie R. Clevery, William Woodgate, Jason Beringer, Kerry Cawse-Nicholson, Siyan Ma, Joseph Verfaillie, and Dennis Baldocchi
Biogeosciences, 19, 5521–5551, https://doi.org/10.5194/bg-19-5521-2022, https://doi.org/10.5194/bg-19-5521-2022, 2022
Short summary
Short summary
Evaporation retrieval in heterogeneous ecosystems is challenging due to empirical estimation of ground heat flux and complex parameterizations of conductances. We developed a parameter-sparse coupled ground heat flux-evaporation model and tested it across different limits of water stress and vegetation fraction in the Northern/Southern Hemisphere. The model performed particularly well in the savannas and showed good potential for evaporative stress monitoring from thermal infrared satellites.
Ara Cho, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Richard Wehr, and Maarten C. Krol
EGUsphere, https://doi.org/10.5194/egusphere-2022-1305, https://doi.org/10.5194/egusphere-2022-1305, 2022
Short summary
Short summary
Carbonyl Sulfide (COS) is a useful constraint on photosynthesis. To simulate COS leaf flux better in the SiB4 model, we propose a new temperature function for the enzyme carbonic anhydrase (CA) and optimize conductances using observations. CA has an optimum temperature below 40 °C, which can be influenced critically by air temperature changes. It brings tropics a smaller and higher latitudes a larger uptake. This update helps resolve gaps in the COS budget identified in earlier studies.
Jie Zhang, Wenxin Zhang, Per-Erik Jansson, and Søren O. Petersen
Biogeosciences, 19, 4811–4832, https://doi.org/10.5194/bg-19-4811-2022, https://doi.org/10.5194/bg-19-4811-2022, 2022
Short summary
Short summary
In this study, we relied on a properly controlled laboratory experiment to test the model’s capability of simulating the dominant microbial processes and the emissions of one greenhouse gas (nitrous oxide, N2O) from agricultural soils. This study reveals important processes and parameters that regulate N2O emissions in the investigated model framework and also suggests future steps of model development, which have implications on the broader communities of ecosystem modelers.
Libo Wang, Vivek K. Arora, Paul Bartlett, Ed Chan, and Salvatore R. Curasi
EGUsphere, https://doi.org/10.5194/egusphere-2022-923, https://doi.org/10.5194/egusphere-2022-923, 2022
Short summary
Short summary
Plant functional types (PFTs) are groups of plant species used to represent vegetation distribution in land surface models. There are large uncertainties associated with existing methods for mapping land cover datasets to PFTs. This study demonstrates how fine-resolution tree cover fraction and land cover datasets can be used to inform the PFT mapping process and reduce the uncertainties. The proposed largely objective method makes it easier to implement new land cover products in models.
Yunyao Ma, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-179, https://doi.org/10.5194/bg-2022-179, 2022
Revised manuscript accepted for BG
Short summary
Short summary
Our study found while air temperature, ambient CO2 concentration, light intensity, and relative humidity are key drivers for annual carbon (C) balance, their relative impacts vary markedly among climatic zones. Moreover, seasonal acclimation may alter the C balance substantially at humid sites. Our study implies that climate change may have large effects on biocrust C balance at global scale, and suggests covering different seasons when measuring physiological traits to account for acclimation.
Jan De Pue, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Manuela Balzarolo, Fabienne Maignan, and Françoise Gellens-Meulenberghs
Biogeosciences, 19, 4361–4386, https://doi.org/10.5194/bg-19-4361-2022, https://doi.org/10.5194/bg-19-4361-2022, 2022
Short summary
Short summary
The functioning of ecosystems involves numerous biophysical processes which interact with each other. Land surface models (LSMs) are used to describe these processes and form an essential component of climate models. In this paper, we evaluate the performance of three LSMs and their interactions with soil moisture and vegetation. Though we found room for improvement in the simulation of soil moisture and drought stress, the main cause of errors was related to the simulated growth of vegetation.
Jarmo Mäkelä, Laura Arppe, Hannu Fritze, Jussi Heinonsalo, Kristiina Karhu, Jari Liski, Markku Oinonen, Petra Straková, and Toni Viskari
Biogeosciences, 19, 4305–4313, https://doi.org/10.5194/bg-19-4305-2022, https://doi.org/10.5194/bg-19-4305-2022, 2022
Short summary
Short summary
Soils account for the largest share of carbon found in terrestrial ecosystems, and accurate depiction of soil carbon decomposition is essential in understanding how permanent these carbon storages are. We present a straightforward way to include carbon isotope concentrations into soil decomposition and carbon storages for the Yasso model, which enables the model to use 13C as a natural tracer to track changes in the underlying soil organic matter decomposition.
Ivan Cornut, Nicolas Delpierre, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, Otavio Campoe, Jose Luiz Stape, Vitoria Fernanda Santos, and Guerric le Maire
EGUsphere, https://doi.org/10.5194/egusphere-2022-883, https://doi.org/10.5194/egusphere-2022-883, 2022
Short summary
Short summary
Potassium is an essential element for living organisms. Trees are dependent upon this element for certain of their functions that allow them to build their trunk using carbon dioxide. Using data from experiments in eucalypt plantations in Brazil and a simplified computer model of the plantations we were able to investigate the effect the lack of potassium can have on the production of wood. Understanding nutrient cycles is useful to understand the response of forests to environmental change.
