Articles | Volume 15, issue 18
https://doi.org/10.5194/bg-15-5699-2018
https://doi.org/10.5194/bg-15-5699-2018
Research article
 | 
25 Sep 2018
Research article |  | 25 Sep 2018

Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape

Dominik Thom, Werner Rammer, Rita Garstenauer, and Rupert Seidl

Related subject area

Earth System Science/Response to Global Change: Climate Change
The biological and preformed carbon pumps in perpetually slower and warmer oceans
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024,https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
The Southern Ocean as the climate's freight train – driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences, 21, 3053–3073, https://doi.org/10.5194/bg-21-3053-2024,https://doi.org/10.5194/bg-21-3053-2024, 2024
Short summary
Mapping the future afforestation distribution of China constrained by a national afforestation plan and climate change
Shuaifeng Song, Xuezhen Zhang, and Xiaodong Yan
Biogeosciences, 21, 2839–2858, https://doi.org/10.5194/bg-21-2839-2024,https://doi.org/10.5194/bg-21-2839-2024, 2024
Short summary
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024,https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Coherency and time lag analyses between MODIS vegetation indices and climate across forests and grasslands in the European temperate zone
Kinga Kulesza and Agata Hościło
Biogeosciences, 21, 2509–2527, https://doi.org/10.5194/bg-21-2509-2024,https://doi.org/10.5194/bg-21-2509-2024, 2024
Short summary

Cited articles

Albrich, K., Rammer, W., Thom, D., and Seidl, R.: Trade-offs between temporal stability and level of forest ecosystem services provisioning under climate change, Ecol. Appl., https://doi.org/10.1002/eap.1785, 2018. 
Bebi, P., Seidl, R., Motta, R., Fuhr, M., Firm, D., Krumm, F., Conedera, M., Ginzler, C., Wohlgemuth, T., and Kulakowski, D.: Changes of forest cover and disturbance regimes in the mountain forests of the Alps, Forest. Ecol. Manage., 388, 43–56, https://doi.org/10.1016/j.foreco.2016.10.028, 2017. 
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008. 
Bürgi, M., Östlund, L., and Mladenoff, D. J.: Legacy effects of human land use: Ecosystems as time-lagged systems, Ecosystems, 20, 94–103, https://doi.org/10.1007/s10021-016-0051-6, 2017. 
Canadell, J. G. and Raupach, M. R.: Managing forests for climate change mitigation, Science, 320, 1456–1457, https://doi.org/10.1126/science.1155458, 2008. 
Download
Short summary
Over the past decades temperate forests were a carbon (C) sink to the atmosphere. Yet the drivers of C uptake and how these affect the future carbon cycle remain uncertain. Our simulation and study revealed that the future C sink of central European forest landscapes is strongly driven by historic land use, while climate change reduces forest C uptake. Compared to land-use change, past natural disturbances (wind and bark beetles) have only marginal effects on the future carbon cycle.
Altmetrics
Final-revised paper
Preprint