Articles | Volume 15, issue 17
https://doi.org/10.5194/bg-15-5473-2018
https://doi.org/10.5194/bg-15-5473-2018
Research article
 | 
14 Sep 2018
Research article |  | 14 Sep 2018

Eddy covariance flux errors due to random and systematic timing errors during data acquisition

Gerardo Fratini, Simone Sabbatini, Kevin Ediger, Brad Riensche, George Burba, Giacomo Nicolini, Domenico Vitale, and Dario Papale

Related authors

A long-term (2005–2019) eddy covariance data set of CO2 and H2O fluxes from the Tibetan alpine steppe
Felix Nieberding, Christian Wille, Gerardo Fratini, Magnus O. Asmussen, Yuyang Wang, Yaoming Ma, and Torsten Sachs
Earth Syst. Sci. Data, 12, 2705–2724, https://doi.org/10.5194/essd-12-2705-2020,https://doi.org/10.5194/essd-12-2705-2020, 2020
Short summary
A robust data cleaning procedure for eddy covariance flux measurements
Domenico Vitale, Gerardo Fratini, Massimo Bilancia, Giacomo Nicolini, Simone Sabbatini, and Dario Papale
Biogeosciences, 17, 1367–1391, https://doi.org/10.5194/bg-17-1367-2020,https://doi.org/10.5194/bg-17-1367-2020, 2020
Short summary
An improved dust emission model – Part 1: Model description and comparison against measurements
J. F. Kok, N. M. Mahowald, G. Fratini, J. A. Gillies, M. Ishizuka, J. F. Leys, M. Mikami, M.-S. Park, S.-U. Park, R. S. Van Pelt, and T. M. Zobeck
Atmos. Chem. Phys., 14, 13023–13041, https://doi.org/10.5194/acp-14-13023-2014,https://doi.org/10.5194/acp-14-13023-2014, 2014
Short summary
Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling
A. Budishchev, Y. Mi, J. van Huissteden, L. Belelli-Marchesini, G. Schaepman-Strub, F. J. W. Parmentier, G. Fratini, A. Gallagher, T. C. Maximov, and A. J. Dolman
Biogeosciences, 11, 4651–4664, https://doi.org/10.5194/bg-11-4651-2014,https://doi.org/10.5194/bg-11-4651-2014, 2014
Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3
G. Fratini and M. Mauder
Atmos. Meas. Tech., 7, 2273–2281, https://doi.org/10.5194/amt-7-2273-2014,https://doi.org/10.5194/amt-7-2273-2014, 2014

Related subject area

Biogeochemistry: Air - Land Exchange
Sap flow and leaf gas exchange response to a drought and heatwave in urban green spaces in a Nordic city
Joyson Ahongshangbam, Liisa Kulmala, Jesse Soininen, Yasmin Frühauf, Esko Karvinen, Yann Salmon, Anna Lintunen, Anni Karvonen, and Leena Järvi
Biogeosciences, 20, 4455–4475, https://doi.org/10.5194/bg-20-4455-2023,https://doi.org/10.5194/bg-20-4455-2023, 2023
Short summary
Changes in biogenic volatile organic compound emissions in response to the El Niño–Southern Oscillation
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023,https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Rethinking the deployment of static chambers for CO2 flux measurement in dry desert soils
Nadav Bekin and Nurit Agam
Biogeosciences, 20, 3791–3802, https://doi.org/10.5194/bg-20-3791-2023,https://doi.org/10.5194/bg-20-3791-2023, 2023
Short summary
Lichen species across Alaska produce highly active and stable ice nucleators
Rosemary J. Eufemio, Ingrid de Almeida Ribeiro, Todd L. Sformo, Gary A. Laursen, Valeria Molinero, Janine Fröhlich-Nowoisky, Mischa Bonn, and Konrad Meister
Biogeosciences, 20, 2805–2812, https://doi.org/10.5194/bg-20-2805-2023,https://doi.org/10.5194/bg-20-2805-2023, 2023
Short summary
A differentiable, physics-informed ecosystem modeling and learning framework for large-scale inverse problems: demonstration with photosynthesis simulations
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023,https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary

Cited articles

Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, the Netherlands, Heidelberg, Germany, London, UK, New York, USA, 460 pp., 2012. 
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001. 
Barnes, J. R.: Electronic System Design: Interference and Noise Control Techniques, Prentice-Hall Inc., Upper Saddle River, New Jersey, USA, 1987. 
Cheng, Y., Sayde, C., Li, Q., Basara, J., Selker, J., Tanner, E., and Gentine, P.: Failure of Taylor's hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements, Geophys. Res. Lett., 44, 4287–4295, 2017. 
Download
Short summary
Using a simulation study and field data, we quantify the biases that can be introduced in fluxes measured by eddy covariance (EC) if the raw high-frequency data are affected by random and systematic timing misalignments. Our study was motivated by the increasingly widespread adoption of fully digital EC systems potentially subject to such timing errors. We found biases as large as 10 %. We further propose a test to evaluate EC data logging systems for their time synchronization capabilities.
Altmetrics
Final-revised paper
Preprint