Ivan Cornut, Guerric le Maire, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, and Nicolas Delpierre
EGUsphere, https://doi.org/10.5194/egusphere-2022-884, https://doi.org/10.5194/egusphere-2022-884, 2022
Short summary
Short summary
After simulating the effects of low levels of Potassium on the canopy of trees and the uptake of carbon dioxide from the atmosphere by leaves in part 1, here we tried to simulate the way the trees use the carbon they have acquired and the interaction with the potassium cycle in the tree. We show that the effect of low potassium on the efficiency of the trees to acquire carbon is enought to exlplain why they do not produce enough wood when they are in soils with low levels of potassium.
Vasileios Myrgiotis, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 19, 4147–4170, https://doi.org/10.5194/bg-19-4147-2022, https://doi.org/10.5194/bg-19-4147-2022, 2022
Short summary
Short summary
This study shows that livestock grazing and grass cutting can determine whether a grassland is adding (source) or removing (sink) carbon (C) to/from the atmosphere. The annual C balance of 1855 managed grassland fields in Great Britain was quantified for 2017–2018 using process modelling and earth observation data. The examined fields were, on average, small C sinks, but the summer drought of 2018 led to a 9-fold increase in the number of fields that became C sources in 2018 compared to 2017.
J. Robert Logan, Kathe E. Todd-Brown, Kathryn M. Jacobson, Peter J. Jacobson, Roland Vogt, and Sarah E. Evans
Biogeosciences, 19, 4129–4146, https://doi.org/10.5194/bg-19-4129-2022, https://doi.org/10.5194/bg-19-4129-2022, 2022
Short summary
Short summary
Understanding how plants decompose is important for understanding where the atmospheric CO2 they absorb ends up after they die. In forests, decomposition is controlled by rain but not in deserts. We performed a 2.5-year study in one of the driest places on earth (the Namib desert in southern Africa) and found that fog and dew, not rainfall, closely controlled how quickly plants decompose. We also created a model to help predict decomposition in drylands with lots of fog and/or dew.
Kevin R. Wilcox, Scott L. Collins, Alan K. Knapp, William Pockman, Zheng Shi, Melinda Smith, and Yiqi Luo
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-164, https://doi.org/10.5194/bg-2022-164, 2022
Preprint under review for BG
Short summary
Short summary
The capacity for carbon storage (C capacity) is an attribute that determines how ecosystems will store carbon in the future. Here, we employ novel data-model integration techniques to identify the carbon capacity of six grassland sites spanning the US Great Plains. Hot and dry sites had low C capacity due to less plant growth and high turnover of soil C so they may be a C source in the future. Alternately, cooler and wetter ecosystems had high C capacity, so these systems may be a future C sink.
Carlos A. Sierra, Verónika Ceballos-Núñez, Henrik Hartmann, David Herrera-Ramírez, and Holger Metzler
Biogeosciences, 19, 3727–3738, https://doi.org/10.5194/bg-19-3727-2022, https://doi.org/10.5194/bg-19-3727-2022, 2022
Short summary
Short summary
Empirical work that estimates the age of respired CO2 from vegetation tissue shows that it may take from years to decades to respire previously produced photosynthates. However, many ecosystem models represent respiration processes in a form that cannot reproduce these observations. In this contribution, we attempt to provide compelling evidence, based on recent research, with the aim to promote a change in the predominant paradigm implemented in ecosystem models.
César Dionisio Jiménez-Rodríguez, Mauro Sulis, and Stanislaus Schymanski
Biogeosciences, 19, 3395–3423, https://doi.org/10.5194/bg-19-3395-2022, https://doi.org/10.5194/bg-19-3395-2022, 2022
Short summary
Short summary
Vegetation relies on soil water reservoirs during dry periods. However, when this source is depleted, the plants may access water stored deeper in the rocks. This rock moisture contribution is usually omitted in large-scale models, which affects modeled plant water use during dry periods. Our study illustrates that including this additional source of water in the Community Land Model improves the model's ability to reproduce observed plant water use at seasonally dry sites.
Marco Carozzi, Raphaël Martin, Katja Klumpp, and Raia Silvia Massad
Biogeosciences, 19, 3021–3050, https://doi.org/10.5194/bg-19-3021-2022, https://doi.org/10.5194/bg-19-3021-2022, 2022
Short summary
Short summary
Crop and grassland production indicates a strong reduction due to the shortening of the length of the growing cycle associated with rising temperatures. Greenhouse gas emissions will increase exponentially over the century, often exceeding the CO2 accumulation of agro-ecosystems. Water demand will double in the next few decades, whereas the benefits in terms of yield will not fill the gap of C losses due to climate perturbation. Climate change will have a regionally distributed effect in the EU.
Anthony Mucia, Bertrand Bonan, Clément Albergel, Yongjun Zheng, and Jean-Christophe Calvet
Biogeosciences, 19, 2557–2581, https://doi.org/10.5194/bg-19-2557-2022, https://doi.org/10.5194/bg-19-2557-2022, 2022
Short summary
Short summary
For the first time, microwave vegetation optical depth data are assimilated in a land surface model in order to analyze leaf area index and root zone soil moisture. The advantage of microwave products is the higher observation frequency. A large variety of independent datasets are used to verify the added value of the assimilation. It is shown that the assimilation is able to improve the representation of soil moisture, vegetation conditions, and terrestrial water and carbon fluxes.
