Articles | Volume 15, issue 20
https://doi.org/10.5194/bg-15-6139-2018
https://doi.org/10.5194/bg-15-6139-2018
Research article
 | 
18 Oct 2018
Research article |  | 18 Oct 2018

Latitudinal trends in stable isotope signatures and carbon-concentrating mechanisms of northeast Atlantic rhodoliths

Laurie C. Hofmann and Svenja Heesch

Related subject area

Biogeochemistry: Stable Isotopes & Other Tracers
Technical note: A Bayesian mixing model to unravel isotopic data and quantify trace gas production and consumption pathways for time series data – Time-resolved FRactionation And Mixing Evaluation (TimeFRAME)
Eliza Harris, Philipp Fischer, Maciej P. Lewicki, Dominika Lewicka-Szczebak, Stephen J. Harris, and Fernando Perez-Cruz
Biogeosciences, 21, 3641–3663, https://doi.org/10.5194/bg-21-3641-2024,https://doi.org/10.5194/bg-21-3641-2024, 2024
Short summary
Separating above-canopy CO2 and O2 measurements into their atmospheric and biospheric signatures
Kim A. P. Faassen, Jordi Vilà-Guerau de Arellano, Raquel González-Armas, Bert G. Heusinkveld, Ivan Mammarella, Wouter Peters, and Ingrid T. Luijkx
Biogeosciences, 21, 3015–3039, https://doi.org/10.5194/bg-21-3015-2024,https://doi.org/10.5194/bg-21-3015-2024, 2024
Short summary
Position-specific kinetic isotope effects for nitrous oxide: A new expansion of the Rayleigh model
Elise D. Rivett, Wenjuan Ma, Nathaniel E. Ostrom, and Eric L. Hegg
EGUsphere, https://doi.org/10.5194/egusphere-2024-963,https://doi.org/10.5194/egusphere-2024-963, 2024
Short summary
Climatic controls on leaf wax hydrogen isotope ratios in terrestrial and marine sediments along a hyperarid-to-humid gradient
Nestor Gaviria-Lugo, Charlotte Läuchli, Hella Wittmann, Anne Bernhardt, Patrick Frings, Mahyar Mohtadi, Oliver Rach, and Dirk Sachse
Biogeosciences, 20, 4433–4453, https://doi.org/10.5194/bg-20-4433-2023,https://doi.org/10.5194/bg-20-4433-2023, 2023
Short summary
Fractionation of stable carbon isotopes during microbial propionate consumption in anoxic rice paddy soils
Ralf Conrad and Peter Claus
Biogeosciences, 20, 3625–3635, https://doi.org/10.5194/bg-20-3625-2023,https://doi.org/10.5194/bg-20-3625-2023, 2023
Short summary

Cited articles

Broom, J., Hart, D., Farr, T., Nelson, W., Neill, K., Harvey, A., and Woelkerling, W.: Utility of psbA and nSSU for phylogenetic reconstruction in the Corallinales based on New Zealand taxa, Mol. Phylogenet. Evol., 46, 958–973, 2008. 
Comeau, S., Carpenter, R. C., and Edmunds, P. J.: Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate, P. R. Soc. B, 280, 20122374, https://doi.org/10.1098/rspb.2012.2374, 2013. 
Cornelisen, C. D., Wing, S. R., Clark, K. L., Hamish Bowman, M., Frew, R. D., and Hurd, C. L.: Patterns in the δ13C and δ15N signature of Ulva pertusa: Interaction between physical gradients and nutrient source pools, Limnol. Oceanogr., 52, 820–832, https://doi.org/10.4319/lo.2007.52.2.0820, 2007. 
Cornwall, C. E., Revill, A. T., and Hurd, C. L.: High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem., Photosynth. Res., 124, 181–190, https://doi.org/10.1007/s11120-015-0114-0, 2015. 
Cornwall, C. E., Revill, A. T., Hall-Spencer, J. M., Milazzo, M., Raven, J. A., and Hurd, C. L.: Inorganic carbon physiology underpins macroalgal responses to elevated CO2, Sci. Rep., 7, 46297, https://doi.org/10.1038/srep46297, 2017. 
Download
Short summary
The ability of marine macroalgae to adapt to changing ocean chemistry will depend on the flexibility of their inorganic carbon uptake mechanisms across biogeographic ranges. Therefore, we investigated the plasticity of inorganic carbon uptake mechanisms in north Atlantic rhodoliths – free-living calcifying red algae that form important benthic habitats in coastal environments. We observed flexible mechanisms related to seawater DIC concentrations, indicating the potential for adaptation.
Altmetrics
Final-revised paper
Preprint