Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
Download
Short summary
Using a simulation study and field data, we quantify the biases that can be introduced in fluxes measured by eddy covariance (EC) if the raw high-frequency data are affected by random and systematic timing misalignments. Our study was motivated by the increasingly widespread adoption of fully digital EC systems potentially subject to such timing errors. We found biases as large as 10 %. We further propose a test to evaluate EC data logging systems for their time synchronization capabilities.
Altmetrics
Final-revised paper
Preprint
BG | Articles | Volume 15, issue 17
Biogeosciences, 15, 5473–5487, 2018
https://doi.org/10.5194/bg-15-5473-2018
Biogeosciences, 15, 5473–5487, 2018
https://doi.org/10.5194/bg-15-5473-2018

Research article 14 Sep 2018

Research article | 14 Sep 2018

Eddy covariance flux errors due to random and systematic timing errors during data acquisition

Gerardo Fratini et al.

Related authors

A long-term (2005–2019) eddy covariance data set of CO2 and H2O fluxes from the Tibetan alpine steppe
Felix Nieberding, Christian Wille, Gerardo Fratini, Magnus O. Asmussen, Yuyang Wang, Yaoming Ma, and Torsten Sachs
Earth Syst. Sci. Data, 12, 2705–2724, https://doi.org/10.5194/essd-12-2705-2020,https://doi.org/10.5194/essd-12-2705-2020, 2020
Short summary
A robust data cleaning procedure for eddy covariance flux measurements
Domenico Vitale, Gerardo Fratini, Massimo Bilancia, Giacomo Nicolini, Simone Sabbatini, and Dario Papale
Biogeosciences, 17, 1367–1391, https://doi.org/10.5194/bg-17-1367-2020,https://doi.org/10.5194/bg-17-1367-2020, 2020
Short summary
An improved dust emission model – Part 1: Model description and comparison against measurements
J. F. Kok, N. M. Mahowald, G. Fratini, J. A. Gillies, M. Ishizuka, J. F. Leys, M. Mikami, M.-S. Park, S.-U. Park, R. S. Van Pelt, and T. M. Zobeck
Atmos. Chem. Phys., 14, 13023–13041, https://doi.org/10.5194/acp-14-13023-2014,https://doi.org/10.5194/acp-14-13023-2014, 2014
Short summary
Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling
A. Budishchev, Y. Mi, J. van Huissteden, L. Belelli-Marchesini, G. Schaepman-Strub, F. J. W. Parmentier, G. Fratini, A. Gallagher, T. C. Maximov, and A. J. Dolman
Biogeosciences, 11, 4651–4664, https://doi.org/10.5194/bg-11-4651-2014,https://doi.org/10.5194/bg-11-4651-2014, 2014
Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3
G. Fratini and M. Mauder
Atmos. Meas. Tech., 7, 2273–2281, https://doi.org/10.5194/amt-7-2273-2014,https://doi.org/10.5194/amt-7-2273-2014, 2014

Related subject area

Biogeochemistry: Air - Land Exchange
A climate-dependent global model of ammonia emissions from chicken farming
Jize Jiang, David S. Stevenson, Aimable Uwizeye, Giuseppe Tempio, and Mark A. Sutton
Biogeosciences, 18, 135–158, https://doi.org/10.5194/bg-18-135-2021,https://doi.org/10.5194/bg-18-135-2021, 2021
Short summary
Calculating canopy stomatal conductance from eddy covariance measurements, in light of the energy budget closure problem
Richard Wehr and Scott R. Saleska
Biogeosciences, 18, 13–24, https://doi.org/10.5194/bg-18-13-2021,https://doi.org/10.5194/bg-18-13-2021, 2021
Short summary
Decoupling of a Douglas fir canopy: a look into the subcanopy with continuous vertical temperature profiles
Bart Schilperoort, Miriam Coenders-Gerrits, César Jiménez Rodríguez, Christiaan van der Tol, Bas van de Wiel, and Hubert Savenije
Biogeosciences, 17, 6423–6439, https://doi.org/10.5194/bg-17-6423-2020,https://doi.org/10.5194/bg-17-6423-2020, 2020
Short summary
Variations in diurnal and seasonal net ecosystem carbon dioxide exchange in a semiarid sandy grassland ecosystem in China's Horqin Sandy Land
Yayi Niu, Yuqiang Li, Hanbo Yun, Xuyang Wang, Xiangwen Gong, Yulong Duan, and Jing Liu
Biogeosciences, 17, 6309–6326, https://doi.org/10.5194/bg-17-6309-2020,https://doi.org/10.5194/bg-17-6309-2020, 2020
Short summary
Biogenic volatile organic compound ambient mixing ratios and emission rates in the Alaskan Arctic tundra
Hélène Angot, Katelyn McErlean, Lu Hu, Dylan B. Millet, Jacques Hueber, Kaixin Cui, Jacob Moss, Catherine Wielgasz, Tyler Milligan, Damien Ketcherside, M. Syndonia Bret-Harte, and Detlev Helmig
Biogeosciences, 17, 6219–6236, https://doi.org/10.5194/bg-17-6219-2020,https://doi.org/10.5194/bg-17-6219-2020, 2020
Short summary

Cited articles

Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, the Netherlands, Heidelberg, Germany, London, UK, New York, USA, 460 pp., 2012. 
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001. 
Barnes, J. R.: Electronic System Design: Interference and Noise Control Techniques, Prentice-Hall Inc., Upper Saddle River, New Jersey, USA, 1987. 
Cheng, Y., Sayde, C., Li, Q., Basara, J., Selker, J., Tanner, E., and Gentine, P.: Failure of Taylor's hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements, Geophys. Res. Lett., 44, 4287–4295, 2017. 
Publications Copernicus
Download
Short summary
Using a simulation study and field data, we quantify the biases that can be introduced in fluxes measured by eddy covariance (EC) if the raw high-frequency data are affected by random and systematic timing misalignments. Our study was motivated by the increasingly widespread adoption of fully digital EC systems potentially subject to such timing errors. We found biases as large as 10 %. We further propose a test to evaluate EC data logging systems for their time synchronization capabilities.
Citation
Altmetrics
Final-revised paper
Preprint