Camille Abadie, Fabienne Maignan, Marine Remaud, Jérôme Ogée, J. Elliott Campbell, Mary E. Whelan, Florian Kitz, Felix M. Spielmann, Georg Wohlfahrt, Richard Wehr, Wu Sun, Nina Raoult, Ulli Seibt, Didier Hauglustaine, Sinikka T. Lennartz, Sauveur Belviso, David Montagne, and Philippe Peylin
Biogeosciences, 19, 2427–2463, https://doi.org/10.5194/bg-19-2427-2022, https://doi.org/10.5194/bg-19-2427-2022, 2022
Short summary
Short summary
A better constraint of the components of the carbonyl sulfide (COS) global budget is needed to exploit its potential as a proxy of gross primary productivity. In this study, we compare two representations of oxic soil COS fluxes, and we develop an approach to represent anoxic soil COS fluxes in a land surface model. We show the importance of atmospheric COS concentration variations on oxic soil COS fluxes and provide new estimates for oxic and anoxic soil contributions to the COS global budget.
Jianyong Ma, Sam S. Rabin, Peter Anthoni, Anita D. Bayer, Sylvia S. Nyawira, Stefan Olin, Longlong Xia, and Almut Arneth
Biogeosciences, 19, 2145–2169, https://doi.org/10.5194/bg-19-2145-2022, https://doi.org/10.5194/bg-19-2145-2022, 2022
Short summary
Short summary
Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. We simulated the impacts of seven management practices on soil carbon pools, nitrogen loss, and crop yield under different climate scenarios in this region. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-65, https://doi.org/10.5194/bg-2022-65, 2022
Revised manuscript accepted for BG
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts for ecosystems. We examine extreme droughts with rising CO2 and temperatures using two dynamic vegetation models, to assess ecological processes to measure, and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explored specific plant responses that reflect knowledge gaps.
Veronika Kronnäs, Klas Lucander, Giuliana Zanchi, Nadja Stadlinger, Salim Belyazid, and Cecilia Akselsson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-78, https://doi.org/10.5194/bg-2022-78, 2022
Revised manuscript accepted for BG
Short summary
Short summary
In a future climate, extreme droughts might become more common. Climate change and droughts can have negative effects on soil weathering and plant health. In this study, climate change effects on weathering were studied on sites in Sweden, using the model ForSAFE, a climate change scenario and an extreme drought scenario. The modelling shows that weathering is higher during summer, increases with global warming, but that weathering during drought summers can become as low as winter weathering.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Eva Kanari, Lauric Cécillon, François Baudin, Hugues Clivot, Fabien Ferchaud, Sabine Houot, Florent Levavasseur, Bruno Mary, Laure Soucémarianadin, Claire Chenu, and Pierre Barré
Biogeosciences, 19, 375–387, https://doi.org/10.5194/bg-19-375-2022, https://doi.org/10.5194/bg-19-375-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Linda M. J. Kooijmans, Ara Cho, Jin Ma, Aleya Kaushik, Katherine D. Haynes, Ian Baker, Ingrid T. Luijkx, Mathijs Groenink, Wouter Peters, John B. Miller, Joseph A. Berry, Jerome Ogée, Laura K. Meredith, Wu Sun, Kukka-Maaria Kohonen, Timo Vesala, Ivan Mammarella, Huilin Chen, Felix M. Spielmann, Georg Wohlfahrt, Max Berkelhammer, Mary E. Whelan, Kadmiel Maseyk, Ulli Seibt, Roisin Commane, Richard Wehr, and Maarten Krol
Biogeosciences, 18, 6547–6565, https://doi.org/10.5194/bg-18-6547-2021, https://doi.org/10.5194/bg-18-6547-2021, 2021
Short summary
Short summary
The gas carbonyl sulfide (COS) can be used to estimate photosynthesis. To adopt this approach on regional and global scales, we need biosphere models that can simulate COS exchange. So far, such models have not been evaluated against observations. We evaluate the COS biosphere exchange of the SiB4 model against COS flux observations. We find that the model is capable of simulating key processes in COS biosphere exchange. Still, we give recommendations for further improvement of the model.
Alexandra Pongracz, David Wårlind, Paul A. Miller, and Frans-Jan W. Parmentier
Biogeosciences, 18, 5767–5787, https://doi.org/10.5194/bg-18-5767-2021, https://doi.org/10.5194/bg-18-5767-2021, 2021
Short summary
Short summary
This study shows that the introduction of a multi-layer snow scheme in the LPJ-GUESS DGVM improved simulations of high-latitude soil temperature dynamics and permafrost extent compared to observations. In addition, these improvements led to shifts in carbon fluxes that contrasted within and outside of the permafrost region. Our results show that a realistic snow scheme is essential to accurately simulate snow–soil–vegetation relationships and carbon–climate feedbacks.
Chris H. Wilson and Stefan Gerber
Biogeosciences, 18, 5669–5679, https://doi.org/10.5194/bg-18-5669-2021, https://doi.org/10.5194/bg-18-5669-2021, 2021
Short summary
Short summary
To better mitigate against climate change, it is imperative that ecosystem scientists understand how microbes decompose organic carbon in the soil and thereby release it as carbon dioxide into the atmosphere. A major challenge is the high variability across ecosystems in microbial biomass and in the environmental factors like temperature that drive their activity. In this paper, we use math to better understand how this variability impacts carbon dioxide release over large scales.
