Articles | Volume 15, issue 17
Biogeosciences, 15, 5473–5487, 2018
https://doi.org/10.5194/bg-15-5473-2018
Biogeosciences, 15, 5473–5487, 2018
https://doi.org/10.5194/bg-15-5473-2018
Research article
14 Sep 2018
Research article | 14 Sep 2018

Eddy covariance flux errors due to random and systematic timing errors during data acquisition

Gerardo Fratini et al.

Related authors

A long-term (2005–2019) eddy covariance data set of CO2 and H2O fluxes from the Tibetan alpine steppe
Felix Nieberding, Christian Wille, Gerardo Fratini, Magnus O. Asmussen, Yuyang Wang, Yaoming Ma, and Torsten Sachs
Earth Syst. Sci. Data, 12, 2705–2724, https://doi.org/10.5194/essd-12-2705-2020,https://doi.org/10.5194/essd-12-2705-2020, 2020
Short summary
A robust data cleaning procedure for eddy covariance flux measurements
Domenico Vitale, Gerardo Fratini, Massimo Bilancia, Giacomo Nicolini, Simone Sabbatini, and Dario Papale
Biogeosciences, 17, 1367–1391, https://doi.org/10.5194/bg-17-1367-2020,https://doi.org/10.5194/bg-17-1367-2020, 2020
Short summary
An improved dust emission model – Part 1: Model description and comparison against measurements
J. F. Kok, N. M. Mahowald, G. Fratini, J. A. Gillies, M. Ishizuka, J. F. Leys, M. Mikami, M.-S. Park, S.-U. Park, R. S. Van Pelt, and T. M. Zobeck
Atmos. Chem. Phys., 14, 13023–13041, https://doi.org/10.5194/acp-14-13023-2014,https://doi.org/10.5194/acp-14-13023-2014, 2014
Short summary
Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling
A. Budishchev, Y. Mi, J. van Huissteden, L. Belelli-Marchesini, G. Schaepman-Strub, F. J. W. Parmentier, G. Fratini, A. Gallagher, T. C. Maximov, and A. J. Dolman
Biogeosciences, 11, 4651–4664, https://doi.org/10.5194/bg-11-4651-2014,https://doi.org/10.5194/bg-11-4651-2014, 2014
Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3
G. Fratini and M. Mauder
Atmos. Meas. Tech., 7, 2273–2281, https://doi.org/10.5194/amt-7-2273-2014,https://doi.org/10.5194/amt-7-2273-2014, 2014

Related subject area

Biogeochemistry: Air - Land Exchange
Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022,https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Reviews and syntheses: VOC emissions from soil cover in boreal and temperate natural ecosystems of the Northern Hemisphere
Valery A. Isidorov and Andrej A. Zaitsev
Biogeosciences, 19, 4715–4746, https://doi.org/10.5194/bg-19-4715-2022,https://doi.org/10.5194/bg-19-4715-2022, 2022
Short summary
Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022,https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Contrasting drought legacy effects on gross primary productivity in a mixed versus pure beech forest
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022,https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard
Anders Lindroth, Norbert Pirk, Ingibjörg S. Jónsdóttir, Christian Stiegler, Leif Klemedtsson, and Mats B. Nilsson
Biogeosciences, 19, 3921–3934, https://doi.org/10.5194/bg-19-3921-2022,https://doi.org/10.5194/bg-19-3921-2022, 2022
Short summary

Cited articles

Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, the Netherlands, Heidelberg, Germany, London, UK, New York, USA, 460 pp., 2012. 
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001. 
Barnes, J. R.: Electronic System Design: Interference and Noise Control Techniques, Prentice-Hall Inc., Upper Saddle River, New Jersey, USA, 1987. 
Cheng, Y., Sayde, C., Li, Q., Basara, J., Selker, J., Tanner, E., and Gentine, P.: Failure of Taylor's hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements, Geophys. Res. Lett., 44, 4287–4295, 2017. 
Download
Short summary
Using a simulation study and field data, we quantify the biases that can be introduced in fluxes measured by eddy covariance (EC) if the raw high-frequency data are affected by random and systematic timing misalignments. Our study was motivated by the increasingly widespread adoption of fully digital EC systems potentially subject to such timing errors. We found biases as large as 10 %. We further propose a test to evaluate EC data logging systems for their time synchronization capabilities.
Altmetrics
Final-revised paper
Preprint