Andrew H. MacDougall
Biogeosciences, 18, 4937–4952, https://doi.org/10.5194/bg-18-4937-2021, https://doi.org/10.5194/bg-18-4937-2021, 2021
Short summary
Short summary
Permafrost soils hold about twice as much carbon as the atmosphere. As the Earth warms the organic matter in these soils will decay, releasing CO2 and CH4. It is expected that these soils will continue to release carbon to the atmosphere long after man-made emissions of greenhouse gases cease. Here we use a method employing hundreds of slightly varying model versions to estimate how much warming permafrost carbon will cause after human emissions of CO2 end.
Wei Zhang, Zhisheng Yao, Siqi Li, Xunhua Zheng, Han Zhang, Lei Ma, Kai Wang, Rui Wang, Chunyan Liu, Shenghui Han, Jia Deng, and Yong Li
Biogeosciences, 18, 4211–4225, https://doi.org/10.5194/bg-18-4211-2021, https://doi.org/10.5194/bg-18-4211-2021, 2021
Short summary
Short summary
The hydro-biogeochemical model Catchment Nutrient Management Model – DeNitrification-DeComposition (CNMM-DNDC) is improved by incorporating a soil thermal module to simulate the soil thermal regime in the presence of freeze–thaw cycles. The modified model is validated at a seasonally frozen catchment with typical alpine ecosystems (wetland, meadow and forest). The simulated aggregate emissions of methane and nitrous oxide are highest for the wetland, which is dominated by the methane emissions.
Sian Kou-Giesbrecht, Sergey Malyshev, Isabel Martínez Cano, Stephen W. Pacala, Elena Shevliakova, Thomas A. Bytnerowicz, and Duncan N. L. Menge
Biogeosciences, 18, 4143–4183, https://doi.org/10.5194/bg-18-4143-2021, https://doi.org/10.5194/bg-18-4143-2021, 2021
Short summary
Short summary
Representing biological nitrogen fixation (BNF) is an important challenge for land models. We present a novel representation of BNF and updated nitrogen cycling in a land model. It includes a representation of asymbiotic BNF by soil microbes and the competitive dynamics between nitrogen-fixing and non-fixing plants. It improves estimations of major carbon and nitrogen pools and fluxes and their temporal dynamics in comparison to previous representations of BNF in land models.
Christopher R. Taylor, Victoria Janes-Bassett, Gareth K. Phoenix, Ben Keane, Iain P. Hartley, and Jessica A. C. Davies
Biogeosciences, 18, 4021–4037, https://doi.org/10.5194/bg-18-4021-2021, https://doi.org/10.5194/bg-18-4021-2021, 2021
Short summary
Short summary
We used experimental data to model two phosphorus-limited grasslands and investigated their response to nitrogen (N) deposition. Greater uptake of organic P facilitated a positive response to N deposition, stimulating growth and soil carbon storage. Where organic P access was less, N deposition exacerbated P demand and reduced plant C input to the soil. This caused more C to be released into the atmosphere than is taken in, reducing the climate-mitigation capacity of the modelled grassland.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021, https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Short summary
Shrub and sedge plant functional types (PFTs) were incorporated in the land surface component of the Canadian Earth System Model to improve representation of Arctic tundra ecosystems. Evaluated against 14 years of non-winter measurements, the magnitude and seasonality of carbon dioxide and energy fluxes at a Canadian dwarf-shrub tundra site were better captured by the shrub PFTs than by previously used grass and tree PFTs. Model simulations showed the tundra site to be an annual net CO2 source.
Martina Franz and Sönke Zaehle
Biogeosciences, 18, 3219–3241, https://doi.org/10.5194/bg-18-3219-2021, https://doi.org/10.5194/bg-18-3219-2021, 2021
Short summary
Short summary
The combined effects of ozone and nitrogen deposition on the terrestrial carbon uptake and storage has been unclear. Our simulations, from 1850 to 2099, show that ozone-related damage considerably reduced gross primary production and carbon storage in the past. The growth-stimulating effect induced by nitrogen deposition is offset until the 2050s. Accounting for nitrogen deposition without considering ozone effects might lead to an overestimation of terrestrial carbon uptake and storage.
Fabienne Maignan, Camille Abadie, Marine Remaud, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Róisín Commane, Richard Wehr, J. Elliott Campbell, Sauveur Belviso, Stephen A. Montzka, Nina Raoult, Ulli Seibt, Yoichi P. Shiga, Nicolas Vuichard, Mary E. Whelan, and Philippe Peylin
Biogeosciences, 18, 2917–2955, https://doi.org/10.5194/bg-18-2917-2021, https://doi.org/10.5194/bg-18-2917-2021, 2021
Short summary
Short summary
The assimilation of carbonyl sulfide (COS) by continental vegetation has been proposed as a proxy for gross primary production (GPP). Using a land surface and a transport model, we compare a mechanistic representation of the plant COS uptake (Berry et al., 2013) to the classical leaf relative uptake (LRU) approach linking GPP and vegetation COS fluxes. We show that at high temporal resolutions a mechanistic approach is mandatory, but at large scales the LRU approach compares similarly.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
Gilvan Sampaio, Marília H. Shimizu, Carlos A. Guimarães-Júnior, Felipe Alexandre, Marcelo Guatura, Manoel Cardoso, Tomas F. Domingues, Anja Rammig, Celso von Randow, Luiz F. C. Rezende, and David M. Lapola
Biogeosciences, 18, 2511–2525, https://doi.org/10.5194/bg-18-2511-2021, https://doi.org/10.5194/bg-18-2511-2021, 2021
Short summary
Short summary
The impact of large-scale deforestation and the physiological effects of elevated atmospheric CO2 on Amazon rainfall are systematically compared in this study. Our results are remarkable in showing that the two disturbances cause equivalent rainfall decrease, though through different causal mechanisms. These results highlight the importance of not only curbing regional deforestation but also reducing global CO2 emissions to avoid climatic changes in the Amazon.
Daniele Peano, Deborah Hemming, Stefano Materia, Christine Delire, Yuanchao Fan, Emilie Joetzjer, Hanna Lee, Julia E. M. S. Nabel, Taejin Park, Philippe Peylin, David Wårlind, Andy Wiltshire, and Sönke Zaehle
Biogeosciences, 18, 2405–2428, https://doi.org/10.5194/bg-18-2405-2021, https://doi.org/10.5194/bg-18-2405-2021, 2021
Short summary
Short summary
Global climate models are the scientist’s tools used for studying past, present, and future climate conditions. This work examines the ability of a group of our tools in reproducing and capturing the right timing and length of the season when plants show their green leaves. This season, indeed, is fundamental for CO2 exchanges between land, atmosphere, and climate. This work shows that discrepancies compared to observations remain, demanding further polishing of these tools.
Karun Pandit, Hamid Dashti, Andrew T. Hudak, Nancy F. Glenn, Alejandro N. Flores, and Douglas J. Shinneman
Biogeosciences, 18, 2027–2045, https://doi.org/10.5194/bg-18-2027-2021, https://doi.org/10.5194/bg-18-2027-2021, 2021
Short summary
Short summary
A dynamic global vegetation model, Ecosystem Demography (EDv2.2), is used to understand spatiotemporal dynamics of a semi-arid shrub ecosystem under alternative fire regimes. Multi-decadal point simulations suggest shrub dominance for a non-fire scenario and a contrasting phase of shrub and C3 grass growth for a fire scenario. Regional gross primary productivity (GPP) simulations indicate moderate agreement with MODIS GPP and a GPP reduction in fire-affected areas before showing some recovery.
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
Carlos A. Sierra, Susan E. Crow, Martin Heimann, Holger Metzler, and Ernst-Detlef Schulze
Biogeosciences, 18, 1029–1048, https://doi.org/10.5194/bg-18-1029-2021, https://doi.org/10.5194/bg-18-1029-2021, 2021
Short summary
Short summary
The climate benefit of carbon sequestration (CBS) is a metric developed to quantify avoided warming by two separate processes: the amount of carbon drawdown from the atmosphere and the time this carbon is stored in a reservoir. This metric can be useful for quantifying the role of forests and soils for climate change mitigation and to better quantify the benefits of carbon removals by sinks.
Xiaoying Shi, Daniel M. Ricciuto, Peter E. Thornton, Xiaofeng Xu, Fengming Yuan, Richard J. Norby, Anthony P. Walker, Jeffrey M. Warren, Jiafu Mao, Paul J. Hanson, Lin Meng, David Weston, and Natalie A. Griffiths
Biogeosciences, 18, 467–486, https://doi.org/10.5194/bg-18-467-2021, https://doi.org/10.5194/bg-18-467-2021, 2021
Short summary
Short summary
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the peatland ecosystem, we introduced the moss species to the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. We tested the model against field observations and used the model to make projections of the site's carbon cycle under warming and atmospheric CO2 concentration scenarios.
Peter Horvath, Hui Tang, Rune Halvorsen, Frode Stordal, Lena Merete Tallaksen, Terje Koren Berntsen, and Anders Bryn
Biogeosciences, 18, 95–112, https://doi.org/10.5194/bg-18-95-2021, https://doi.org/10.5194/bg-18-95-2021, 2021
Short summary
Short summary
We evaluated the performance of three methods for representing vegetation cover. Remote sensing provided the best match to a reference dataset, closely followed by distribution modelling (DM), whereas the dynamic global vegetation model (DGVM) in CLM4.5BGCDV deviated strongly from the reference. Sensitivity tests show that use of threshold values for predictors identified by DM may improve DGVM performance. The results highlight the potential of using DM in the development of DGVMs.
Johan Arnqvist, Julia Freier, and Ebba Dellwik
Biogeosciences, 17, 5939–5952, https://doi.org/10.5194/bg-17-5939-2020, https://doi.org/10.5194/bg-17-5939-2020, 2020
Short summary
Short summary
Data generated by airborne laser scans enable the characterization of surface vegetation for any application that might need it, such as forest management, modeling for numerical weather prediction, or wind energy estimation. In this work we present a new algorithm for calculating the vegetation density using data from airborne laser scans. The new routine is more robust than earlier methods, and an implementation in popular programming languages accompanies the article to support new users.
Cited articles
Al Bitar, A., Mialon, A., Kerr, Y. H., Cabot, F., Richaume, P., Jacquette, E., Quesney, A., Mahmoodi, A., Tarot, S., Parrens, M., Al-Yaari, A., Pellarin, T., Rodriguez-Fernandez, N., and Wigneron, J.-P.: The global SMOS Level 3 daily soil moisture and brightness temperature maps, Earth Syst. Sci. Data, 9, 293–315, https://doi.org/10.5194/essd-9-293-2017, 2017.
Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M., and McVicar, T. R.: Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data, Biogeosciences, 10, 6657–6676, https://doi.org/10.5194/bg-10-6657-2013, 2013.
Asner, G. P., Knapp, D. E., Martin, R. E., Tupayachi, R., Anderson, C. B., Mascaro, J., Sinca, F., Chadwick, K. D., Higgins, M., Farfan, W., Llactayo, W., and Silman, M. R.: Targeted carbon conservation at national scales with high-resolution monitoring, P. Natl. Acad. Sci. USA, 111, E5016–E5022, https://doi.org/10.1073/pnas.1419550111, 2014.
Avitabile, V., Herold, M., Heuvelink, G., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., and Berry, N. J.: An integrated pan-tropical biomass map using multiple reference datasets, Glob. Change Biol., 22, 1406–1420, 2016.
Baccini, A., Goetz, S., Walker, W., Laporte, N., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P., Dubayah, R., Friedl, M., and Samanta, S.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nat. Clim. Change, 2, 182–185, 2012.
Bouvet, A., Mermoz, S., Toan, T. L., Villard, L., Mathieu, R., Naidoo, L., and Asner, G. P.: An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR, Remote Sens. Environ., 206, 156–173, https://doi.org/10.1016/j.rse.2017.12.030, 2018.
Brandt, M., Rasmussen, K., Peñuelas, J., Tian, F., Schurgers, G., Verger, A., Mertz, O., Palmer, J. R., and Fensholt, R.: Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa, Nature Ecology and Evolution, 1, 0081, 2017.
Brandt, M., Wigneron, J.-P., Chave, J., Tagesson, T., Penuelas, J., Ciais, P.,Rasmussen, K. , Tian, F., Mbow, C., Al-Yaari, A., and Rodriguez-Fernandez, N.: Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands, Nature Ecology and Evolution, 2, 827, https://doi.org/10.1038/s41559-017-0081, 2018.
Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., and Savoie, M. H.: EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets., ISPRS Int. Geo-Inf., 1, 32–45, https://doi.org/10.3390/ijgi1010032, 2012.
CATDS: SMOS level 3 products, available at: ftp://ext-catds-cpdc:catds2010@ftp.ifremer.fr/Land_products/GRIDDED/, last access: 27 July 2018a.
CATDS: SMOS IC products, available at: ftp://ext-catds-cecsm:catds2010@ftp.ifremer.fr/Land_products/L3_SMOS_IC_Vegetation_Optical_Depth/, last access: 27 July 2018b.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., et al.: Improved allometric models to estimate the aboveground biomass of tropical trees, Glob. Change Biol., 20, 3177–3190, 2014.
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., and Kimball, J.: The soil moisture active passive (SMAP) mission, Proceedings of the IEEE, 98, 704–716, 2010.
ESA: SMOS Level 2 products, available at: https://smos-diss.eo.esa.int, last access: 26 July 2018.
Esau, I., Miles, V. V., Davy, R., Miles, M. W., and Kurchatova, A.: Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia, Atmos. Chem. Phys., 16, 9563–9577, https://doi.org/10.5194/acp-16-9563-2016, 2016.
Fernandez-Moran, R., Al-Yaari, A., Mialon, A., Mahmoodi, A., Al Bitar, A., De Lannoy, G., Rodriguez-Fernandez, N., Lopez-Baeza, E., Kerr, Y., and Wigneron, J.-P.: SMOS-IC: An alternative SMOS soil moisture and vegetation optical depth product, Remote Sensing, 9, 457, https://doi.org/10.3390/rs9050457, 2017.
Ferrazzoli, P. and Guerriero, L.: Passive microwave remote sensing of forests: A model investigation, IEEE T. Geosci. Remote S., 34, 433–443, 1996.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315, 2017.
Grant, J., Wigneron, J.-P., De Jeu, R., Lawrence, H., Mialon, A., Richaume, P., Al Bitar, A., Drusch, M., van Marle, M., and Kerr, Y.: Comparison of SMOS and AMSR-E vegetation optical depth to four MODIS-based vegetation indices, Remote Sens. Environ., 172, 87–100, 2016.
Herrmann, S. M., Anyamba, A., and Tucker, C. J.: Recent trends in vegetation dynamics in the African Sahel and their relationship to climate, Global Environ. Chang., 15, 394–404, 2005.
Hornbuckle, B. K., England, A. W., De Roo, R. D., Fischman, M. A., and Boprie, D. L.: Vegetation canopy anisotropy at 1.4 GHz, IEEE T. Geosci. Remote S., 41, 2211–2223, 2003.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195–213, 2002.
Huete, A. R., Didan, K., Shimabukuro, Y. E., Ratana, P., Saleska, S. R., Hutyra, L. R., Yang, W., Nemani, R. R., and Myneni, R.: Amazon rainforests green-up with sunlight in dry season, Geophys. Res. Lett., 33, https://doi.org/10.1029/2005GL025583, 2006.
Jackson, T. and Schmugge, T.: Vegetation effects on the microwave emission of soils, Remote Sens. Environ., 36, 203–212, 1991.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., et al.: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations, J. Geophys. Res.-Biogeo., 116, https://doi.org/10.1029/2010jg001566, 2011.
Kerr, Y., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.-J., Font, J., Reul, N., Gruhier, C., Juglea, S., Drinkwater, M., Hahne, A., Martin-Neira, M., and Mecklenburg, S.: The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle, Proceedings of the IEEE, 98, 666–687, https://doi.org/10.1109/JPROC.2010.2043032, 2010.
Kerr, Y., Waldteufel, P., Richaume, P., Wigneron, J., Ferrazzoli, P., Mahmoodi, A., Al Bitar, A., Cabot, F., Gruhier, C., Juglea, S., Leroux, D., Mialon, A., and Delwart, S.: The SMOS Soil Moisture Retrieval Algorithm, IEEE T. Geosci. Remote S., 50, 1384–1403, https://doi.org/10.1109/TGRS.2012.2184548, 2012.
Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Martinuzzi, J., Font, J., and Berger, M.: Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission, IEEE T. Geosci. Remote S., 39, 1729–1735, https://doi.org/10.1109/36.942551, 2001.
Kirdiashev, K., Chukhlantsev, A., and Shutko, A.: Microwave radiation of the earth's surface in the presence of vegetation cover, Radiotekh. Elektron.+, 24, 256–264, 1979.
Konings, A. G. and Gentine, P.: Global variations in ecosystem-scale isohydricity, Glob. Change Biol., 23, 891–905, 2017.
Konings, A. G., Piles, M., Rötzer, K., McColl, K. A., Chan, S. K., and Entekhabi, D.: Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations, Remote Sens. Environ., 172, 178–189, 2016.
Konings, A. G., Piles, M., Das, N., and Entekhabi, D.: L-band vegetation optical depth and effective scattering albedo estimation from SMAP, Remote Sens. Environ., 198, 460–470, 2017.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the Köppen–Geiger climate classification updated, Meteorol. Z., 15, 259–263, 2006.
Lawrence, H., Wigneron, J.-P., Richaume, P., Novello, N., Grant, J., Mialon, A., Bitar, A. A., Merlin, O., Guyon, D., Leroux, D., Bircher, S., and Kerr, Y.: Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA, Remote Sens. Environ., 140, 396–406, https://doi.org/10.1016/j.rse.2013.07.021, 2014.
Li, Y., Guan, K., Gentine, P., Konings, A. G., Meinzer, F. C., Kimball, J. S., Xu, X., Anderegg, W. R., McDowell, N. G., Martinez-Vilalta, J., and Long, D. G.: Estimating Global Ecosystem Isohydry/Anisohydry Using Active and Passive Microwave Satellite Data, J. Geophys. Res.-Biogeo., 2017.
Liu, Y., de Jeu, R. A., van Dijk, A. I., and Owe, M.: TRMM-TMI satellite observed soil moisture and vegetation density (1998–2005) show strong connection with El Niño in eastern Australia, Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL030311, 2007.
Liu, Y. Y., de Jeu, R. A., McCabe, M. F., Evans, J. P., and van Dijk, A. I.: Global long-term passive microwave satellite-based retrievals of vegetation optical depth, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL048684, 2011.
Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. a. M., Canadell, J. G., McCabe, M. F., Evans, J. P., and Wang, G.: Recent reversal in loss of global terrestrial biomass: supplementary information, Nat. Clim. Change, 5, 1–5, https://doi.org/10.1038/nclimate2581, 2015.
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., and Merchant, J. W.: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens., 21, 1303–1330, 2000.
Mermoz, S., Le Toan, T., Villard, L., Réjou-Méchain, M., and Seifert-Granzin, J.: Biomass assessment in the Cameroon savanna using ALOS PALSAR data, Remote Sens. Environ., 155, 109–119, 2014.
Mermoz, S., Réjou-Méchain, M., Villard, L., Le Toan, T., Rossi, V., and Gourlet-Fleury, S.: Decrease of L-band SAR backscatter with biomass of dense forests, Remote Sens. Environ., 159, 307–317, 2015.
Mo, T., Choudhury, B., Schmugge, T., Wang, J., and Jackson, T.: A model for microwave emission from vegetation-covered fields, J. Geophys. Res.-Oceans, 87, 11229–11237, 1982.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity, BioScience, 51, 933–938, 2001.
Parrens, M., Al Bitar, A., Mialon, A., Fernandez-Moran, R., Ferrazzoli, P., Kerr, Y., and Wigneron, J.-P.: Estimation of the L-band Effective Scattering Albedo of Tropical Forests using SMOS observations, IEEE Geoscience and Remote Sens. Lett., 14, 1223–1227, 2017a.
Parrens, M., Wigneron, J.-P., Richaume, P., Al Bitar, A., Mialon, A., Fernandez-Moran, R., Al-Yaari, A., O'Neill, P., and Kerr, Y.: Considering combined or separated roughness and vegetation effects in soil moisture retrievals, International Journal of Applied Earth Observation and Geoinformation, 55, 73–86, 2017b.
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., and Stenseth, N. C.: Using the satellite-derived NDVI to assess ecological responses to environmental change, Trends Ecol. Evol., 20, 503–510, 2005.
Pettorelli, N., Ryan, S., Mueller, T., Bunnefeld, N., Jędrzejewska, B., Lima, M., and Kausrud, K.: The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology, Clim. Res., 46, 15–27, 2011.
Rahmoune, R., Ferrazzoli, P., Kerr, Y. H., and Richaume, P.: SMOS level 2 retrieval algorithm over forests: Description and generation of global maps, IEEE J. Sel. Top. Appl, 6, 1430–1439, https://doi.org/10.1109/JSTARS.2013.2256339, 2013.
Rahmoune, R., Ferrazzoli, P., Singh, Y., Kerr, Y., Richaume, P., and Al Bitar, A.: SMOS Retrieval Results Over Forests: Comparisons With Independent Measurements, IEEE J. Sel. Top. Appl, 6-3, 1430–1439, https://doi.org/10.1109/JSTARS.2014.2321027, 2014.
Román-Cascón, C., Pellarin, T., Gibon, F., Brocca, L., Cosme, E., Crow, W., Fernández-Prieto, D., Kerr, Y. H., and Massari, C.: Correcting satellite-based precipitation products through SMOS soil moisture data assimilation in two land-surface models of different complexity: API and SURFEX, Remote Sens. Environ., 200, 295–310, 2017.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S., White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks in tropical regions across three continents, P. Natl. Acad. Sci. USA, 108, 9899–9904, 2011.
Sahr, K., White, D., and Kimerling, A. J.: Geodesic discrete global grid systems cartography, Cartogr. Geogr. Inform., 30, 121–134, 2003.
Schwank, M., Matzler, C., Guglielmetti, M., and Fluhler, H.: L-band radiometer measurements of soil water under growing clover grass, IEEE T. Geosci. Remote S., 43, 2225–2237, 2005.
Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.: Mapping forest canopy height globally with spaceborne lidar, J. Geophys.Res.-Biogeo., 116, 9899–9904, 2011.
Todd, S., Hoffer, R., and Milchunas, D.: Biomass estimation on grazed and ungrazed rangelands using spectral indices, Int. J. Remote Sens., 19, 427–438, 1998.
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8, 127–150, 1979.
Ulaby, F.: Passive microwave remote sensing of the Earth's surface, Antennas and Propagation, IEEE T. Antenn. Propag., 24, 112–115, 1976.
Ulaby, F. T. and Wilson, E. A.: Microwave attenuation properties of vegetation canopies, IEEE T. Geosci. Remote Sens., 5, 746–753, 1985.
Van de Griend, A. A. and Wigneron, J.-P.: The b-factor as a function of frequency and canopy type at H-polarization, IEEE T. Geosci. Remote Sens., 42, 786–794, 2004.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
van Marle, M. J. E., van der Werf, G. R., de Jeu, R. A. M., and Liu, Y. Y.: Annual South American forest loss estimates based on passive microwave remote sensing (1990–2010), Biogeosciences, 13, 609–624, https://doi.org/10.5194/bg-13-609-2016, 2016.
Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I., Azorín-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., and Morán-Tejeda, E.,: Response of vegetation to drought time-scales across global land biomes, P. Natl. Acad. Sci. USA,, 110, 52–57, 2013.
Vittucci, C., Ferrazzoli, P., Kerr, Y., Richaume, P., Guerriero, L., Rahmoune, R., and Laurin, G. V.: SMOS retrieval over forests: Exploitation of optical depth and tests of soil moisture estimates, Remote Sens. Environ., 180, 115–127, https://doi.org/10.1016/j.rse.2016.03.004, 2016.
Wigneron, J.-P., Chanzy, A., Calvet, J.-C., and Bruguier, N.: A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields, Remote Sens. Environ., 51, 331–341, 1995.
Wigneron, J.-P., Pardé, M., Waldteufel, P., Chanzy, A., Kerr, Y., Schmidl, S., and Skou, N.: Characterizing the dependence of vegetation model parameters on crop structure, incidence angle, and polarization at L-band, IEEE T. Geosci. Remote S., 42, 416–425, 2004.
Wigneron, J.-P., Kerr, Y., Waldteufel, P., Saleh, K., Escorihuela, M.-J., Richaume, P., Ferrazzoli, P., de Rosnay, P., Gurney, R., Calvet, J.-C., Grant, J., Guglielmetti, M., Hornbuckle, B., Mätzler, C., Pellarin, T., and Schwank, M.: L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields, Remote Sens. Environ., 107, 639–655, https://doi.org/10.1016/j.rse.2006.10.014, 2007.
Short summary
Existing global scale above-ground biomass (AGB) maps are made at very high spatial resolution collecting data during several years. In this paper we discuss the use of a new data set from the SMOS satellite: the vegetation optical depth estimated from low microwave frequencies. It is shown that this new data set is highly sensitive to AGB. The spacial resolution of SMOS is coarse (40 km) but the new data set can be used to monitor AGB variations with time due to its high revisit frequency.
Existing global scale above-ground biomass (AGB) maps are made at very high spatial resolution...
Altmetrics
Final-revised paper
Preprint